
1

Building The Android Wrapper
Version 1.3.0+

Contents
Introduction.. 2

Get The Project ... 2

Set Up The Development Environment .. 2

Ensure You Have The Correct SDK Version Installed .. 4

Configuring The App (UPDATED) .. 5

Behavior Settings (UPDATED) .. 5

Connection Settings .. 7

Customizing The App .. 8

Creating A Unique Package Name ... 8

Changing The App’s Display Name .. 8

Changing The App Icon ... 9

Changing The Splash Screen ... 9

Removing Unnecessary Permissions .. 9

Localize App .. 10

Bundle SCAFs (offline apps only) ... 11

Bundle Local Database ... 12

Edit The About Screen (UPDATED) ... 12

Localize The About Screen .. 13

Edit The Credits Screen (NEW) .. 14

Change The Color Scheme (UPDATED) .. 14

Building The App ... 15

Deploying The App .. 15

Manual Deployment ... 16

Google Play Deployment ... 17

2

Introduction

In addition to using the Omnis JavaScript Client in the browser on any computer, tablet or mobile device,

you can create standalone apps for Android that have your JavaScript remote form embedded. These

can even operate completely offline (if you have a Serverless Client serial).

To do this, we provide a custom app, or "wrapper", project for Android. This project allows you to build

custom apps, which create a thin layer around a simple Web Viewer which can load your JavaScript

remote form. They also allow your form access to much of the device's native functionality, such as

contacts, GPS, and camera.

This document describes the steps required in order to create and deploy your own customized wrapper

app for Android. It should provide you with all of the information you need to create your own, self-

contained, branded mobile app, and deploy it to users manually or through the Play Store.

Get The Project

● Download the Omnis Android JavaScript Wrapper project from our website.

● Extract the zip file to a location on your computer.

A bug in Android Studio (at the time of writing) means that if your project is located on a different drive to your

Android Studio installation, the build process becomes very slow.

Set Up The Development Environment

The Android wrapper is now built using Android Studio.

Android wrappers prior to version 1.2.0 were built using Eclipse. If you wish to build one of these older projects,

please refer to the documentation here.

● Java JDK 7 or later is needed to build the wrappers, so please ensure this is installed.

● Download and install Android Studio (available for Windows, Mac & Linux).

● Run Android Studio, and when you reach the Welcome Screen, select “Open an existing

Android Studio project”

http://www.tigerlogic.com/tigerlogic/omnis/download/jswrapper.jsp
http://developer.android.com/sdk/index.html
http://www.tigerlogic.com/tigerlogic/omnis/documentation/wrappers.jsp
http://developer.android.com/sdk/index.html

3

● Browse to the project you downloaded, and select the OmnisAndroidWrapper directory. The

project will be opened in Android Studio.

● Once opened, Android Studio will attempt to build the project in the background (you should see

a little spinner at the bottom of the window while this is in progress).

● Make sure you have the Android Project view open:

○ Along the left side of the screen, select “Project”.

4

○ In the droplist at the top of the Project view, select “Android”.

○ Your view should now look like that shown in the screenshot above, and this is the view

you will want for all of your work with the wrapper.

Ensure You Have The Correct SDK Version Installed
The Android app builds against a particular Target Android SDK version.

It’s important to note that this is not the minimum version of Android the app will run on, but instead allows

the app to take advantage of features and theming introduced in later SDK versions.

● Go to File -> Project Structure and select the OmnisWrapper module in the window which

opens.

● Select the Flavors tab, and here you can see the Target Sdk Version - make a note of this, then

close the window.

● Open the SDK Manager (from the main toolbar, or Tools -> Android -> SDK Manager)

● Use the SDK manager to check that you have the SDK Platform for the target SDK version

found above installed. If not, use the SDK Manager to install it.

5

Before going any further, make sure that you can build the project by selecting Rebuild Project from the

build menu.

Configuring The App (UPDATED)

Configuration of the app is done through the config.xml file, which is situated in OmnisWrapper/assets.

You should set the values in this config file to point the app to your Omnis server, and to configure how

the app behaves.

The properties within the config file are as follows:

Behavior Settings (UPDATED)

● AppTitle: Whether the app should have an Action Bar title at the top. (1 for yes, 0 for no).

● AppStandardMenu: Whether the menu should be added to the Action Bar. Only applies if

AppTitle=1. (1 for yes, 0 for no)

NOTE: The menu provides a way for the user to access the Credits page. If you do not enable
the menu, the onus is on you to ensure that the credits page is accessed in some way through
your application.
Licensing stipulations of various libraries used the wrapper mean that you must make this page
accessible in your application.

6

● AppTimeout: If the app is sent to the background, this is the number of milliseconds it will wait

before killing the app and freeing the connection to the server. If you set this to a negative

number, it will never timeout (although the system may kill the app if it requires the resources).

It's worth noting that if you are making use of some of the device functionality (e.g. Camera, SMS etc), the app will be

sent to the background while you are using the Camera/SMS apps etc. So you should be careful not to set this value

too low, so that your app is not killed while the user is taking a photo, for example.

● HardwareAccelerated (NEW): Determines whether the webview which runs the forms is

hardware accelerated. When enabled, an issue with the Android webview means there may be

issues with redrawing controls such as maps and graphs. This is the case with the latest Lollipop

webview at the time of writing.

However, hardware acceleration is required for the video control.

Unfortunately, due to the webview’s issue with hardware acceleration, this becomes something of a juggling

act. If you do not use video controls, we advise you to disable hardware acceleration. If you do use video controls, as

well as maps/graphs, you may need to enable acceleration and live with the redraw issues until Google fix the

webview.

● MenuIncludeSettings: If the menu is enabled, whether the Settings option is shown. (1 for yes, 0

for no). You will probably want to disable this for your released app.

● MenuIncludeOffline: If the menu is enabled, whether the option to switch between online &

offline modes is shown. (1 for yes, 0 for no).

● MenuIncludeAbout: If the menu is enabled, whether the About option is shown. (1 for yes, 0 for

no).

○ If the About option is enabled, the Credits screen will be accessible from the About

screen.

○ If the About option is disabled, the Credits screen will be accessed as an option from the

main menu.

● SettingsFloatControls: Whether controls on the form should float (using their designed

$edgefloat property) to adapt to the device’s full screen size. Does not apply if SettingsScaleForm

is enabled. (1 for yes, 0 for no). Recommended set to 1.

● SettingsScaleForm: Whether the designed form should be scaled to fit the current device’s

screen. (1 for yes, 0 for no). Recommended set to 0.

● SettingsAllowHScroll & SettingsAllowVScroll: Set these to 1 if you want to allow horizontal or

vertical scrolling of the form respectively, or 0 if not.

● SettingsMaintainAspectRatio: If SettingsScaleForm is set to 1, this controls whether the scaling

maintains the design form's aspect ratio. 1 for yes, 0 for no.

● SettingsOnlineMode: Whether the app should initially start in online mode (set to 1), or offline

mode (set to 0).

7

● ServerLocalDatabaseName: The name (including .db extension) of the local sqlite database to

use. If you are bundling a prepopulated database with your app, its name should match what you

set here.

● UseLocalTime: If 0, dates & times are converted to/from UTC, as default. Setting this to 1 will

disable this conversion. (Offline only - online mode reads from remote task's $localtime property).

Connection Settings

● ServerOmnisWebUrl: URL to the Omnis or Web Server. If using the Omnis Server it should be

http://<ipaddress>:<omnis port>. If using a web server it should be a URL to the root of your Web

server. E.g. http://myserver.com

● ServerOnlineFormName: Route to the form’s .htm file from ServerOmnisWebUrl. So if you’re

using the built in Omnis server, it will be of the form /jschtml/myform. If you are using a web

server, it will be the remainder of the URL to get to the form, e.g. /omnisapps/myform. (Do not

add the .htm extension!)

Only ServerOmnisWebUrl & ServerOnlineFormName are needed for Online forms. The

other Server… properties are needed in addition to ServerOmnisWebUrl for Offline mode.

● ServerOmnisServer: The Omnis Server <IP Address>:<Port>. Only necessary if you are using a

web server with the Omnis Web Server Plugin. If the Omnis App Server is running on the same

machine as the web server, you can just supply a port here.

E.g. 194.168.1.49:5912

● ServerOmnisPlugin: If you are using a web server plug-in to talk to Omnis, the route to this from

ServerOmnisWebUrl.

E.g. /cgi-bin/omnisapi.dll

● ServerOfflineFormName: Name of the offline form. (Do not add .htm extension!)

● ServerAppScafName: Name of the App SCAF. This will be the same as your library name.

Note: this is case-sensitive and must match the App Scaf (by default this is generally all lower-case).

● TestModeEnabled: Enable test mode (Ctrl-M on form from Studio to test on device).

 Make sure to disable before publishing your release app. (1 to enable, 0 to disable)

● TestModeServerAndPort: The <ipaddress>:<port> of the Omnis Studio Dev version you wish to

use test mode with.

NOTE: The values in the config.xml file are currently read only on first launch of the app. They are then
saved to, and read from, local storage to improve performance and allow in-app configuration from the
Settings screen.
As such, if you make changes to the config.xml, you will need to uninstall the old app from your device
before running the new version.

8

Customizing The App

Creating A Unique Package Name

The first step of customizing your app is to change the Package Name.

This is the unique ID for your app, and is what is used to identify it within the OS.

Two apps with the same package name will be seen by the device as the same app, so this is an

important step.

As such you should use a reverse-domain-name style identifier to ensure you do not conflict with other

apps.

● Go to File -> Project Structure and select the OmnisWrapper module in the window which

opens.

● Select the Flavors tab and change the Application Id to your own unique package name.

○ You should use a reverse-domain-name qualifier, to ensure the id is unique to your

company and app. E.g: com.mycompany.omnis.myapp.

Changing The App’s Display Name

The app’s display name is defined in a strings resource file.

● In the Project View pane, drill down to OmnisWrapper/res/values and open strings.xml by

double-clicking it.

● Within this file look for the xml tag with name=”app_name”

● Change the value of this string, by changing the text inside the xml tags to whatever you wish

your app to be named.

You can use a different app name for different locales - see the Localization section for more details on this.

9

Changing The App Icon

As Android devices are so wide-ranging in their displays, it is necessary to create several different

resolutions of icons. The OS will then use the appropriate icon for the user's device.

● Browse to the Android Wrapper project’s location on your file system.

● Drill down into src/main/res and note the drawable-...dpi folders.

● Each of these folders contains an icon.png file, sized correctly for devices classed as part of that

dpi group.

● Edit or replace these files, making sure to keep the image sizes and file name the same.

Changing The Splash Screen

The Android wrapper displays a splash screen while it is loading (or reloading) the form.

This needs to be an image named splashscreen in the res/drawable-...dpi folders. The file extension can

be just a standard .png file, or it could be a 9-Patch (.9.png).

A 9-patch image is a png with special markers which control how the image is scaled. This allows you to

avoid any horrible stretching as the image is scaled. This is our recommended format for splash screens

on Android. Info on 9-Patches can be found here.

You may notice that the default project only contains splash screen images in two of the dpi folders. This

is OK (especially if using 9-patch images) - the device should pick the closest available image to its dpi.

We did this to keep the size of the app/project down.

Removing Unnecessary Permissions

Each Android App must request specific permissions to access various areas of the device - e.g.

Contacts, Camera, Location etc.

http://developer.android.com/tools/help/draw9patch.html

10

It is bad practice to include unnecessary permissions for your app - especially if you are distributing

through Google Play.

When downloading/installing your app, the user can see which permissions your app has requested

access to. Unnecessary permissions may give the user the impression that your app is malicious.

● Open the project's AndroidManifest.xml file (from OmnisWrapper/manifests).

● This file lists the currently requested permissions in a group of <uses-permission …> tags.

● By default, all permissions which an Omnis app may use are present.

● Remove those permissions not needed by your app, by selecting the permission in the list, and

deleting the line, or commenting it out using Ctrl-/ (or Cmd-/ for Mac).

MANDATORY PERMISSIONS:

● INTERNET

All other permissions may be removed if your particular app does not make use of their functionality.

The optional permissions you may require, depending on the functionality you use in your app, are:

● CAMERA - necessary to use barcode reader (kJSDeviceActionGetBarcode).

● READ_CONTACTS - necessary if you use the kJSDeviceActionGetContacts device action to

access the device's contacts.

● ACCESS_FINE_LOCATION - provides fine grain (provided by GPS sensors) location data to the

kJSDeviceActionGetGps device action.

● ACCESS_COARSE_LOCATION - provides coarse location (provided by network) data to the

kJSDeviceActionGetGps device action.

● WRITE_EXTERNAL_STORAGE - necessary if you are obtaining images from the camera

(kJSDeviceActionTakePhoto).

● READ_EXTERNAL_STORAGE - necessary if you are obtaining images from the camera or the

device's saved images (kJSDeviceActionTakePhoto or kJSDeviceActionGetImage).

Only enforced after Android 4.3

● CALL_PHONE - necessary in order to make phone calls from the app

(kJSDeviceActionMakeCall).

● VIBRATE - necessary in order to make the device vibrate (kJSDeviceActionVibrate).

Localize App

If you wish to translate text used by the wrapper app, you can do so as described here. If the user's

device is set to one of the supported languages, it will use any alternative translated text strings which

have been specified.

● Locate your project’s res/values/strings.xml file in Android Studio.

● Right-click strings.xml and select Open Translation Editor.

● At the top of the Translations Editor window, click the Add Locale button (the globe icon), and

select the locale(s) you wish to add a translation for.

At the time of writing, the Translations Editor does not refresh after adding a new locale, so close and re-open the

Translations Editor window.

● Select the string you wish to translate for a particular locale in the table, and apply the translation,

as shown in the image below.

11

● Any strings which haven’t been translated to every locale will be highlighted in red. If a particular

locale does not have a translation for a string, it will fall back to the (English) Default Value.

Some text strings contain placeholder sequences (e.g. “%1$d”). These should generally be maintained in your

translations. Comments on most of these strings can be seen by viewing the original strings.xml source.

Bundle SCAFs (offline apps only)

If your app includes offline support, you need to decide whether or not to include the SCAFs inside your

app. If you do so, the app will be larger, but it will run in offline mode immediately, with no need to first

update from the server.

If you wish to include the SCAFs in your app, you should do the following:

● Browse to the html/sc folder of your Omnis Studio installation.

○ On Windows, this will be in the AppData area.

e.g:C:\Users\\AppData\Local\TigerLogic\OS6.X\

● Locate your App SCAF (This will be a .db file in the root of the sc folder and will be named as

your library).

● Also locate your Omnis SCAF (This will be the omnis.db file in sc/omnis/).

● Import both of these SCAF files into your Android project's assets directory.

○ The easiest way to do this is to copy them to your clipboard, then paste to the assets directory in

Android Studio.

12

Bundle Local Database

It's possible to add a pre-populated SQLite database to use with your app. This will be used as the

database which the form's $sqlobject connects to.

● Copy your SQLite .db file from your file system, into the assets folder of your project within

Android Studio.

● Edit your project's config.xml file, and set the <ServerLocalDatabaseName> to the name of your

local database (including the .db extension).

Bear in mind that you are creating a mobile application, and so should not be storing huge databases

locally on the device.

To keep your data secure, the database is compiled into the apk. At the time of writing, Android .apk files

submitted to the Play Store must be under 50MB, so this is another reason to keep the size of your local

database down.

If you need to access data from a large database, it may make sense for you to hold the whole database

on your Omnis server, and use the Sync Server functionality to synchronize a subset of this data with

your device.

Details on the Sync Server can be found here.

Edit The About Screen (UPDATED)

If enabled in the config.xml, an About option is displayed in your app's menu. This will open a new screen

which displays a html page which you can configure as you wish. It will also provide a link to the Credits

screen.

● To enable(/disable) the About menu option, edit your project's config.xml file, setting the value of

<MenuIncludeAbout> to 1 (or 0 to disable it).

● Open your project's res/raw folder. This needs to contain a file named about.htm, which is the

html page which will be loaded when opening the About screen.

○ This was previously stored in the assets/about folder, but was moved here to allow you to

localize this page using Resource Qualifiers

● You can customize this however you wish, and add any resources it might need to the

assets/about folder.

http://www.tigerlogic.com/tigerlogic/omnis/download/manuals/SQLiteSynchronizationServer.pdf

13

Localize The About Screen

In order to localize your About page for different languages etc, you need to make use of Resource

Qualifiers.

● Locate the res/raw folder on your File System. You can right-click the raw folder and select

Reveal in Finder (/Show in Explorer).

● Create a new folder at the same level as the raw folder, and name it raw-<language code>. E.g.

raw-fr.

○ This folder naming follows Resource Qualifier naming rules. See the Language and

region section of the table on this page for more information, and details on how to go

further with region codes etc.

● Create an about.htm file in this folder, and populate it with your localized content for the

particular language.

● Back in Android Studio, the about.htm file will now be represented as a folder in your Project

view. If you open the folder, you will see the localized versions of the file, annotated with a flag

and language code.

http://developer.android.com/guide/topics/resources/providing-resources.html#AlternativeResources

14

● To avoid polluting the raw directory, and as many of the resources you will need to link to in your

About page will be shared across locales, any local resources loaded by your page should be put

into assets/about (as shown by the TL_logo_white.png file in the screenshot in the Edit The

About Screen section above).

The assets/about folder is the working directory of the About page.

Edit The Credits Screen (NEW)

If the About menu option is enabled in the config.xml, the About screen will have a link to the Credits

screen in its Action Bar. Otherwise, a Credits option is displayed in your app's menu.

NOTE: The Credits page MUST be accessible from your app.

The Credits screen works in a similar way to the About screen - displaying the contents of the

credits.html file from your project’s res/raw folder. It can be localized in the same way as the About

page.

You may add to or style this page if you like, but you must include all of the included attributions.

If you use any extra third-party libraries or resources, you should add your attributions to this page,

otherwise, in most cases, it will be sufficient to leave this as it is.

Change The Color Scheme (UPDATED)

It’s very simple to change the color scheme used by the native portions of the app (Action Bars, highlights

etc), allowing you to drastically change the look and feel of the app.

● In Android Studio, open res/values/colors.xml

● This contains several color… items, whose values you can change to alter the colors used by the

app.

You can edit the values by changing them inline, or by clicking on the color preview swatch in the left margin.

● The colors you can set here are as follows:

○ primary: Will be used as the color for the Action Bars’ background.

○ primary_dark: Will be used to color the status bar (only on Android 5.0+ devices).

○ primary_accent: Will be used to tint selected native Android fields (E.g. checkboxes and

edit fields in Settings).

○ fab_normal: The color of Floating Action Buttons (FABs) (e.g. in Settings screen) in their

normal state.

○ fab_pressed: The color of FABs when pressed.

○ fab_ripple: The color of the FAB ripple effect which occurs when you click (Lollipop and

later only).

By default, the app uses a dark theme. This means that backgrounds of dialogs, popup menus, and the

Settings screen etc will be dark.

If you would prefer your app to use a light theme, you can do so by changing the <style… tag to:

15

<style name=”AppTheme” parent=”Theme.AppCompat.Light”>

This will also cause the color of the text on your Action Bar to become black. If you would rather use a

light theme, but keep the white text on your Action Bars, set the <style… tag to:

<style name=”AppTheme” parent=”Theme.AppCompat.Light.DarkActionBar”>

Building The App

Once you have customised the project for your application, creating a release build is very simple.

● Open Android Studio’s Build menu, and select Generate Signed APK. This will open a wizard to take you

through the process of compiling your app.

● Select the OmnisWrapper module.

● When prompted for the Key Store, if this is your first time building the app, you should use the button to

create a new Key store. For later builds you can use this existing keystore.

This Key store is what identifies you as a developer, so it's important that you back this up after you

create it. Any updates to your app must be signed with the same key. You can use the same key for

multiple apps, if you wish.

If you are intending to deploy your app through Google Play, when creating your key you should ensure
that you set its Validity to at least 25 years.

Guidance from Google on Signing Strategies can be found here.

● When prompted for a Build Type, select release.

Once you finish this wizard, it will export an .apk file. This is your signed, release build of your app, ready

to deploy to your users.

Deploying The App

Once you have built your app, you are ready to deploy it to devices.

Manual Deployment simply requires you to distribute the .apk file to your users manually. They then

sideload the app to their device.

http://developer.android.com/tools/publishing/app-signing.html#strategies

16

Google Play is Android's app store. Getting your app onto this platform is a bit more involved, but the

benefits are very worthwhile. There is no manual verification of your app by Google, so this process is

much quicker than deploying to the iOS App Store.

This does require a one-off registration fee of $25.

Manual Deployment

The first step is to distribute your .apk file to your users. It is up to you as to how you go about this. You

could, for example, email the .apk file to their devices, or make it available as a download from a website.

Once your users have the .apk file on their device:

● Open the device's Settings, select Security, and enable Unknown Sources.

On older Android devices, Unknown Sources may instead be under Applications in the device Settings.

17

● Locate the .apk file on the device, and click it - you should then be prompted to install the app.

Google Play Deployment

DISCLAIMER: Before embarking down this route, you should read Google's requirements and
guidelines on app submission.
Tigerlogic takes no responsibility for any content of your app.

In order to deploy apps to Google Play you must register as a Google Play Developer.

18

You can register here. (You will have to sign in with a Google account).

Once you have registered as a Google Play Developer:

● Sign in to your Developer Console.

● On the All Applications page, push the Add new application button.

● This will begin a wizard to take you through the process of uploading your APK and preparing

your store listing. It is up to you which of these you do first, but you need to do both.

○ The wizard will take you through everything required to get your app and store page

ready. It gives descriptions of each of the fields you need to populate, and the size of

images you need to upload.

○ You can save your details at any point, so there is no pressure to have everything ready

before starting this process.

○ Make sure that you complete each of the sections shown in the sidebar when editing your

app:

● Once you have uploaded your APK, and provided all of the necessary images/information which

Google requires, your application will be marked as Ready to publish.

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish

19

● If you are ready to publish your app; select your application, open the Ready to publish droplist,

and select Publish this app.

● Your app will then be published to Google Play (it may take "several hours" until it becomes live

on Google Play), whereupon it can be found by millions of potential users.

	Building The Android Wrapper
	Introduction
	Get The Project
	Set Up The Development Environment
	Ensure You Have The Correct SDK Version Installed

	Configuring The App (UPDATED)
	Behavior Settings (UPDATED)
	Connection Settings

	Customizing The App
	Creating A Unique Package Name
	Changing The App’s Display Name
	Changing The App Icon
	Changing The Splash Screen
	Removing Unnecessary Permissions
	Localize App
	Bundle SCAFs (offline apps only)
	Bundle Local Database
	Edit The About Screen (UPDATED)
	Localize The About Screen

	Edit The Credits Screen (NEW)
	Change The Color Scheme (UPDATED)

	Building The App
	Deploying The App
	Manual Deployment
	Google Play Deployment

