
Contents

Omnis Programming 7

About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 1—The Omnis Environment 9

Studio Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Color Themes and Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Omnis Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Omnis Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Studio Toolbars and Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Context Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Find and Replace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Spell Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Component Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Property Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Method Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Interface Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Notation Inspector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

SQL Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

SQL Query Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Version Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Auto Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

External Class Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Omnis Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

System Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Power Management Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 2—Libraries and Classes 84

Omnis Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Default Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Class Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Creating New Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Data Classes andWizards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Omnis Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Schema Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Query Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Exporting Libraries to JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

1



Chapter 3—Omnis Programming 115

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

User Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Using Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

External Component Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 4—Debugging Methods 157

Method Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Inserting and Editing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Code Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Code Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Debugging Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Inspecting Variable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Watching Variable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

The Method Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Debugger Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Checking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Method Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Sequence Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Remote Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Chapter 5—Object Oriented Programming 222

Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Object Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Object References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

External Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Chapter 6—List Programming 234

Declaring List or Row Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Defining List or Row Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Building List Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

List and Row functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Accessing List Columns and Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

List Variable Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Manipulating Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Smart Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

2



Chapter 7—SQL Programming 250

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Setting up a Database Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Connecting to your Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Interacting with your Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Listing Database Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Remote Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Cursor Results Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Non-Unicode Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Stripping Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Treatment of Date Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Large Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Session Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Diagnosing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Session and Statement Properties and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

SQL Multi-tasking and SQLWorkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

SQLWorker Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Chapter 8—SQL Classes and Notation 286

Schema Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Query Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Table Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Table Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

SQL Classes and Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Chapter 9—Server-Specific Programming 301

PostgreSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

SQLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Sybase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

ODBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Amazon SimpleDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

OmnisSQL DAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

JDBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Chapter 10—Report Programming 369

Report Fields and Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Report Wizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Report Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Report Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Section Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Sorting and Subtotaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

3



PDF Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Custom URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Printing Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Report and Field Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Print Devices and the Current Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Global Printing Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Report Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Report Field and Section Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Report Object Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Report Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Port Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403

HTML Report Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Chapter 11—Window Components 406

Example Apps and Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Window Class Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Object Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Object datanames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Component Icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Vertically Centered Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Font Scaling for Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Event & Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Alpha Colors & Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Container Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Object Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Rounded Borders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Object Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Tooltips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

HTML Components for Desktop Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Menu Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Toolbar Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Accordion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Breadcrumb Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Button Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Calendar Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Check Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Check List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Color Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Combo Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Complex Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Data Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

4



Droplist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

FishEye Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Graph2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Group Box and Scroll box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Headed List Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

HelpMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Hyperlink Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

Icon Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

JPEG Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Labeled Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

List Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Marquee Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Masked Entry Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Modify Report Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Multibutton Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Multi Line Entry Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Navigation Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

OBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

OmnisIcn Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Paged Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Picture Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Popup List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Popup Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Progress Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Pushbuttons and Button Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

Radio Groups and Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

Round Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

Screen Report Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Scroll Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Shape Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Sidebar Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Single Line Entry Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Slider Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Split Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

String and Data Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Subwindows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Switch Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Tab Pane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Tab Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Token Entry Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Trans Button Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Transform Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Tree List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

5



Video Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

WAV Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Background Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Label and Text Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Deprecated Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Chapter 12—Window Programming 529

Window Design Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Window Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Field Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Format Strings and Input Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Drag and Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Toast Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Window Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

HWND Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Enter Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Floating Edges for Windows and Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Window Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Background Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Theme Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Window Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Window Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Disabling the Focus on Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

LookupWindows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Timer Methods and Splash Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Window Status Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

True Color Shared Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Chapter 13—Unicode 556

What is Unicode? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

DAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

Character Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

Character Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Unicode Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Unicode Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Import/Export and Report File Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Omnis Data File Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

Chapter 14—Localization 565

Localizing Your Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Localizing Omnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572

Localizing the Omnis Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

6



Chapter 15—Version Control 576

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Setting up a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Checking in Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

Using the VCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Managing Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

VCS Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

VCS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Chapter 16—Omnis Data File Migration 599

Converting Omnis Data Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

Enabling DML Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Emulated Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Changes to Library Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Multiple Users and Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Logon Config Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

New OmnisSQL DAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Chapter 17—Deployment 605

Deployment Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Code Signing Omnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Update Manifest Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Windows Resource Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Omnis Programming

Omnis Software Ltd

Released May 2023
Updated Jun 2023 Revision 35439
Updated Oct 2023 Revision 35659
Updated Mar 2024 Revision 36251

About This Manual

This manual starts with a general introduction to the Omnis Environment and goes onto to describe Libraries and Classes. It then
focuses on all aspects of Programming and Debugging code in Omnis Studio, including information about creating and using
List Variables, accessing and managing SQL databases, as well as describing the Omnis VCS. To learn more about creating web
and mobile applications, you need to refer to the Creating Web & Mobile Apps manual.

In addition, there are the Omnis Referencemanuals containing information about all the Commands and Functions available in
Omnis Studio, plus there is a comprehensive Help system, available from within the Omnis IDE using the F1 key, which contains
a complete list of all Omnis Notation including all properties and methods.

Themajority of the information in this manual is relevant if you are using the Community Edition, except the chapters onWindow
Classes and Window Components which are used for creating desktop apps and are therefore not available in the Community
Edition.

7

01omnistools.html#chapter-1the-omnis-environment
02libsandclasses.html#chapter-2libraries-and-classes
03programming.html#chapter-3omnis-programming
04debug.html#chapter-4debugging-methods
/developers/resources/onlinedocs/WebDev/00about.html
/developers/resources/onlinedocs/CommandRef/index.html
/developers/resources/onlinedocs/FunctionRef/index.html


If you are new to Omnis

When you start Omnis Studio you will see the Studio Browser (if this is not visible press F2 on Windows or Cmnd-2 on macOS)
which allows you to create a new project library or open an existing library. Under theHub section, you can look at example Omnis
applications under theApplets and Samples options: you can open each example in your web browser or within Omnis itself, and
you can examine the Omnis code in the associated library under the Project Libraries option in the Studio Browser. Some of the
example code in this manual is taken from the example applications in the Hub.

In addition to looking at the example applications in the Hub, youmay like to work through the Tutorial which covers all themain
tasks in creating an application in Omnis Studio, including creating SQL data classes, logging onto a SQL database, and building
remote forms.

Copyright info

The software this document describes is furnished under a license agreement. The software may be used or copied only in
accordancewith the termsof the agreement. Names of persons, corporations, or products used in the tutorials and examples of
this manual are fictitious. No part of this publicationmay be reproduced, transmitted, stored in a retrieval system or translated
into any language in any form by any means without the written permission of Omnis Software.

© Omnis Software, and its licensors 2023. All rights reserved.

Portions © Copyright Microsoft Corporation.

Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2023 The Apache Software Foundation. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Specifically, this product uses Json-smart published under Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2023 Python Software Foundation; All Rights Reserved.

The iOS applicationwrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by theMIT license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered trademarks,
and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark of Apple,
Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2023 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2023, The PostgreSQL Global Development Group

8

/developers/resources/onlinedocs/WebDev/01tutorial.html#chapter-1tutorial


Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.

This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

Chapter 1—The Omnis Environment

The Omnis development environment contains all the tools you need to build enterprise, web, andmobile applications in a cross-
platform,multi-developer environment. The Tutorial introduces you to someparts of theOmnis IDE, including theStudioBrowser,
PropertyManager and theCatalog. This chapter goes intomoredetail about these tools andothers in theOmnis Studio IDE. Some
of the tools and development features inOmnis, such as theOmnis VCS and using the SQLBrowser, are described in greater detail
in their own respective chapters later in this manual.

When you start Omnis Studio you will see the Project Libraries option in the Studio Browser, which allows you to create a new
library or open an existing library.

If the Studio Browser
window is not visible, you can press the F2 key onWindows, or Cmnd-2 (or Fn F2) onmacOS, or you can select the Browser option
from the View menu, or under Windows you can click on the Browser button (compass icon) on the main Omnis toolbar (on
macOS, you can enable the toolbars via the View>>Toolbars option).

9

/developers/resources/onlinedocs/WebDev/01tutorial.html#chapter-1tutorial


The list of options down the left-hand side of the Studio Browser gives you access to all the main tools for creating applications,
including the SQL Browser, the Omnis VCS, and the HUB which contains many example apps under the Samples option (see
below for more information about these options).

Note that some features (and class types) in the Studio Browser are not available in the Community Edition, such as those relevant
to developing desktop applications.

Studio Browser

The Studio Browser is themainwindow inOmnis Studio for developing your applications andmanaging server database sessions.
You can use the Views droplist on the window toolbar (title bar on macOS) to set the main view: this can be the Details view (the
default), Large Icons, or Small Icons. The following screen shot shows the Studio Browser with the contents of a library in Large
Icons view.

Figure 1:

You can Right-click in the Studio Browser window to open its context menu, which contains options to set Single WindowMode,
showor hide Library Folders, plus the SaveWindowSetup option lets you save the current settings including the size andposition
of the Studio Browser window. The context menu also lets you Arrange Icons by various criteria (including class Type or Name),
plus the New option lets you create a new class or folder.

The hierarchical tree list down the left side of the Studio Browser contains the following options:

• HUB
contains example libraries, fault reports, and options to configure the Omnis IDE; see Developer Hub

• Project Libraries
allows you to open a library, or create a new one, and shows a list of all open libraries in your project or application; see
Libraries and Classes

• Remote Debug Client
allows you to debug your application on a remote server; see Remote Debugger

• SQL Browser
allows you to open a SQL database session, manage server tables, and access your data on a remote database server; see
SQL Browser

• VCS
allows you to manage a project using the Omnis VCS; see the Version Control chapter; not available in the Community
Edition

• Web Service Server
allows you to setup Omnis to access third-party Web Services, or to setup your own web service using Omnis server code;
see Web Services

10

02libsandclasses.html#chapter-2libraries-and-classes
04debug.html#remote-debugger
15vcs.html#chapter-15version-control
/developers/resources/onlinedocs/ExtendingOmnis/01webservices.html#chapter-1web-services


• Trace Log
allows you to trace and debug your Omnis code; see Debugging Methods

The right-hand pane in the Studio Browser displays a list of objects or files for the current folder or selected object under themain
tree list on the left, e.g. it displays all the classes in a library when a library is selected in the tree list. The list of Options (list of
hyperlinks in the center) will change depending on the object currently selected in the tree list or the file browser on the right
and will always provide options and shortcuts to perform actions on the current object. For example, when a library is selected
on the left, its classes are shown in the list on the right, and the hyperlink options relate to classes, such as creating a New Class,
New Folder, or Class Wizard. The Class Filter option allows you to show or hide certain types of classes.

Search Filter

The Studio Browser has a Search box that allows you to filter the objects displayed in the library or class list allowing you to find
objects more easily. The Search filter is available for most of views in the Studio Browser, including Libraries, Classes, SQL sessions,
VCS projects, and various parts of the Hub including the Sample apps and Faults; onWindows, the search box is on the left under
the window title, but on newer macOS systems, the toolbar is integrated into the window title and the Search boxmay be over to
the right (as shown).

Figure 2:

To search for an item, navigate to the correct view in the Studio Browser (e.g. the class list view), type one or more characters, and
the list will instantly redraw, displaying only those items that contain the character(s) you typed. For example, in the class list for
a library, you could type “task” to find all the classes containing “task”, as shown:

Figure 3:

The Search box has a dropdown list that stores the last few searches you typed, which you can select from with the pointer.

Copy Class Name

You can copy the name of a selected class to clipboard by pressing Ctrl-N or via the Copy Name option on the Class Browser
context menu: for multiple selected classes the names are copied in a list.

Developer Hub

The HUB option in the Studio Browser provides useful information for developers, such as the status of the most recent reported
and fixed faults, together with information and tips for new Omnis developers. The HUB option itself contains information and
news about Omnis Studio, including where to get help and online training, plus links to the Omnis Twitter feed.

Applets and Samples

The Applets option provides a number of example Omnis applications that show the full capabilities of Omnis Studio for building
web and mobile applications. You can open each of the examples in a web browser (when you select an example it is opened
in your browser automatically), and you can examine the code in the associated library under the Project Libraries option in the
Studio Browser.

11

04debug.html#chapter-4debugging-methods


The Samples option provides a large range of sample Omnis libraries demonstrating specific components or programming tech-
niques in Omnis. Once you have opened the sample library, you can examine its classes and underlying code under the Project
Libraries option in the Studio Browser. When the Samples option is selected in the Studio Browser, you can use the Search op-
tion (at the top) to find specific examples, e.g. type ‘list’ to find all list examples. You can use the Examples filter to hide or show
categories or types of examples, including a New option for showing any examples added in the latest major release of Omnis
Studio.

You can use the Omnis libraries under the Applets and Samples option as templates for your own libraries, or you can reuse
individual classes or the Omnis code within the libraries.

Faults

The Faults option provides information about the latest Reported and Fixed faults in Omnis Studio – this is real-time information
so you can check the most recent faults. If you have reported a fault in Omnis Studio you can check its status here.

IDE Options

The IDE Options allows you to configure the behavior, contents and appearance of the Studio Browser. The Options window is
split into different tab sections:

Browser tab

• Show These Tools
specifies which tools (nodes) are displayed in the Studio Browser. By default, the SQL Browser, Trace Log, VCS, and Web
Services are enabled. (The Datafiles option is disabled by default and is hidden in some editions of Omnis)

• Default Browser Node
specifies whether the Hub or Project Libraries node is displayed by default when Omnis starts up.

Themes tab

The theme settings under this tab relate to color themes used in the Omnis IDE or desktop window classes (not the JS Themes
which are used to manage the colors in web and mobile apps).

• Appearance Themes
The Appearance option allows you to change the theme used in the Omnis Studio IDE. Together with the Default theme,
there are several other themes from which you can choose. See Color Themes and Appearance. You can create a custom
theme, as well as import or export themes from this window. (Note the themes available in the IDE are not the same as
those available for remote forms.)

• Window Frame Theme
(Windows only) The ‘Window Frame Theme’ option allows you to set the color theme or style for the frame edge of windows
and forms. The options are Default, Windows 7, 8, or 10.

Proxy Server tab

The ‘Use proxy server’ option allows you to access the faults information if you use a proxy for outgoing requests. Check the option
and enter a hostname and service or port for your proxy server.

Project Libraries in the Studio Browser

The Project Libraries option under the Studio Browser lets you create a new library, the main file where you store all the classes
in your application, or open an existing library. See the Libraries and Classes chapter for more information about creating and
opening libraries in the Studio Browser.

The Create project library from JSON option allows you to import a library from a JSON representation of an Omnis library (you
can download JSON files from our GitHub). See Importing Libraries in the Libraries and Classes chapter for more information.

Library Conversion

When you open a library created in a previous version of Omnis Studio it will be converted and can no longer be opened in the
old version of Omnis Studio – THE LIBRARY CONVERSION PROCESS IS IRREVERSIBLE. Therefore, and in all cases, YOU SHOULD
MAKE A SECURE BACKUP of all old Omnis libraries and datafiles BEFORE OPENING THEM in the latest version of Omnis Studio.

12

02libsandclasses.html
/developers/resources/onlinedocs/Programming/02libsandclasses.html#importing-libraries


Class Locking and Library Conversion

In order to enhance the integrity and security of deployed Omnis Studio libraries, themechanism used to lock classes in a private
library has changed in Omnis Studio Revision 35659.

Consequently, all libraries opened in Omnis Studio 11 revision 35659WILL REQUIRE CONVERSION, INCLUDING LIBRARIES CRE-
ATED WITH ALL PRIOR REVISIONS OF OMNIS STUDIO 11 (as well as Studio 10 or earlier libraries). THE LIBRARY CONVERSION
PROCESS IS IRREVERSIBLE.

THEREFORE, AND IN ALL CASES, YOU SHOULDMAKE A SECURE BACKUP of all existing Omnis Studio 11 libraries BEFORE OPEN-
ING THEM in Omnis Studio 11 Revision 35659.

Recent Libraries or Classes

When theProject Libraries option is selected in the Studio Browser, theRecent Project Libraries option (half way down the Studio
Browser window) allows you to open a library that you have previously opened; this is a handy shortcut and saves you having to
navigate to your library.

When a library is selected in the Studio Browser, the Recent Classes option (at the bottom of the Studio Browser window) allows
you to open any classes that you have previously opened. You can open the method editor for a class (that is, a class that can
contain methods) from the Recent Classes list by holding down the Shift key and selecting the class. To open the Interface
Manager for a class, hold down the Control/Command key while selecting the class in the Recent classes list.

Library Folders

You can create folders in a library so you can organize the classes within each library. Folders are in fact Omnis classes, but for
display only (they are visible during development only). Folders do not perform any function in your library, other than organizing
your classes, and they are ignored at runtime.

To hide/show library folders within the Browser, select your library and click on the ‘Library Folders (on/off)’ option, or alternatively,
right-click on the white space of the Studio Browser (when any library is selected) and select the ‘Library Folders’ option from the
context menu. You can save the state of this option using the Save Window Setup option for the Studio Browser.

Hiding and Showing Classes

When the contents of a library are displayed in the Studio Browser, you can hide and show different types of class by pressing
the Shift and Control/Command keys plus the appropriate letter key. For example, pressing Shift+Ctrl+I displays only the Remote
Forms in the library, or Shift-Ctrl/Cmnd-A shows all classes. The following keyboard shortcuts are available:

Class type Shortcut - Shift + Ctrl/Cmnd + Letter key

Shows all A
Code C
File L
Menu M
Object O
Query Y
Remote form I
Remote menu N
Remote object E
Remote task K
Report R
Schema S
Search H
Table B
Task J
Toolbar T
User constants U
Window W

The above key presses activate the Class Filter, which you can open and setmanually by clicking on the Class Filter (on/off) option
in the Studio Browser; you can check or uncheck options to show or hide specific class types.

Note that class types relevant to developing desktop applications are hidden in the Community Edition. Note also that when you
show all classes using the Shift-Ctrl/Cmnd-A option, the #PASSWORDS system table is displayed and is only relevant to desktop
apps and should not be used for web or mobile apps.

13



Diacritical Character input in the IDE

The Studio IDE will provide the diacritical character popup to allow you to enter diacritical characters wherever text entry is re-
quired. For example, you can enter diacritical characters in comments in the Method Editor or into a label on a form. To disable
the feature for the IDE, remove or rename the Keyboard folder which is in the local folder.

Using Multiple Screens on macOS

You can move any of the design tools, such as the Property Manager and Method Editor, or any class editor window, to another
screen using the Move Top To <screen> command in the Window menu (macOS only – 10.15 Catalina and later). The option will
only appear when there is more than one screen connected to your Mac computer, and in this case will move the top window to
the named additional screen.

Color Themes and Appearance

The colors used throughout the Omnis Studio design environment (the IDE) are stored as a design themewhich can be changed
under the IDE Options>>Themes setting in the Hub in the Studio Browser: each theme contains a list of color settings for the
objects and tools in the Omnis Studio IDE. Color themes are available on Windows and macOS only, but not for Linux. (Note the
design themes available in the Omnis IDE are not the same as JS Themes available for Remote Forms.)

There are a number of themes for theOmnis IDE and available in the Hub, listed under the ‘Appearance Theme’ droplist, including
the ‘Default’ theme which is intended to match the colors used on different platforms supported in Omnis.

Figure 4:

You can change individual colors or settings within a theme (under the $appearance property, see below), and in this case, your
modified theme will be saved as a ‘Custom’ theme alongside those provided. The themes for the IDE are stored as configuration
files in the ‘Studio’ folder under the main Omnis folder.

Exporting & Importing Custom Themes

You can create multiple custom themes, and you can export and import themes. There is a list of the custom themes currently
installed (located in the folder /studio/themes/custom) underneath the themes droplist.

To create a custom theme, press the “Save Current Theme As” button. Once saved, the name you give the themewill then appear
in the list of custom themes.

If you are setting a custom theme, you will need to select it first in the list and then press the “Apply Custom Theme” button, since
you need to be able to select a custom theme without applying the theme when exporting.

To export custom themes, select the required themes in the list and press the “Export Themes” button. This allows you to select
a folder to copy the themes into.

You can also import either a single theme or a folder of themes. Once imported they are copied to the /studio/themes/custom
folder and will appear in the list.

14



Window Frame Themes

For Windows only, you can also change the theme used for the outside edge or frame of windows used in the Studio IDE and
your own windows, which can be set to match the style of the window frame displayed on various Windows platforms. These are
shown under the ‘Window Frame Theme’ droplist.

Appearance Property

The current theme in the Omnis Studio IDE is stored in an Omnis preference called $appearance, which can be edited via the
Property Manager. To edit this property, click on the Options button at the bottom-left of the Studio Browser, select the Prefer-
ences option, then select the Appearance tab in the Property Manager (if the Advanced option is on) and click on the droplist
next to the $appearance property; alternatively, you can use the Search box to find $appearance in the Property Manager.

Note that when editing $appearance in the Property Manager, the default colors may not always draw correctly since the editor
grid itself uses the configured colors, and therefore if a color is set to the default setting, there is a check mark icon (an X) to the
left of the color.

Figure 5:

In addition, there is an Omnis preference called $windowoptions that stores the current Window Frame theme which you can
also edit via the Property Manager: this is described at the end of this section.

Searching Colors & Themes

There is a search field on the $appearance preference dialog to help you find colors. As you type into the search box, Omnis will
highlight any matching lines in the Property Manager and scroll to the first match. Tabbing from the search field sets the focus
in the grid to the first match.

Appearance and Theme Files

The color and appearance settings used in the Omnis Studio IDE, and displayed in $appearance via the Property Manager, are
stored in a configuration file called ‘appearance.json’, which is located in the Studio folder in the main Omnis folder. This file
contains the current color theme settings in $appearance which will either be the default theme, or one of the other themes
provided, or a custom theme.

The Default and other themes (Blue, Green, etc) are stored in separate JSON files in the ‘studio/themes’ folder. As you change the
theme setting under the Options setting in the Hub, the appropriate JSON theme file is written to the appearance.json file in the
Studio folder.

15



When Omnis loads, it will copy the appropriate theme file into /studio/appearance.json. If you alter one of the theme colors using
$appearance in the Property Manager, Omnis will recognize that the default or one of the built-in themes has changed and
therefore will create a custom theme ‘appthemecustom.json’ in the themes folder. In this case, when Omnis restarts, it will load
the Custom theme and it will add it to the droplist in the Options setting in the Hub.

When a theme has been changed, if you then try to switch to another theme using the Hub, you will receive a Yes/No message
asking you to confirm if you wish to overwrite the custom changes.

Appearance File Contents & Help

There is a file called appearance.desc.en.json in the ‘local’ folder under the main Omnis folder which contains a description of all
the items in the $appearance property and appearance.json file: the descriptions in this file are used as helptips in the Property
Manager when viewing the items in the $appearance property.

Colors are stored in appearance.json as a string, which can be either “#RRGGBB” or “kColorDefault” or one of the 16 standard
colours: kBlack, kDarkBlue, kDarkGreen, kDarkCyan, kDarkRed, kDarkMagenta, kDarkYellow, kDarkGray, kBlue, kGreen, kCyan,
kRed, kMagenta, kYellow, kGray, or kWhite.

The subgroups prefixed with IDE refer to colors in the IDE only, such as the Method Editor and Method Syntax, so any changes
youmake to colors in these groups are only visible in the IDE, not the Runtime. All other theme subgroups affect colors in the IDE
and the Runtime version of Omnis Studio. When you edit the $appearance preference in the Property Manager you will see the
subgroups, so to edit colors in the Method Editor syntax you can open the “IDEmethodSyntax” group.

Dark Mode

Omnis Studio supportsDark andLightmodeswhenusing thedefaultOmnisdesign theme (studio/themes/appthemedefault.json);
the theme for design mode in Omnis is set via the Themes tab under the IDE Options option in the Hub in the Studio Browser.
You can change the system color mode via the System Preferences > General option on macOS, or Settings > Personalization >
Colors option under Windows. Note dark mode is supported on macOS 10.14 and later or Windows 10/11 or above.

Figure 6:

Dark mode is supported in the theme and appearance files using “[item].dark” items. For example, as well as a “tree” item in
appearance.json, there is a “tree.dark” item which is used when the system is in dark mode; if there is no “.dark” entry, the normal
entry is used in dark mode.

If an appearance.json file does not contain any “.dark” entries, Omnis will use the light system theme when determining any
defaults that come from the system, although system dialogs will display in the current mode for the system.

User Defined Colors

User defined colors can be added to the appearance.jsonwhich can be used for theme colors for window class controls in desktop
(fat client) apps. The colors are defined using the groups “user” and “user.dark” in the appearance.json theme file, using the names
color1 to color16. They are represented by 16 new color constants kColorUser1 to kColorUser16.

16



IDE Window Colors (Windows only)

You can specify darkmode colors for some of the IDEwindow colors defined in the $windowoptions Omnis preference; these only
apply on Windows OS and are used automatically when dark mode is being used. The following colors can be defined:

titleactivecolor.dark
titleinactivecolor.dark
smalltitleactivecolor.dark
smalltitleinactivecolor.dark
borderactivecolor.dark
borderinactivecolor.dark
captionactivecolor.dark
captioninactivecolor.dark
smallcaptionactivecolor.dark
smallcaptioninactivecolor.dark
minmaxbuttonhotcolor.dark
minmaxbuttonhottrackingcolor.dark
closebuttonhotcolor.dark
closebuttonhottrackingcolor.dark

Platform Specific Notes

System dialogs and Menus

System dialogs (file dialogs etc) do not use the theme colors.

Menus on macOS do not use the theme colors. On Windows, the colorlistlineselectedwin color is used to highlight menu lines.

JavaScript Client

The JavaScript client will use the system colors configured on the Omnis App Server running your app. Therefore if you want to
use a specific theme for your deployed web andmobile apps, you need to copy your appearance.json file to the Omnis App Server.

macOS and Cocoa

The term system theme is a little loose for Cocoa. Omnis tries to match the system theme, but unlike Windows, there are not
always APIs in the OS to perform the drawing (hence some system theme drawing on Cocoa is actually Omnis imitating the OS
theme).

Some of the theme background colors have been rationalized (this does not apply to Carbon) as follows:

kBGThemeWindow, kBGThemeContainer and kBGThemeTabStrip now fill with kColorWindow on both platforms. Previously
these used kColor3DFace onWindows.

kBGThemeTabPane now fills with the selected tab background (using either the system theme or colortabselected - the system
theme applies with colortabselected is kColorDefault).

Window Frame Appearance on Windows

In addition to the color management outlined above, you can change the appearance of the frame edge of window classes in
desktop apps (on Windows operating systems only), which allows you to comply with the latest style for window frame edges
on Windows 8, 8.1 and 10. For most purposes you can accept the default settings for the current Windows platform, but you can
change the frame theme if you want.

You can change window frame themes under the IDE Options setting under the Hub section of the Studio Browser (Windows
only). You can select Default, Windows 7, 8, or 10 which allows you to view how your application will appear on different Windows
platforms.

In addition there is a newproperty in theOmnis preferences, $windowoptions, which allows you to edit the appearance of window
frames in libraries running onWindows – note this preference is only editable on the Windows platform.

Window Frame Configuration files

There is a file called ‘window.json’ in the Studio folder, which stores the values of the $windowoptions preference. Thewindow.json
file configures the appearance of the window frame, and also configures the operating systems for which the configured appear-
ance will be used, including the old appearance for Windows 7, and the new configured appearance for later Windows operating
systems. There are a number of theme files in the ‘studio/themes’ folder which are copied to window.json as appropriate.

17



Active Caption Colors

useborderactivecolorfordefaultactivecaption
specifies the color of the active caption in Windows (stored in window.json). This is an integer with 3 possible values.

If it is zero, the behavior is as before (the active caption defaults to white if it is set tokColorDefault).

It it is one, and the active caption color is kColorDefault, then the active caption color is the same as the active border color.

If it is two (the default), then the default active caption color depends on the system setting on the accent color settings panel:
“show colour on start, taskbar, action centre and title bar” - if the system setting is off, then this is equivalent to useborderactive-
colorfordefaultactivecaption equal to zero - if the system setting is on, then this is equivalent to useborderactivecolorfordefault-
activecaption equal to one.

Note that this applies to both small and normal size captions, and only applies when the relevant caption colour is kColorDefault.

Omnis Preferences

The Omnis Preferences control the behavior and appearance of the Omnis Studio IDE, rather than individual libraries or classes,
and they can be viewed in the Property Manager. TheOmnis preferences include groups (tabs) for: General options, Appearance,
Devices, Page Setup, andMethods. TheOmnis preferences are sometimes referred to as theOmnis “Root Preferences”, since they
are properties of the $root object in the Omnis object hierarchy, and referenced in the notation as $root.$prefs.<property-name>.

To view the Omnis preferences

• Under Windows, select the Options option in the Toolsmenu, or click on the Options button on the Tools toolbar (you can
enable this option using the Toolbars option in the Viewmenu)

or

• On macOS, select the Preferences option from the Omnismenu, or press Cmnd-, (comma)

or

• On all platforms, click on the Options button at the bottom-left of the Studio Browser (next to the version number) and
select the Preferences option

Figure 7:

To view all the Omnis preferences, ensure the Advanced option is enabled (on) in the Property Manager; with the Advanced
option disabled (off) only a small subset of Omnis preferences is shown. You can position your mouse over any property and
view its description in a tooltip (e.g. collectperformancedata is shown and its help tip). If you are looking for a specific property or
preference, you can find it using the Search box at the top of the Property Manager window; the Search box only appears when
the Advanced option is enabled.

You can select a preference in the Property Manager and press the F1 key (Fn F1 on macOS) to open a Help window for that
preference (or property); in this case, the page for $root.$prefs opens, listing all the Omnis Preferences.

18



Figure 8:
19



Preferences in config.json

Some properties in the Omnis Preferences (root.prefs) are replicated in the “prefs” group in the Omnis configuration file (con-
fig.json), which means you can set their values in either the Property Manager or the Configuration Editor. See Omnis Configura-
tion about editing config.json.

Environment Font Size

The Omnis preference $idelistpointsize specifies the font point size used for lists within the Property Manager and Catalog.

You can increase or decrease the font size used in many of the lists in the Omnis IDE using the Ctrl+ (increase) or Ctrl- (decrease)
keyboard shortcuts. These shortcuts are only temporary, are not saved with the window setup, and will return to their respective
default sizes when you close Omnis Studio.

Single Instance preference

Under Windows you can run multiple instances of Omnis Studio (this is not allowed under macOS). When the $singleinstance
Omnis preference is set to kTrue only one instance of Omnis Studio is allowed. The “singleInstance” item in the “windows” section
of the Omnis configuration file can be used to set the value of the Omnis preference $prefs.$singleinstance.

Omnis Configuration

You can control the behavior of the Omnis executable and many other elements of the Omnis IDE by editing a configuration file
called config.json,which is createdwhenOmnis is first launched and is located in the ‘Studio’ folder under themainOmnis folder.
The file is stored in JSON format and should be edited using the Configuration File Editor.

When you start developing your application you may not need to edit the Omnis configuration since it contains all the default
settings for running Omnis Studio in development mode. Some options in the Omnis configuration file relate specifically to how
the Omnis App Server is setup for deploying and running web or mobile apps: when you deploy your application you will need to
edit the Omnis configuration in the Omnis App Server to configure your server settings, such as the server port number.

In addition to the Omnis configuration file (config.json), there is a configuration file called omnis.cfg in the ‘studio’ folder that con-
tains information regarding the Omnis development environment and other internal settings, including specific settings saved
with Save Window Setup, e.g. Show tree for the method editor window. This file is created when you first start Omnis and is
updated when you shutdown. Note that you cannot edit omnis.cfg.

The positions.cfg configuration file, also located in the ‘studio’ folder, holds the position information saved for various screens in
the IDE using the Save Window Setup option. This ensures that the IDE screens are returned to their saved size and position
when you reopen Omnis. The information includes window positions and sizes, split bar positions, and so on, for each screen
layout. Note that you cannot edit positions.cfg.

Configuration File Editor

The Configuration File Editor allows you to edit the settings in the Omnis Configuration file (config.json) inside Omnis Studio. To
open the editor, click on the Options button at the bottom-left of the Studio Browser (next to the revision number), and select the
Edit Configuration option.

The Configuration Editor shows the main groups of items in the Omnis configuration file in the left hand list, such as ‘defaults’,
‘ide’, and ‘methodEditor’, and for each selected group the items within that group are shown on the right, for example, the ide
group of items is shown below:

Some items require a string value, in which case you can click on the item and edit it directly in the text field, otherwise, when
you click an item to edit it, a droplist may appear containing its possible values (such as True/False values), or some other kind of
dialog will open, such as a file select dialog or a color picker.

Configuration Help

When an item is selected, the Help panel below the configuration items grid provides a full description of the item. In addition,
the status bar beneath the help panel indicates whether or not a restart is required after changing the item and saving the
configuration file. The status bar is empty when the item is not relevant to the current platform.

The contents for the Help provided for the Configuration items are stored as HTML pages in a folder called ‘confighelp’ in the
Studio folder; this folder is not present in the Headless Server version.

20



Figure 9:

Figure 10:

21



Adding Configuration items

The Omnis configuration file contains all the settings required to run Omnnis Studio in development mode or the Omnis App
Server (or Omnis Runtime). However, theremay be specific items that are included in the documentation or providedby Technical
Support, that are not included in the default Configuration file, which you can add using the Configuration editor.

The + and - icons at the top of the window allows you to add or remove items, however in general however, you should not delete
items, rather just change their values; for example, for a Boolean item value which you want to disable, set the value to False to
disable it rather than deleting the item.

To add an item, click on the + icon, enter the exact name of the Config item, and choose the type,which is one the following types:

• Boolean
a True or False value

• Character
a string

• Integer
an integer value (usually in a specific range of values), or a constant value

• List
For list items, enter the itemname, then you can specify the list of items in a popupwindow; they are displayed as a comma-
separated list

In addition, you can enter \t to mean tab, e.g. for log.conversionLogDelimiter.

Errors in config.json

Errors in the Omnis configuration file config.json are written to the Omnis trace log, which can be viewed from the Toolsmenu or
in the Studio Browser. As Omnis is loaded, it parses the config.json file and if it fails, an error is written to the trace log.

User Configuration File

Any changes or additions you make to the Omnis Configuration file using the Configuration Editor are saved into a separate
file called userconfig.json, which is stored in the ‘Studio’ folder alongside config.json. This ensures that the default settings in
config.json are retained and all your changes or additions are stored separately in userconfig.json. This also means that if you
upgrade to a newer version of Omnis you can copy across your copy of userconfig.json to ensure all your settings are maintained
in the new version.

It is recommended that you do not edit the config.json file externally using a text file editor, but you should use the Configuration
Editor.

Configuration Editor Visibility

The Configuration file editor is available in the Development version of Omnis Studio, as well as the Runtime and Server versions
(but not the Linux Headless server). To open the Configuration file editor in the Runtime or Server version, select the Edit Config-
uration… option from the Filemenu. You can hide this option in the Runtime or Server version by executing the sys(246) function,
or sys(247) will show it again; the default setting is for it to be visible.

Windows Configuration

The “windows” section of the config.json file contains settings to control the visual appearance of Omnis or various Startup options
when running under Windows.

"windows": {
"highDPIaware": true,
"readBorderActiveColorFromSystem": true,
"scaleScreenCoordsUsingPhysicalSize": false,
"pythonPath": "",
"miniconid": 2033,
"hideStudiorgMessage": false,
"noAdmin": false,
"updateFileAssociations": true

},

22



The visual appearance settings are:

• highDPIaware
Defaults to true. If true, Omnis will tell Windows to operate in the system DPI, and it will scale pixel dimensions if necessary,
by a factor of 2; if false, Omnis will operate at 96dpi

• readBorderActiveColorFromSystem
Defaults to true. If true, Omnis attempts to read the default value for borderactivecolor (a color in window.json) from the
operating system. If false, use a hard-coded default rgb(244, 112, 35).

• scaleScreenCoordsUsingPhysicalSize
Defaults to false. Only applies when $clib.$screencoordinates is true. If false, screen coordinate scaling is based on the size
of the main window; if true, it is based on the physical screen size.

• pythonPath
Default is empty. Identifies the pathname of the python executable if installed (used for the PythonWorker Object). Other-
wise, if empty, defaults to python\App\python in the Omnis data folder.

• miniconid
The icon id of the application icon. Default value is 2033.

In addition, you can specify the following Startup options under the windows group:

• hideStudiorgMessage
If true, the message dialog about running Studiorg when Omnis starts up will not be displayed. If false (the default) or
omitted, the message is shown.

• noAdmin
If true, Omnis will run with the current user’s access level; consequently, it will not attempt to register file associations or
event log, and this allows you to run updates (via update.bat) if required. If noAdmin=false Omnis will run as the Admin user
(the default behavior, as in previous versions).

• updateFileAssociation
If true (the default), Omnis will attempt to set file associations; if set to false Omnis will not attempt to set file associations.

IDE Animation

Various parts of the Omnis IDE are animated, including the main tree list in the Studio Browser, and the Method names tree list
in the Method Editor is animated when you open the editor or redraw the list.

The “animateIDEcontrols” option in the “ide” section of config.json controls whether or not animation is enabled in the IDE: it is
set to True by default. Set this to false if you don’t want any objects in the IDE to be animated.

Configuration File Methods

There are somemethods in the Omnis Preferences that allow you get and set the contents of the Omnis configuration file. These
would allow you, for example, to create your own config.json from code which could be used for deployment of your app.

• $getconfigjson()
Returns config.json as a row (empty if config.json could not be parsed)

• $setconfigjson(wConfigJson)
Sets config.json to the supplied row

These are methods of $root.$prefs, and they appear on the Methods tab of the Property Manager, but only when used with the
Notation Inspector.

You can use them to modify existing items, or add new items. For example, the following code adds/modifies some items in the
“obrowser” section of the config.json file:

Do $prefs.$getconfigjson() Returns cRow
If isnull(cRow.obrowser.$cols.$findname("htmlcontrolsFolder"))
Do cRow.obrowser.$cols.$add("htmlcontrolsFolder",kCharacter,kSimplechar,1000000)

End If
Calculate cRow.obrowser.htmlcontrolsFolder as "htmlcontrols"

23



If isnull(cRow.obrowser.$cols.$findname("clearCacheWhenLoaded"))
Do cRow.obrowser.$cols.$add("clearCacheWhenLoaded",kBoolean)

End If
Calculate cRow.obrowser.clearCacheWhenLoaded as kTrue
If isnull(cRow.obrowser.$cols.$findname("remoteDebuggingPort"))
Do cRow.obrowser.$cols.$add("remoteDebuggingPort",kInteger,0)

End If
Calculate cRow.obrowser.remoteDebuggingPort as 5989
Do $prefs.$setconfigjson(cRow)

Note that Omnis needs to be restarted after some items in the config.json file have been edited.

Dock Key Events (macOS)

The monitorDockKeyEvents option in the “macOS” section of the config.json file allows you to disable the Keystroke Receiving
dialog at startup onmacOS. If set to false, Omnis does not attempt to monitor keyboard events from the Dock and the dialog will
not be shown. The option is set to true by default for backwards compatibility.

Keystroke Receiving Prompt (macOS)

On macOS, when first running a new version of Omnis Studio, the end user will be presented with a prompt: “Omnis Studio 11
would like to receive keystrokes from any application – Grant access to this application in Privacy & Security settings, located in
System Settings.”

This is required to provide full keyboard support to Omnis Studio formonitoring events from themacOSDock andMission Control.
Access can be granted when prompted for Keystroke Receiving, or you can ensure there is an entry granting access in the Input
Monitoring section of the Privacy system setting.

To show a one-time only prompt in Omnis Studio, prior to the system prompt, set the “monitorDockKeyEventsInfoPrompt” con-
fig entry to true (the default is false). The message can be customized by changing the entry for CORE_RES_19003 in /Con-
tents/Resources/[LOCALE].lproj/Localizable.strings

Keystroke receiving and the access prompt can be disabled by changing the “monitorDockKeyEvents” to false in config.json.
When Omnis Studio does not have full keyboard support, the order of windows displayed may not be correct after using Mission
Control with the keyboard.

Studio Toolbars and Menus

The main toolbar at the top of the Omnis application window provides access to all the development tools in Omnis, such as the
Studio Browser, the Catalog, the Property Manager, and so on. The Standard, View, and Tools toolbars contain many of the same
options as the File, View, and Toolsmenus, respectively. The Desktop toolbar (hidden by default) lets you switch between design
and runtime environments.

You can drag any of the toolbars out of the docking area and place them anywhere in the Omnis application window (referred to
as “floating”). You can place your pointer over any button to display its name or tooltip description.

The visibility of the main Omnis Toolbar and Menubar is different for Windows and macOS, as follows.

Windows OS

Under Windows, the main Omnis Toolbar is shown, but the main Menubar is not, by default. To hide or show any of the toolbars,
or to install the main Omnis menu bar, under Windows, you can Right-click/Ctrl-click in the toolbar area of the main Omnis
development window and select the Toolbar Options…, Toolbars… (see below) or Menu Bar option: in addition, you can double-
click in the toolbar area to open the Toolbar Options,which allows you to enable Text labels and switch to Large icons. See Omnis
Menu Bar.

macOS

On macOS, the main Omnis Menubar is shown by default, but the main Toolbar is not: the concept of an application toolbar is
not present in macOS, but you can display the Omnis toolbars manually. To hide or show any of the toolbars on macOS, select
the Toolbars… option from the Viewmenu: this allows you to show or hide the Standard, View, or Tools toolbars which you may
find useful for development.

The IDE Toolbars dialog allows you to show or hide the main Omnis toolbars, as well as configure each toolbar, including to show
or hide individual buttons.

24



Figure 11:

Menus & Timers (macOS)

On macOS, when Omnis starts to track menus, Omnis timers are suspended: in versions prior to Studio 10.2, there was an error
whereby Timer execution did not interrupt when using a menu and clicks on the menu were being lost. You can override this
behavior, allowing timers to run during tracking process by setting the “menuTrackingSuppressTimers” config.json item in the
“macOS” group to false.

Standard toolbar

Figure 12:

Note the screenshots here show all the options in each toolbar; you can enable the buttons in the Toolbars option, or change
the text options in the Toolbar Options option in the Viewmenu, or by right-clicking on the main Omnis toolbar.

The Standard toolbar hasmore-or-less the same options as the Filemenu. In addition, the Filemenu lets you create aNew Library
(blank other than system classes and Startup_Task) or Open an existing library.

The Save option (Ctrl/Cmnd-S) saves the class you are currently working on. If a class design window is not currently selected this
option is grayed out.

The Revert option rolls back any changes you have made to the class you are currently working on. Note that if you close an
Omnis class it will be saved automatically and therefore cannot be reverted. The Revert menu and toolbar command is not
available when Auto Save is enabled.

When the Auto Save option in the File menu is enabled, Omnis will save all classes that are currently open in design mode auto-
matically; the option defaults to disabled, meaning that you have to save a class manually or the class is saved when it is closed.
The state of the Auto Save option is saved under the “autoSave” option in “ide” section of the config.json configuration file. The
interval between each auto save can be configured in the “autoSaveInterval” option, also in the “ide” section of config.json: this is
the number of milliseconds between each auto save, which is set to 1000 by default. Auto Save applies to all class and method
editors except for system classes, provided that the class is not read-only, and the method editor is not in read-only mode.

25



The Dest option opens the Print Destination dialog (Shift-Ctrl/Cmnd-P) which lets you set the destination of the current output.
Reports are sent to the Screen by default, but you can choose another destination from this dialog. See Report Destination Dialog.

On macOS, the print Setup button is available allowing you to configure the Print Setup for the current report.

The Print option (Ctrl/Cmnd-P) prints the current class or report to current destination, if applicable. For example, when you are
working in the method editor the option prints the currently selected method or set of class methods.

The Help option changes the mouse to a Help pointer allowing you to click on any part of Omnis to get Help; the option opens
the Help window at the relevant topic.

View toolbar

Figure 13:

The View toolbar opens the main Studio Browser and other tools available in the Studio IDE and has the same options as the
Viewmenu. Many of these tools are described in greater detail in this chapter. (On macOS, you can use Cmnd-Number or the
equivalent Fn key to open any tool instead, e.g, to open the Studio Browser you can use Cmnd-2 or Fn+F2.)

The Browser option (F2/Cmnd-2) opens the Studio Browser which lets you create and examine libraries and classes. If the Studio
Browser is already open and in Single Window Mode, this option will bring it to the top. If the Browser allows multiple copies of
itself, this option opens the initial Browser displaying the libraries. See Studio Browser.

The CStore option (F3/Cmnd-3) opens the Component Store, to allow you to build web forms, windows, and reports. This option
will be disabled if there is no design window or report on top, or when a library is selected in Studio Browser. See Component
Store.

The Notation option (F4/Cmnd-4) opens the Notation Inspector which lets you view the complete Omnis notation tree. If the
Notation Inspector is already open and in SingleWindowMode, this option will bring it to the top. If the Notation Inspector allows
multiple copies of itself, this option opens a new instance of the Notation Inspector. When you open the Notation Inspector the
Property Manager will also open. See Notation Inspector.

The Inh Tree option (F5/Cmnd-5) opens the Inheritance Treewhich lets you view the inheritance or superclass/subclass hierarchy
in the current library. If you select a class in the Browser and open the Inheritance Tree it shows the inheritance for that class.

TheProps option (F6/Cmnd-6) opens theProperty Managerwhich lets you view or change the properties of an object: the proper-
ties displayed in thePropertyManagerwill dependon theobject orwindowcurrently selectedor on top in theOmnis development
environment (the Advanced option must be checked to see all the properties for the current object). If the Property Manager is
already open, this option will bring it to the top.

The Catalog option (F9/Cmnd-9) opens the Catalog which lists all the field names and variables in your library, together with the
functions, constants and event messages. If the Catalog is already open this option will bring it to the top.

The Viewmenu has the Toolbar Options… and Toolbars… options to allow you to hide or show and configure themain toolbars in
the Omnis IDE; this is useful on macOS since the toolbars are not shown by default.

The JavaScript Theme option (Ctrl/Cmnd-J) allows you to change the color theme used in all JavaScript remote forms (only avail-
able in the Viewmenu).

Recent Classes

The Viewmenu lists all the classes that have been opened recently, as does the Recent Classes option in the Studio Browser (at
the bottom above the status bar). The maximum number of classes shown is limited to 9, but you can configure the number of
classes shown by setting the “maxRecentClassEntries” in the “ide” section in config.json, which defaults to 9 (the value in earlier
versions), but can be set to any value in the range 9 to 32 inclusive.

26

10reports.html#report-destination-dialog


Note that this setting also affects the Recent Classes option in the Studio Browser, but since that only shows classes (or methods
when the Shift key is pressed), there are typically fewer recent class items on the recent classes option than on the main View
menu.

Tools toolbar

Figure 14:

The Tools toolbar contains the following options (somemay be hidden in your operating system but you can show then using the
Toolbar Options… and Toolbars… options in the Viewmenu):

The Prefs option opens the Omnis Preferences in the Property Manager.

The Trace Log option opens the Trace log in a separate window (it is also displayed in the Studio Browser). The Trace Log provides
a record of the operations and commands you have carried out. If there is an error in Omnis, such as when you start it up, you can
look in the trace log for information about possible causes of the error. Omnis code execution and errors are also reported in the
trace log: see Debugging Methods for further details.

The Help option opens the Help Project Manager to allow you to create your own built-in Help system, similar to the Omnis Help
system (F1).

The Add-Ons button (or sub-menu option on the Tools menu) lets you open various additional tools, including:

Character Map Editor for mapping local and server character data; see Non-Unicode Compatibility
Compare Classes tool for comparing the methods in classes and libraries; see Converting Omnis Data Files
Convert Data File to RDBMS for converting an Omnis datafile to SQLite or PostgreSQL
Deployment Tool allows you to build an application package including your application file(s) for deploying to end users on desk-
top only (not web or mobile); see Deployment Tool
JS to Responsivemigrates $screensize based remote forms to responsive layout; see Remote FormMigration
JSON Control Editor lets you create JSON defined JavaScript components; see JSON Control Editor
Method Checker for checking methods in classes and libraries; see Checking Methods
ODBC Admin tool for setting up ODBC access to Omnis datafiles
Port Profile editor for setting up your ports; see Port Profiles
Push Notifications lets you setup notifications for mobile apps; see Push Notifications
String Table Editor for providing multi-languages in your application; see Localization
SVG Themer allows you to convert SVG icons to Omnis themed icons; see Themed Icons
Sync Screens for synchronizing layouts in old fixed screensize remote forms (not used for responsive forms)
Synchronization Server opens the Admin tool for the Sync Server; see Serverless Client
Web Client Tools provides access to the JS Icon Export tool, the Icon Set Renaming Tool, and the JavaScript Theme Editor; see
Theme Editor.

The following options on the Tools toolbar are hidden by default and are not required for creating new applications:

The Icon Edit option opens the Icon Editor to allow you to manage PNG-based icons in an Omnis icon datafile or #ICONS; note
this is not required to create icons sets including SVG icons; these must be edited in a separate image editor.

The Export and Import options allow you to export or import data from an Omnis datafile which are used for legacy desktop apps
only.

Desktop toolbar

The Desktop toolbar (hidden by default) is only relevant to running or testing desktop applications.* It lets you toggle between
the Design environment and a simulated Runtime environment, so you can see your desktop application in user mode. You can
also change the mode using the Desktop option in the Filemenu.

27

04debug.html#chapter-4debugging-methods
07sqlprog.html#non-unicode-compatibility
16datafilemigration.html#converting-omnis-data-files
17deployment.html#deployment-tool
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#remote-form-migration
/developers/resources/onlinedocs/WebDev/04jsoncomps.html#json-control-editor
04debug.html#checking-methods
10reports.html#port-profiles
/developers/resources/onlinedocs/WebDev/07deployment.html#push-notifications
/developers/resources/onlinedocs/WebDev/06localization.html#chapter-6localization
/developers/resources/onlinedocs/WebDev/03jscomps.html#themed-icons
/developers/resources/onlinedocs/WebDev/07deployment.html#serverless-client
/developers/resources/onlinedocs/WebDev/03jscomps.html#theme-editor


Figure 15:

Figure 16:

28



InDesignmode the standardmenus, such as File, Edit, View, and Tools toolbars are visible. In Runtimemode all these are hidden
and only user menus, data entry windows and toolbars defined in your library are visible. Also in Runtimemode, there is a cut-
down version of the File and Edit menus on the main menu bar. Being able to switch to Runtime mode lets you see exactly how
your applicationwill lookwhen the user runs it. InCombinedmode (the default) all design and usermenus, windows, dialogs, and
toolbars are visible. When you select the Runtime option, the Desktop toolbar is installed so you can get back to the Combined
mode.

Omnis Menu Bar

The main Omnis Menu Bar gives you access to various File operations (Save etc), the standard Editmenu functions (Undo/Redo,
Copy, Paste, etc), as well as the View, Tools, Window, and Helpmenus. Many of the options in these menus appear on the main
toolbars and are described in the previous sections: the other options are reasonably self-explanatory.

OnmacOS, themain Omnismenubar is always visible at the top of the screenwhen you start Omnis (see below). FormacOS only,
the Omnismenu contains additional options including the About Omnis option, Preferences (to open the Omnis preferences in
the Property Manager), and the Quit Omnis option (Cmnd-Q).

Figure 17:

OnWindows, the main Omnis menu bar may not be visible, but you can press the Alt key to display it temporarily; it is located
within the Omnis application window. The main Omnis toolbar is shown by default on Windows.

Figure 18:

OnWindows, to display themain Omnis menu bar permanently, Right-click on themain Omnis toolbar and select theMenu Bar
option.

29



Figure 19:

The other options on the Toolbar contextmenu let you configure themain toolbars in Omnis Studio. The Toolbar Options… option
lets you install or remove the Standard, View, Tools and Desktop toolbars.

Multi- Undo and Redo

The Editmenu in Omnis supports the standard edit options including Undo, Redo, Cut, Copy, Paste, Clear, Select All and Past
from File. The Edit menu also lets you open the Find and Replace tool.

Omnis supports multiple Undo and Redo operations in the class design editors and the Method Editor. Omnis stores most oper-
ations on an Undo and Redo Stack which can be called using the Undo or Redo commands in the Editmenu, or using Ctrl-Z or
Ctrl-Y key strokes on Windows, or Cmnd-Z or Shift-Cmnd-Z on macOS.

Figure 20:

As you undo and redo operations in a class editor, or the method editor, the Undo and Redo commands will update in the Edit
menu to reflect the next operation that can be undone or redone (see below). When there are no operations that can be undone
or redone the corresponding option in the Edit menu will be grayed out.

In general, most operations that support (single) Undo support multiple Undo and Redo, including moving and resizing objects,
addinganddeleting controls (includingCut andPaste), object property changes (in thePropertyManager), alignmenuoperations,
and changing or deleting layout breakpoints in remote forms.

In effect, a separate Undo stack is kept for each editor, so as you switch from one editor to another, e.g. between two remote forms,
the Undo or Redo commands will apply to the stack for that class editor (this does not apply when opening the Method Editor,
see below). There is currently no limit on the number of operations that can be stored on the Undo stack.

30



To enable multiple Undo and Redo, Omnis saves a copy of the class data before and after an operation. To support this, there is a
new temporary folder named ‘undotemp’ created automatically in the ‘studio’ folder at startup, which contains temporary copies
of class data associated with undo stack entries; these files are deleted automatically, but in case they are not, any stray files are
deleted when Omnis starts up.

Property Manager

You canUndoaproperty changewhen thePropertyManager has the focus, provided that the current line in thePropertyManager
does not itself have an Undo stack (this can apply when the edit field has the focus). When you undo a property change, Omnis
tries to select the affected property in the Property Manager. Undo works for inheriting and overloading a property.

Method Editor

If you open the method editor for a class, while the design editor for the class is open, Omnis clears the undo stack of the class
design editor (but only if something is changed in the method editor). This prevents Undo or Redo in the class editor overwriting
the class and losing any method changes.

Report Editor

Undo works in the report editor for the following operations: moving a report section, inserting or deleting a report line, and
editing the page setup. Note that the report editor does not support Undo or Redo for the sort fields dialog. When you open this
dialog, Omnis clears the report editor undo and redo stacks.

Form or Window Editor

Most operations within complex objects, such as a Complex grid or a Tab strip, support multi- Undo and Redo, such as, setting
column widths in a Complex grid using the mouse or changing a grid line property.

Tools menu

Figure 21:

The Help Project Manager lets you build help into your own libraries for the benefit of your own users.

The Add-Ons option lets you open various additional tools, described in the Tools toolbar section above.

The Export and Import options are only available for legacy apps usingOmnis datafiles and should not be used for newapps. The
Export Data option lets you export data from an Omnis data file (not a SQL database) using a number of different data formats.
The Import Data option lets you import data into a data file from an existing export file or text file from another application.

The Icon Edit option opens the Icon Editor to allow you to manage PNG-based icons in an Omnis icon datafile or #ICONS; note
this is not required to create icons sets including SVG icons; these must be edited in a separate image editor.

31



The Trace Log option displays the trace log which is a record of the operations and commands you have carried out. See Debug-
ging Methods.

The Options option (available onWindows only) opens the Property Manager displaying the main Omnis Preferences, including
settings for the Appearance of the Omnis environment, the Print devices for Omnis reports, and themain Page Setup. OnmacOS,
the Preferences option in the Omnismenu (or Prefs on the Tools toolbar) opens the Omnis Preferences. See Omnis Preferences.

The Change Serial Number option which lets you re-serialize your copy of Omnis.

Context Menus

A context menu is a useful shortcut when you want to modify an object, or change the Omnis development environment. You
can open a context menu from almost anywhere in Omnis by Right-clicking on an object or window background. On macOS,
you can open a context menu by holding down the Ctrl key and clicking your pointer on the object; or you can use Right-click on
your trackpad or mouse. The options in a context menu are context-sensitive and will depend on the object you right-clicked on.
For example, if you Right-click on the Studio Browser its Viewmenu will be opened containing options for changing its view and
creating new classes.

Figure 22:

The context menu on the Studio Browser lets you change the current view, or create a new class or folder when a library is visible
in the Browser.

Save Window Setup

The context menu for most of the design tools in Omnis will have the Save Window Setup option which will save the settings or
view for the current window: for example, the option will store the current setting for the Icons or Details (list) view in the Studio
Browser.

The keyboard shortcut Shift+F3 executes the SaveWindow Setup command for the current design window; the shortcut applies
to all built-in dialogs anddesignwindows. The ‘saveWindowSetup’ option in the IDE section of the keys.json file stores the shortcut.
Function key shortcuts in macOS menus are shown as Fn rather than Cmnd+<n>.

Class Context Menu

If you right-click or Ctrl-click on a class displayed in the Studio Browser the class contextmenuwill open: the contents of themenu
will depend on the type of class, but some options are available for all classes, e.g. options for the VCS. Classes that can contain
methods will show theMethods option (F8) which lets you open the Method Editor for the class. UI classes like remote forms will
have an option to Test Form (or Open for window classes) to open a class instance, or report classes have the Print Report option
to print the report (to the Preview window by default).

Variable Context menus

In the Omnis Method Editor or Catalog, you can right-click on a variable name and get its current value. The Variable context
menu shows the variable name, its value and its type and allows you to open the variable window showing its current value.

32

/developers/resources/onlinedocs/Programming/04debug.html#debugging-methods
/developers/resources/onlinedocs/Programming/04debug.html#debugging-methods


Figure 23:

Figure 24:

33



You can right-click inmany parts of Omnis and open up amenu appropriate to the object or item under themouse, like a variable
displayed in the method editor, as above.

Find and Replace

The Find and Replace tool lets you search through a class or library, or a number of classes or libraries, to find a particular text
string. You can selectively replace occurrences of an item or replace all items.

The Find And Replace option under the Edit menu (or Ctrl/Cmnd-F) opens the Find and Replace dialog. The Find Next option
(Ctrl/Cmnd-G) lets you find the next occurrence of the current find string.

Figure 25:

If the Find and Replace dialog is already open and you bring it to the top, it selects the top-most open class ready to be searched
(controlled by the findAndReplaceSelectsTopClass item in the ‘ide’ section of config.json).

The Match case and Match whole words only options can be used to find only those items that match the case of the search
string or whole words only.

If you click on the Find First button Omnis will jump to the first occurrence of the text string in your selected classes or libraries.
For example, if the specified item is found in a method, Omnis will open the class containing the method with the found item
highlighted. Find Next (Ctrl/Cmnd-G) will jump to the next occurrence of the text string, and so on.

The Find All button finds all occurrences of the specified item in all the classes or libraries you selected and lists them in the Find
log, and the found or replacement text is highlighted. The matched text is underlined if the Highlight Matches option in the
context menu for the log is enabled (the default is on). If the text occurs more than once, up to the first 16 occurrences in the log
are highlighted.

You can interrupt a find and replace operation at any time by pressing Ctrl-Break underWindows, Cmnd-period undermacOS (or
Ctrl-C under Linux).

The 30 most recent searches entered into the Find: box are saved for re-use, which you can view by clicking on the drop arrow
in the search box. Note that all droplists and combo boxes in the IDE, including the Find and Replace dialog, use the maxDis-
playedDropListLines configuration item in the ‘ide’ section of config.json to specify their maximum number of displayed lines.
This defaults to 30, and can be 5-50 inclusive.

The Show Checked Out Classes In Log option in the Find and Replace log context menu (right-click on the results list) allows you
to show which classes in the Find and Replace log are checked out of the VCS; the option is enabled by default and is saved in
Window Setup. Changing the option via the context menu does not cause lines already in the log to be updated.

Classes tab

On the Classes tab you can select the libraries and classes in which you want to perform the find and replace. For a single library
you can select some or all of the classes in the library. If you select more than one library under the Classes tab, all classes in all

34



selected libraries are searched.

There is a button in the title of the class list (a folder icon, on the right) that allows you to search for parent folder(s) using a regular
expression, and then select the classes contained in those folders in the class list.

Regular Expressions

When the Regular expression check box is enabled, Find & Replace supports PCRE2 compatible regular expressions which are
sequences of literal characters andmetacharacters that let you perform complex text search andmodification. PCRE2 is an open
source library of functions that provides syntax and semantics like Perl 5 for defining a search. See www.pcre.org for more infor-
mation and full documentation about what metacharacters you can use.

PCRE2 provides improved error message reporting when there are problems with regular expression syntax, and these are re-
ported where applicable. An error with the regular expression passed to the rxpos() function generates a debugger error with the
specific error text rather than a generic invalid regular expression error.

However, when using the find field in the Code Editor, note that errors are not reported because the editor attempts to compile
and use the regular expression on every keystroke.

Note for existing users: If you want to use the old regex syntax, you can set the useOldRegularExpressionSyntax configuration
option to true (false is the default, so PCRE2 is used by default); this is in the ‘defaults’ section of the config.json file. When this is
set to true, it only affects the rxpos() function.

Selected Log lines and Errors

The Replace all in selected log lines only option allows you to replace all occurrences of the search string in selected log lines only.
The Only search method lines containing an error option restricts the search to only those method lines that contain an error.

Searching Selected Methods

The “Use selectedmethod” and “Only lines containing selection” options help you find itemswhile working in the Code Editor (the
options are grayed if Find is opened from elsewhere). To use these options you need to select at least one character in a method
in the Code Editor: Find and Replace searches all lines containing a part of the selection, andwhen it completes, it selects the text
for the searched (and possibly replaced) lines.

Code Syntax Colors in Find Log

The code syntax colors used in the Code Editor are used to display method lines in the Find and Replace log (and the Trace log).
You can set this using two entries in the ide section of config.json: findAndReplaceLogUsesSyntaxColors and traceLogUsesSyn-
taxColors, which are both enabled by default.

Find Log sorting & searching

You can sort the Find log list by clicking on the header buttons, plus you can sort the list by either of the first two columns by using
the context menu. The context menu also has an item to sort the last column. Keyboard searching of the Find log list searches
column one and two, which means you can locate entries of a particular type more easily in the Find log, by clicking on the Type
header to sort the list, and then typing the type name to search the list.

$findandreplace method

The $findandreplace() method allows you to find and replace items within a class (it is a class method). The definition of the
method is:

• $findandreplace(cFind, cRep [,bIgnCase=kTrue, bWholeWord=kFalse, bRegExp=kFalse, bClearLog=kFalse, bReturn-
Log=kFalse]) Returns row
If cRep is #NULL, the method finds all instances of cFind; otherwise, the method replaces all instances of cFind with cRep.
Returns the status in row.

The optional parameters bIgnCase, bWholeWord, bRegExp, and bClearLog replicate the options on the Find and Replace window.
When bReturnLog is kTrue (the default is kFalse), the status row has an additional column named Log that contains the Find and
Replace log; this has the same structure as the list returned by sys(241).

35

http://www.pcre.org


Renaming Objects

When you rename certain objects in your library, Omnis will replace all references to the object automatically. For example, if
you rename a class variable in the method editor Omnis will replace all references to the variable within the class automatically.
However, if you try to renamemost other types of object, such as renaming a class in the Browser, Omnis will prompt you to find
and replace references to the object. If you answer Yes to the prompt, Omnis will open the Find & Replace tool and the Find log
which lets you monitor the find and replace or control whether or not certain references are replaced.

Spell Checking

Omnis checks spelling in text in end user apps, as it is entered in desktop forms (on the fat client), and in the Studio IDE during
development; note this does not apply to JavaScript client remote forms. Spell checking allows words to be validated, based on
the local language setting, and spelling suggestions are presented in the UI or used automatically, including the highlighting of
misspelled words, and correcting misspelled words as they are entered.

Support for spell checking is provided by calling the Spell Checker API on the current operating system, including underWindows
and macOS. Spell checking is enabled by default and will be used in the right context automatically, such as in Entry fields or in
the Code editor, and there are various options or settings in the Studio IDE to manage spell checking.

Configuration

There are two options for how Omnis chooses a language to use with the system Spell Checker APIs. Which of these two applies
depends on the entry useSystemSettingsForSpelling in the ‘defaults’ section of the Omnis Configuration file (config.json).

If useSystemSettingsForSpelling is true (the default), Entry fields use the system settings to identify the current language or lan-
guages. For macOS, this means the settings in the Keyboard, Text panel in System Preferences. For Windows, this means the
System Locale.

If useSystemSettingsForSpelling is false, Entry fields use the National sort ordering locale for the current language in the Omnis
localization data file.

If Omnis fails to initialize the system Spell Checker API to use the required language it reports this failure to the Trace log.

Window Class Controls

The following Window class (fat client) controls allow spell checking: Single Line Entry field, Multi Line Entry field, Combo box,
String grid, and Data grid. These controls have the following properties to control spell checking:

Property Description

$showspellingerrors If true, the control underlines spelling errors
using a dotted line

$autocorrectspelling If true, and the user types a separator
(e.g. space or comma) when no text is
selected, the control replaces a misspelled
word immediately before the selection with
a correctly spelt word. Note that Undo allows
you to revert to the originally entered text,
and then continue typing without correcting
it again

These properties are kFalse in pre-Studio 11 (converted) apps to maintain previous behavior.

The dotted line used to underline spelling errors uses the color “colorspellingerror” in the system (and system.dark) section of
appearance.json. The following screenshot shows an Entry field containing misspelled words:

Figure 26:

When $showspellingerrors is true, and the currently selected text in an Entry field is a misspelled word, the default context menu
for the edit field includes up to 10 spelling suggestions, before the normal menu commands, such as Cut, Copy and Paste. Select-
ing one of these suggestions from the menu replaces the currently selected word.

36



Figure 27:

The context menu for Edit fields has the Learn Spellingmenu item when the selected word is shown as a spelling error. If this
menu item is selected the word will be added to the end user’s custom dictionary and will no longer show as a spelling error.
Conversely, if a word has been added to the custom dictionary, the context menu will show the Unlearn Spelling menu item,
which when selected will remove the word from the custom dictionary and the word will be shown as a spelling error. These
menu items are also available in the Code Editor context menu.

Code Editor

Spell checking is also enabled in the Code Editor (Method editor); there is a new Show Spelling Errors option in the View menu
that is enabled by default.

Misspelled words in strings entered into code are underlined in the same way as edit fields underline spelling errors when
$showspellingerrors is true. In addition, misspelled words outside Square Brackets are underlined for certain commands,
including OKmessage, Yes/No message, No/Yes message, Prompt for input, Text:, Line:, and Send to trace log.

In addition, when Show Spelling Errors is enabled in the Code Editor, you can change the spelling of a selected word (which need
not be misspelled) in either of two ways, described below (this applies to a string or outside square brackets in the commands as
listed above).

You can select a word, and from the Modify>>Selection submenu you can select the Change Spelling… option: note that this
command is only present if there are some possible suggestions for the selected word. You can also use the keyboard short-
cut Ctrl/Cmd+B to change a word (specified in the changeSpelling key in the methodEditorAndRemoteDebugger section of
keys.json). After selecting the command, a popup appears fromwhich an alternative spelling can be selected to replace the word.

Figure 28:

Alternatively, you can select a word, Right-click on it, and the context menu contains a new Change Spelling hierarchical menu,
with up to 10 suggestions, that can be used to replace the selected word.

Remote Debugger

The Remote Debugger also supports spell checking, enabled using the the Show Spelling Errors option. When this is true, for an
edit session, the context menu for the editor includes up to 10 suggestions when the selected text is a misspelled word (that is, it

37



Figure 29:

behaves like a normal Entry field with $showspellingerrors set to true).

Component Store

The Component Store contains the objects and components you need to build the Remote forms and Reports in your web and
mobile applications, plusWindowandToolbar components for desktopapps. Whenyoucreate anewUI class ormodify anexisting
one, the Component Store will open automatically. For example, when you create or modify a Remote Form in your application,
the Component Store will display the JavaScript Components; the following screenshot shows a chart remote form (the JS Charts
example app) with the Component Store docked to the left-hand side showing the Buttons group of components.

Figure 30:

There are a number of components in each group, shown in the sub-menu that pops out when you click on a group, such as the
Buttons group, which contains the standard Button, Check Box, Floating Action Button (a new component), Radio Button, and
other types of button components. The Component Store is displayed using the current IDE theme, including default (light) and
dark themes.

On the Component Store context menu, the Dock to Design Window allows you to set where the Component Store is docked,
either Auto, Left (the default), Right, and No (not docked, but floating). In Auto mode, the Component Store will dock to the left
side of a design window, but if there is insufficient space on the left, the Component Store will dock on the right.

38



Figure 31:

39



The initial view for the Component Store is to Show Text labels for themain groups and the components in the sub-menu popups,
as shown above, but you can use its Context menu to change the appearance, e.g. hide the text or show it with 2 columns.

Searching for a component

You can use the Search box to locate a component or a group of similar components. As you type a search string, the contents of
the Component Store is filtered, displaying only those components that contain the search string in their name, and the groups
are hidden while the search is active. For example, you could enter “grid” to find all the grid components, as shown below. When
the focus is on the Component Store, you can type Ctrl/Cmnd-F to put the focus into the Search box ready to type your search
string.

Figure 32:

Adding a Component to a form

To select a component, and add it to your Remote Form (or Report, Window, or Toolbar class), you can do one of the following:

• Click on themain group icon to open the sub-menu popup, then click and drag a component icon from the sub-menu, and
drop it onto the form or window; as you drag the component out of the Component Store, the outline of the component is
shown allowing you to place it precisely in the form or window.

• Click and drag the icon shown in themain group to create a component of that type; for example, you can drag the Button
icon from the Buttons group to create a button, which is initially the default icon in that group (note the group icon/default
component will change as you select different components).

• Double-click an icon in the main group or any sub-menu popup to add a component of that type; in this case, the compo-
nent is added to the center of the form or window (double-clicking is not supported for report classes).

• Press Return to add the currently selected component to the design window (not supported for report classes).

Alternatively, you can use the keyboard to select a component:

• To use the keyboard, press F3 to put the focus on the Component Store, use the Up or Down arrow keys to select a main
group, press the Space key to open the sub-menu popup for the group, then use the Arrow keys to select a component, and
press the Return key to add the component to the center of the form or window; you can use the Esc key to deselect/close
a sub-menu popup.

The most recently selected group is highlighted in a color, while the icon for the most recently chosen component from any sub-
menu popup is shown as the initial/default icon for the group; therefore, as you select different components fromdifferent groups,
the initial or default icons will change. For example, if you previously chose a Combo box from the Lists group, the Combo box
icon is shown in the main Lists group, and you can then drag or double-click the Combo box icon from the Lists group without
opening the sub-menu to create a Combo box in your form.

If you create any Compound Objects for Remote forms they will appear in their own group in the Component Store: you can
define compound objects by editing the Component Store library; see below. For example, Window classes have the Labeled
Fields group containing the Labeled Entry Field and Labeled Masked Entry fields.

40



Changing the Appearance

You can change the appearance or layout of the Component Store using its Context menu. For example, you can Right-click/Ctrl-
click anywhere on the Component Store and select or deselect the Show Text or Show Popup Text option to hide or show the
text labels for the main groups or sub-menu popups, respectively.

Figure 33:

As you hide or show the Text labels, the icons will switch between Large or Small icons automatically (note the icons change
automatically, so you cannot manually select large or small icons, as in previous versions). When the Text labels for the main
groups or sub-groups are hidden, each icon has a tooltip that displays the component name or group name as you hover over
the icon.

Note that there is no Save Window Setup command for the Component Store, since it saves its settings and current position
automatically when it closes.

41



When the Show Popup Text optionis disabled, tooltips are
displayedon the components in a sub-group

When both Show Text… options are disabled,large icons
are shown and tooltips are displayedon the main groups
and sub-groups

If the Dock To Design Window option is set to Auto, the Component Store is docked or “attached” to the left side of the current
design window, or if there is not enough space to the left of the design window the Component Store is docked to the right side
of the designwindow. If this option is set to No (not docked), you can drag or “tear” the Component Store from the designwindow
and it will float within the Omnis application window, plus its last position is remembered automatically. The following image
shows the Component Store floating next to a remote form:

When the Dock To DesignWindow option is to Auto, Left or Right, you can temporarily drag or “tear” the Component Store away
from the design window by dragging its title bar, but it will snap back and become docked againwhen youmove or reopen the
design window, or when you change the docking options from the context menu.

Two Column mode

When the Text labels are hidden on the main groups (i.e. the Show Text option is unchecked), you can configure the main group
icons in 1 or 2 columns using the Columns options on the context menu (the sub-menu text can be enabled or disabled in 2-
column mode, as shown below). The Columns option is disabled (grayed) when the Text labels on the main component groups

42



Figure 34:

are shown, and therefore you cannot enable 2-column mode in this case. Note the Search box is hidden when the Component
Store is in single-columnmode without text labels.

43



Single ColumnmodePlus Show Text and Show PopupText
are disabled Two ColumnmodeShow Text is disabled,Show popup text is enabled

Favorites

You can add any single component to the Favorites group at the top of the Component Store window (shown initially with a
Star icon). To add a favorite, Right-click on the icon for the component in a sub-menu and select the Favorite option. Adding
components to the Favorites groupmakes it easier or quicker for you to select any controls that you use constantly. For example,
in the following screenshot theButtonandEntry fieldshavebeen selectedas favorites andarenowshown together in theFavorites
group at the top of the Component Store.

44



Right-click a component,Select Favorite; in this case,Button is
added to theFavorites group

You can add components fromdifferent groups to
the Favorites group;in this case, the Button and
Entry Field havebeen added to the Favorites group

To remove a component from the Favorites group, you need to right-click

Further Options

The options in the Exclude Group sub-menu in the Component Store context menu are checked by default, meaning that the
Deprecated and Internal component groups are hidden or excluded by default; note that there are no Deprecated or Internal
components for Remote forms, so these groups are only relevant for Window class controls at present. You are advised not to
use the components in these groups, as they are included for backwards compatibility only, or for internal use, and should not be
used for new applications.

The Show Component Library In Browser option allows you to change the contents of the Component Store and its groups;
when selected, this option shows the Component Library (comps.lbs) in the Studio Browser, ready for you to edit it (as in previous
versions). In general, youdonot need to edit theComponent Library, unless youwant to add your owncontrols, compoundobjects,
or class templates: see below.

The External Components… option opens the External Components dialog, allowing you to load external components (as in pre-
vious versions); this is only relevant for window and report classes, since all JavaScript components are loaded and displayed by
default when designing remote forms. Note that all external components are shown in the new Component Store even if they
have not been marked in the External Components dialog to be loaded.

45



Configuration

There are a number of options in the Omnis Configuration (config.json) and Appearance (appearance.json) files that control the
behavior or appearance of the Component Store. The time taken for a group sub-menu to pop out can be set using the compo-
nentStorePopupDelay item in the ‘ide’ section of config.json, an integer specifying the popup delay in milliseconds. The default
is -1 meaning that Omnis calculates the delay to be just longer than the double click time, which means you can double click on
an entry to add the corresponding default component to the design window without the popup appearing briefly.

There is a new ‘componentStore’ group in appearance.json containing the item colorgroupdefault that allows you to set the icon
color for the default component in a group in the Component Store.

Editing the Component Store Library

IMPORTANT: You are advised not to change the properties of any of the existing components or class templates, but to duplicate
an existing control and make any changes to the copy. In most cases, you do not need to edit the Component Store Library,
except if you want to create your own class templates or compound objects.

The content of the new Component Store window is driven by the classes in the Component Store library called ‘comps.lbs’ (as in
previous versions). To open the component library, select the Show Component Library In Browser option from the Component
Store context menu, or you can Right-click on the Libraries node in the Studio Browser and select the Show Comps.lbs option
(the latter is useful if you do not have a library open). The $componenttype property for all classes and templates that appear in
the Component Store is set to kCompStoreDesignObjects.

All controls in the Component Store library now have the property $componentinfo, which is a row of information that specifies
which group the object appears under in the new Component Store window. The $componentinfo property is visible in the
Property Manager when you are editing a component on a Remote Form, e.g. in the JSFormComponents remote form class (also
for Window, Report, or Toolbar classes).

Click on the $componentinfo property in the Property Manager to edit it: it has three columns defining the group, icon, and
default status for the object:

• group
The name of the group to which the object belongs. Group names are case insensitive, for example: Lists, Buttons, Entry
fields.

• iconid
The icon used for the object in the Component Store, which should be an SVG image placed in the new icon set ‘compo-
nenticons’. Icons are displayed at 20x20 or 28x28 and SVG images will scale to fit the current size.

• default
A Boolean that indicates if the object is the initial default in its group (the default object will change once a different object
is chosen). If default is set to true for more than one object in the same group, the initial default will be the first object
according to the case-insensitive ascending sort order of objects within the group by their name.

Compound Objects

A Compound Object is comprised of two or more standard objects grouped together to make a single object that appears in the
Component Store, such as the Labeled Entry Field available for Windows Classes. When you drag a compound object from the
Component Store, all objects in the grouped object are created in the remote form (or window). The Tab Pane in the Containers
group is a compound object, combining a Tab control and a Paged pane linked together.

You can create Compound Objects in the Component Store library, inside one of the Remote form or Window Component Store
classes (or your own class but $componenttype must be set to kCompStoreDesignObjects). To create a Compound Object:

• Open the Component Store Library by right-clicking on the background of the Component Store and select the Show
Component Library In Browser option; comps.lbs will be shown in the Studio Browser

• Open the Component Store class according to the type of Compound object (Remote form orWindow class), then add the
objects that will form the compound object, e.g. copy an Entry field and Label if you want to create a Labeled field; you are
advised to create copies of the standard objects to form your compound objects. Note you cannot include line objects in a
compound object

• Assign a name to the first object; this will be the name of the Compound object in the Component Store

For a Remote form, the first object is the object that occurs first in the field list window. For a Window class, the first object is
either the first background object in the field list window, or if there are no background objects in the compound object, the first
foreground object.

46



• Select all the objects that will form the Compound object, right click, and select Group

• Set the $componentinfoproperty of the group of objects, including the control name, groupnameand icon id (allmembers
of the group should have the same value)

• Save the Component Store Library and close it

When the Component Store reloads in design mode, there will be a new Compound object with the specified name, group and
icon id. The icon of a Compound object is shown in the Component Store with an additional … icon.

The dropped compound object has the same layout as its original objects, anchored at the top left of where you drop it.

You can use a responsive remote form to provide different layouts of the compound object for different breakpoints. Similarly,
you can also set breakpoint-specific properties that will be set appropriately after dropping the compound object. Note that the
Component Store Library may be using different breakpoints to your library, so the values used for each breakpoint in your library,
after dropping a compound object, are the values for each nearest breakpoint, when comparing a Component Store breakpoint
with a library breakpoint.

Container Compound Objects

The Component Store also allows you to create compound components using a Container field, such as a scrollbox or paged pane,
with other objects inside the container. For example, you could create a compound object comprising a Scroll box (now available
for remote forms) with a tab strip as its top toolbar component and a paged pane as its client component.

Class Templates

There are a number of Class Templates or Wizards that appear in the Studio Browser that are defined in the Component Store
Library (such as Net Classes available in previous versions). You can create your own class templates, but the way you define these
has changed (although the way you created class templates in previous versions is still supported for backwards compatibility).

Each class template in the Component Store Library has the new $componentinfo property, but for classes it has a single column
named group. This allows a group to be specified for the class when it appears as a template or wizard in the Studio Browser. To
use new $componentinfo property to define a class template:

• Select the class and set the group in $componentinfo for the class to the template name

• Set $componenticon to an Icon ID, preferably an SVG icon image

• Add a description for the class template in $desc

If you do not supply a group for a class template or wizard, it appears in a group named using its class type.

Property Manager

The Property Manager lets you display or change the Properties of the currently selected object in the Studio Browser or on
a design window. This could be a library file or a Remote Form class selected in the Studio Browser, or a JavaScript component
selected in a Remote Form. In addition, the PropertyManager can be used to change theOmnis global preferences ($root.$prefs),
and for specific classes or objects, the Property Manager will show theMethods for the currently selected object.

The Property Manager should appear automatically when needed, as soon as you click on a form or object that has properties. If
it is not visible you can display it either by selecting the View>>Property Managermenu item from the main Omnis menu bar,
or by pressing F6/Cmnd-6, in which case the properties for the class or currently selected object (library, class or object) will be
shown in the Property Manager.

You can Right-click on a class or object, such as a remote form background or component, and select the Properties option from
the context menu to display the properties for that class or currently selected object.

You can Right-click on a class or object, such as a remote formbackground or component, and select theClass Properties or Field
Properties option from the context menu to display the properties for the current class or object under the mouse.

The properties for the current object are shown under a number of tabs (groups) such as General, Appearance, Text, and so on,
unless you use the Search option (see below) or disable the Advanced filter, in which case the tabs are hidden. In addition, for
some objects, the most common properties, such as $name and $dataname, are shown in a panel at the top. The following
screenshot shows the Property Manager for a Remote form Entry field with the Advanced option enable (on).

The Property Manager also shows the size of the currently selected object (see above) as width x height coordinates in the status
bar at the bottom of the window, plus the position of the pointer is shown as X-Y coordinates relative to the top-left corner of the
design window. When a group of objects is selected, the width x height of the area occupied by the group of selected objects is
shown.

47



Figure 35:

48



Advanced Property Option

The Property Manager displays all the properties (and methods) for an object, or it can show a subset of properties. There is
a switch at the bottom-left of the Property Manager window labelled Advanced, which either shows all properties for the cur-
rent/selected object listed under separate tabs, or a single filtered list of “basic” properties (with no tabs) when the Advanced
option is disabled (off): the latter is the default view for new installations of Omnis Studio and is intended for new users whomay
only need to access the basic properties.

When the Advanced option is disabled (off) the property list shows a basic subset of properties for the current object (selected
library, form or component), or for the current context in the IDE, such as the Omnis preferences. For example, the following
image shows the properties for a Remote Form when Advanced is disabled (off):

Note that if you use Find & Replace (on the Edit menu) and double-click on the find and replace log to select a property in the
Property Manager, the Property Manager automatically switches to Advanced mode if the property is not part of the basic set.

Modifying the basic set of properties

The basic set of properties is defined in a file called basicproperties.json and stored in the Studio folder under the main Omnis
folder. You canmodify this file if you want to change the properties shown in the filtered state of the Property Manager. The file is
in JSON format, and contains an array of property names whichmust be lower case, and include the :: prefix if the property name
requires one (e.g. for some external component properties).

Omnis re-reads this file if it has changed when you uncheck the Advanced option: so checking and unchecking this box forces a
re-read. If the file has invalid syntax and cannot be parsed, Omnis writes an error to the trace log, and no basic properties will be
displayed.

Searching the Property Manager

There is a Search box at the top of the Property Manager window which allows you to search for a property: note the search box
is only visible when the Advanced option is enabled. You can type a word or part of a word into the search box and the property
list will update itself as you type.

The search results are property names that contain the string you entered, and they are shown in a single tab named ‘Search’.
The search results are always sorted by property name, irrespective of the sort list option on the context menu. You can click on a
property in the property list and update or set its value.

For example, entering ‘show’ into the property search for a remote form will provide a subset of properties containing the word
‘show’.

You can use the Backspace to clear a search string character by character, or you can click on the X icon to clear the whole string.
The shortcut Ctrl/Cmnd+Shift+Dmoves the focus to the search box: you can press tab to return the focus to the property list. The
30 most recent searches are saved for re-use, which you can view by clicking on the drop arrow in the search box.

Each keystroke in the Search box performs a search, so there is a delay before a search is saved to the list: the delay defaults to
500ms, but you can change it in the config.json file in the “ide” group: “saveSearchDelay”.

If you use Find & Replace (on the Edit menu) and double-click on the find and replace log to select a property in the Property
Manager, the Property Manager clears the search before selecting the property. For both the Basic mode, and the Advanced
mode when search results are being displayed, copy and paste properties are disabled on the context menu.

The ‘search’ item in the keys.json file allows you to hide or show the Search box in the Property Manager, Catalog, and Interface
Manager.

Displaying all properties

You can display all the properties for a class or object on a single tab by entering * in the search box (in effect, this matches and
displays all properties).

Property Tab

After you have searched the property list, you can then Right-click on a property, select the Property Tab: <tab-name> option to
jump to that property on the specified tab. When there is no active search, themenu option is disabled, but still indicates the tab
for the property.

49



Figure 36:

50



Figure 37:

Figure 38:

51



Save Window Setup

You can configure the Property Manager using its context menu, which you can open by right-clicking on its background. In
addition, you can resize the window, and drag the column separator to resize the columns. When you have set up the Property
Manager how you want it, you can save the layout using the Save Window Setup option in the context menu.

The properties of an object are shown in the Property Manager in alphabetical order by default, but you can list them functionally
by unchecking the Sort by Property Name option in the Property Manager context menu.

The other options in the Property Manager context menu affect the behavior of the Property Manager. If set, the Hold Updates
option stops the Property Manager updating its contents automatically when you click on another object. For example, you can
click on a Remote form class to show its properties in the Property Manager, select the Hold Updates option, click on a field in the
Remote form, and the Property Manager still displays the properties of the Remote form. Most of the time however you’ll want
this option turned off so the Property Manager updates itself automatically.

Property and Method Descriptions

The Help tips option in the Property Manager context menu (checked by default) displays short descriptive help messages for
each property in the Property Manager: this is particularly useful for showing the parameters of a method. For example, the
following screenshot shows the Help tip for the $designtaskname property for a remote form.

Figure 39:

The Show Runtime Properties option lets you view properties that are normally available in runtime only, that is, properties of an
instance rather than a design class. When runtime properties are visible in the Property Manager the methods for the instance
are also shown. You cannot set runtime properties or runmethods from the Property Manager itself, but you can drag references
to them into your code in the method editor. The help tip for a method shows its parameters and description; for example, the
following screenshot shows the Help tip for the $pushdata method for a remote form.

When methods are visible in the Property Manager, the help tips show a description and the parameters for each method.

Note you can drag a property or a method (and its parameters) from the Property Manager into the Method Editor when you are
writing code: see ‘Dragging Methods’ below.

Copying Properties and Values

The Copy Properties option lets you copy all the properties of one object and paste or ‘apply’ them to another object of the same
type: this is useful if you want to reproduce or duplicate a particular object, or even apply the properties of a built-in field to an
external component. Only those generic properties that are contained in the source and target objects are copied.

The Copy Value option allows you to copy the value of a property, even if it is grayed out, such as when a class is not checked out
of the VCS.

Show Property Context Menu

You can specify any built-in property to be displayed in the window or report field contextmenu by Right-clicking on the property
in the Property Manager (when a field is selected) and selecting Show property using editor context menu. For example, the
context menu for window and remote form editors shows ‘Show $order’, which allows you to display field ordering, but you can
change it to most other properties. The field $ident is shown in the report editor context menu. This does not work for properties
specific to external components, so for such properties the ‘Show property…’ option is grayed out.

52



Figure 40:

The Save Window Setup option saves the selected property. A different property can be saved for each class editor.

The property value is displayed for background objects. If a property is not supported by an object, then nothing is displayed for
that object.

Dragging methods from the Property Manager

Apart from displaying the properties and methods of classes and objects, the Property Manager lets you transfer a property or
method and its notational path to your Omnis code in the Code Editor (Method Editor). You do this by dragging the property or
method out of the Property Manager and dropping it onto your code in themethod editor, for example, you could drag amethod,
such as the $pushdata() remote formmethod, and drop it onto the calculation part of the Do command.

Figure 41:

When you drag amethod out of the Property Manager and drop it onto your code, its full path and parameters are copied as well.
You can click in your code and edit the path and replace the parameters with your own variable names.

53



Setting Location and Size Properties

You can change the Location or Size of an object in the Property Manager using the +, -, *, or / keys plus a number of pixels, for
example, you can enter +20 in the $left property in the Property Manager to move the object 20 pixels to the right. The location
and size properties appear in the top panel of the Property Manager and include the $left, $top, $width, and $height properties.
This also works for a group of selected objects where the property value is the same for all objects in the group (if the value is
different among the selected objects in the group, the property value is blank).

Key Description Example for $left

+n Adds n pixels to property
value(s)

+20moves object(s) 20 pixels to the right

-n Subtracts n pixels from
property value(s)

-20 moves object(s) 20 pixels to the left

*n Multiplies property value(s)
by n

*2 doubles the value, moves object(s) to
the right

/n Divides property value(s) by n /2 halves the value, moves object(s) to
the left

Selecting Integer Values

You can use the Shift+Up or Shift+DownArrow keys to cycle through integer property values in the PropertyManager, for example,
when editing font sizes you can click into the property and use the Shift+Up/Down Arrow keys to increase or decrease the font
size.

When increasing $fontsize in the Property Manager, labels and text objects in Remote forms and Window classes will increase
their height, if necessary, in order to correctly display a single line of text using the increased font size.

Changing Boolean Properties

You can double-click on a Boolean (kTrue/kFalse) property value in the Property Manager to toggle its value (as well as clicking
the switch). No other properties can be changed in this way by double-clicking.

Tab and Focus Selection

The Property Manager tries to restore (by searching for name) the last tab that you selected (this is reset when closing and re-
opening the Property Manager window). In addition, you can use the tab key to give the tabbed pane the focus, and then use the
Left and Right arrow keys to switch tabs. You can tab out of the tabbed pane using the tab key, and in the Property Manager you
can also do this using the Up or Down arrow key.

Method Editor

The Method Editor is the main tool you use for programming or coding methods for the objects and classes in your application.
It has a bulti-in free-type Code Editor, a powerful and comprehensive debugger that you can use to debug local and server code,
as well as a useful method checker. See Method Editor in the Debugging Methods section.

Interface Manager

The Interface Manager displays the publicmethods and properties for objects in Omnis Studio, that is, any class that can contain
methods and can be instantiated, including remote form, remote task, report, table, and object classes (not available for code
classes since they cannot be instantiated). For each class or object, the Interface Manager displays all built-in methods, including
those that are available in the instance of the class, as well as any custommethods you have added to the object. For eachmethod
in the class or object, the Interface Manager displays the method name, its parameters, return types, and a description, if any are
present.

Private methods, namely methods with a name that does not begin with a dollar sign, are not included in the Interface Manager
since these methods are confined to the class or instance.

You can view the Interface Manager for a class via its context menu or the method editor.

To view the Interface Manager

• Right-click on the class in the Browser and select Interface Manager from the context menu

54

/developers/resources/onlinedocs/Programming/04debug.html#method-editor


or from the method editor

• Open the method editor for the class

• Select View>>Interface Manager from the method editor menubar

The Interface Manager contains a list of objects in the class, that is, for windows and reports a list of window or report fields, for
toolbars a list of toolbar controls, and for menus a list of menu lines. For other types of class or instance that do not contain
objects, such as object classes, the Interface Manager contains the class methods only. You can click on each object or field in
the left-hand list to view its methods. Built-in methods are shown in the color specified in the $nosetpropertycolor preference.
Inherited methods are shown in the color specified in the $inheritedcolor preference. The properties tab similarly shows the
object’s properties.

The Details pane shows the parameters for the currently selected method. It also lets you add a description for your own custom
methods. The status bar shows the return type for built-in methods, but not for your own methods since these can return any
type.

The Viewmenu on the InterfaceManagermenubar lets you open themethod editor for the class, in addition to hiding or showing
the built-in methods and details pane.

Dragging methods from the Interface Manager

You can drag a method or property from the method list and drop it on to an edit field in the method editor, or you can use copy
and paste to do the same thing. The method name is prefixed by a variable name, such as “var_name.$methodname()” if you
opened the Interface Manager by right-clicking on a variable of type Object. Otherwise the method name is prefixed by a dot,
such as “.$methodname()”, suitable to concatenate onto a variable name or some notation in the method editor. In all cases the
parameters for the method are copied too, so they can be used as a template for the actual values you pass to the method.

Searching the Interface Manager

The search box on the Interface Manager allows you to search for methods and properties in the class. The search results are all
matching methods and properties (still associated with their class or field), together with any names in the field name list which
match the search string.

The search function allows you to cycle through the results using some new keys (in the IDE section of keys.json), searchNext and
searchPrev which are mapped to Ctrl+G and Ctrl+Shift+G, respectively. Using search next/previous in the Catalog cycles through
all tabs and fields identified by the search that contain at least one matching item. So, for example, if field test has matches in
both methods and properties, Ctrl+G will go to the methods first, and the next Ctrl+G will go to the properties. If a control has no
methods, but it does have properties, Ctrl+G will go directly to the properties tab, and vice versa.

The ‘search’ item in the keys.json file allows you to hide or show the Search box in the Interface Manager, Catalog, and Property
Manager.

Notation Inspector

Omnis structures its objects in an object tree, or hierarchical arrangement of objects and groups that contain other objects. The
complete tree contains all the objects in Omnis itself, together with your design libraries, classes, and other objects created at
runtime, such as remote form instances. You can view the complete object tree in the Notation Inspector, which you can open
from the Viewmenu, or by clicking on the icon in the main Omnis toolbar, or by pressing F3/Cmnd-3.

Using the Notation Inspector

To facilitate a system of naming or referring to an object in the object tree, and its properties and methods, Omnis uses a system
called the notation. The notation for an object is really the path to the object within the object tree. The full notation for an object
is shown in the status bar of the Notation Inspector. You can use the notation to execute a method or to change the properties
of an object in your Omnis code, and you can use a notation string anywhere you need to reference a variable or field name.

The Notation Inspector therefore lets you view the Omnis object tree from the $root object down. It is particularly useful for
viewing the contents of your library and finding the right notation for a particular object or group of objects in your library. For
example, you can get the notation for an object on a design form or remote form instance using the Notation Search tool on the
Notation Inspector toolbar. When you click on an object or group in the Notation Inspector the Property Manager will display its
properties and methods: note the Advanced option must be enabled to view all the properties for the current object.

55



Figure 42:

The Notation Inspector lets you drill down the hierarchy of objects within the Omnis tree: for example, you can view the object
tree for an open remote form in the $iremoteforms group, shown above: when you click on an open remote form name, jsCharts
in this case, the Property Manager displays the runtime properties and methods of the form.

When the Notation Inspector opens it shows the $root object which contains all the objects in the Omnis object tree including all
your open libraries and their contents. It also includes all the objects andgroups created at runtimewhen you run your application.
You can expand each branch of the tree to show the contents of an object or group.

All the different types of class in your library are shown in Notation Inspector within their respective object group. For example, all
the remote form classes in your library are contained in the $remoteforms group, while the $classes group contains all the classes
in your library. Also note that a group may be empty if your library does not contain any classes of that type.

Dragging notation from the Notation Inspector

Having found the object you’re interested in, you can copy its full notation to the clipboard and paste anywhere in your library, or
you can drag an item from the Notation Inspector and drop it onto your code in the method editor. For example, you can drag
the item into the calculation part of the Do command in the Code Editor.

Finding the notation for an object

You can find the notation for a window or toolbar object in an instance of one of these classes. To do this, click on the Notation
Search button (spyglass icon) on the Notation Inspector toolbar then click on the object in your open window or toolbar (this
works for desktop apps only, not web-based remote forms). The Notation Inspector will refresh itself showing the notation for the
object you clicked on. The object becomes the root of the tree, so you can expand the tree to view its contents.

Figure 43:

56



You can click the Search button, then click on a button or other object on an open window and view its notation in the Notation
Inspector: the tree is redrawn and you can drill down to the view the contents of the object.

Catalog

The Catalog lists all the Functions, Constants, Event codes, and Hash variables in Omnis, in addition to listing all the Variables,
Schema class columns, Query class columns, User constants, and String tables in your library. The Catalog lists all the variables
for the current object including Task, Class, Instance, Local, and Parameter variables, as well as Event parameters. For example,
if you are working in a Remote Form class, the Catalog will show the class and instance variables for that class; for example, the
screenshot below shows the Instance variables for a Remote form instance. In addition, when you select a particular method in
the Method Editor, the Catalog will list the Local and Parameter variables for that method.

The values column is available for the Variables, Constants, Events, and Hash variable group tabs. For example, you can view the
values for all instance variables under the Variables tab (assuming there is an instance open), as above. The values column is
displayed as a third column on the right-hand side of the Catalog window, under each tab, and will show the current value of the
variables or other items.

Searching the Catalog

The Search box at the top of the Catalog window allows you to search for an item on the current tab. You can type a word or part
of a word into the search box and the Catalog list will update itself as you type. For example, you can search for a function or any
functions containing the word ‘text’ under the Functions tab; in this case, there are several functions under different sub-groups
on the main Functions tab, as follows:

The search results are all matching items (still in their groups), together with groups that have no match where the group name
matches.

You can cycle through the results using Ctrl+G and Ctrl+Shift+G for Next and Previous, respectively (these are stored as searchNext
and searchPrev in the “ide” section of keys.json). Using search next/previous in the Catalog cycles through all tabs and fields
identified by the search that contain at least one matching item.

The “search” item in the keys.json file allows you to hide or show the Search box in the Catalog, Property Manager, and Interface
Manager.

Catalog Context Menu

The context menu on the Catalog lets you change its appearance and style of tabs. The Show status bar option hides or shows
the Catalog status bar. The Show Values option in the context menu hides or shows the values column (default is on). The Help
Tips option enables or disables popup Help tips for Functions, Events and Constants.

57



Figure 44:

58



Figure 45:

The

59



Multi-Line Tabs option allows the tabs in the Catalog to wrap onto several lines; with this option unchecked, tabs are shown in a
horizontal scrolling list. The Show option allows you to show or hide individual tabs in the Catalog. All these options are saved in
the Save Window Setup option.

Syntax Colors

Items in the right-hand list of the Catalog are shown using the relevant syntax color, for variable types, constants, etc. The catalo-
gUsesSyntaxColors item in the “ide” section of config.json can be used to control this behavior; the default is true.

Variable Context Menu

You can Right-click on any Variable (or field name) to view its type, current value and other information (to view an instance
variable, the instance has to be open); the first Variable option open a separate window showing the value for the variable, e.g. a
list variable displays a grid of list values. The following screenshot shows the context menu for an instance variable in a remote
form instance.

Dragging items from the Catalog

When you have found an item in the Catalog, such as a Variable name, or a Schema coumn name, you can enter its name into
your code in the Code Editor by double-clicking on it (assuming the cursor is in the appropriate place) or by dragging it out of the
Catalog and dropping the item in the appropriate place into your code.

When using the Code Editor, you can drag items from the Catalog to the Initial value and the Description fields in the Variable
pane: for this to work, the focusmust be on the initial value or description field before switching to the Catalog to select the item.

SQL Browser

The SQL Browser lets you access and interact with many leading server databases or DBMSs, however specific database support
will depend on the edition of Omnis Studio you are running: all versions give you access to PostgreSQL and SQLite, including the
Community Edition, while other editions, including the Professional Edition, provide access to Oracle, MySQL, Sybase, and many
other databases and data sources via ODBC.

Omnis Studio provides a separate Data Access Module (or DAM), or Object DAM, to connect directly to each server database,
plus there is an ODBC DAM that allows you to access ODBC-compliant databases or data sources, such as MS SQL Server and
SAP HANA.

Under theSessionManageroption in theSQLBrowser therewill be a session template for eachdatabase supported in your version
of Omnis Studio, and/or if you have the correct clientware installed on your computer; all versions should contain a template for
PostgreSQL and SQLite.

Your version of Omnis may also contain an Omnis SQL DAM that lets you access an Omnis data file using SQL methods rather
than the Omnis Data Manipulation Language (DML), but this is only provided for backwards compatibility and for running legacy
applications and should not be used for new applications.

Creating and Editing a Session

In the SQL Browser, under the Session Manager option, you can create a new session, or duplicate an existing one and modify it
adding your own connection parameters. For most purposes, the quickest and easiest way to create a new session is to duplicate
an existing template and modify it.

To create a new session to your database

• Click on the SQL Browser option in the Studio Browser, then click on the Session Manager option

• Select the type of database you want to connect to and click the Duplicate Session option

• Rename the session using a suitable name for your database or project

• Double-click the session template and modify the parameters in theModify Session dialog

When you create or modify a database session you need to select the DBMS vendor, the Data Access Module (DAM) and version,
as well as specifying the Username and Password for the session. The connection parameters required will vary depending on
your database.

60



Figure 46:

61



Figure 47:

Figure 48:

62



Opening a session and accessing your data

Having defined or modified your session template, you can open or log onto your database session in the SQL Browser.

To open a database session

• Click on the SQL Browser option in the Studio Browser

• Click on the Open Session option and then the session name, e.g. PICSESS

• Double-click on the Tables object to view the tables on your database

• Right-click on a table name (e.g. MyPictures) and select the Show Data option

Figure 49:

The Show Data option opens the Interactive SQL (iSQL) tool which submits a basic SELECT on your table to display the data.

Figure 50:

If you use the Show Data option on the SQLite database used in the tutorial, you can view the text and images in the database.

You can change the max line height in the result window using the context menu on the results grid; the setting is saved in the
Save Window Setup.

Once you have created your database session you can view your data using the Interactive SQL tool, as above, or create windows
and forms based on the session using the SQL FormWizard. Note the Tutorial shows how you can build a SQL form to access data
via a web browser on a desktop PC or mobile device.

63

/developers/resources/onlinedocs/WebDev/01tutorial.html#chapter-1tutorial


You can resize the font in the iSQL (results pane) using the Ctrl+/Ctrl- shortcut keys.

To learn more about connecting to and interacting with a SQL database, see the SQL Programming chapter.

SQL Query Builder

The SQLQuery Builder lets you build, run and store SQL Queries quickly and easily using a graphical interface. The Query Builder
is built into the Omnis Studio IDE and is easily accessed via the SQL Browser. The Query Builder supports the generation of both
simple queries requiring little SQL knowledge and more advanced queries using different join types and clauses. You can save
queries for later use and you can create Omnis query classes based on your queries to allow you to take advantage of the queries
you build in the Query Builder in your applications.

Note that like the SQL Browser, the databases supported in the SQL Query Builder may depend on the version of Omnis Studio
you are running.

SQL Query Builder window

You can open the SQL Query Builder by clicking on the ‘Query Builder’ option when the SQL Browser option is selected in the
main Studio Browser window. The Query Builder window has three main panes: the table pane on the left showing all available
tables, the main design area at the top-right showing the query in graphical format, and the lower tab pane for defining aliases,
SQL clauses and expressions.

Figure 51:

All panes in the Omnis Query Builder are resizable and can be saved via ‘Save Window Setup’ of the main context menu. The list
of available tables may also be refreshed at any time via the table list context menu.

Creating a Query

The SQL Query Builder allows you to construct most types of query simply using drag and drop and the context menus available
as appropriate in each pane of the main Query Builder window. In order to construct a query, you must be logged on to a SQL
session via the SQL Browser.

64

07sqlprog.html#chapter-7sql-programming


The first time you open the Query Builder the query list will be empty allowing you to create a new query. If an existing query is
currently displayed pressing either the ‘New’ toolbar button or selecting ‘<new query>’ from the query dropdown list will clear the
query from the screen.

Selecting a SQL Session

All open sessions are shown in the droplist at the top-left of theQuery Builder window. You can select a session to build your query
by dropping down the session list and selecting a session.

Adding a Table

Once a SQL session has been selected a list of tables for the current session is shown in the left hand pane. To include a table in a
SQL Query simply drag the table into the main design area on the right.

Removing a Table

You can remove a table from a query either by clicking on the ‘X’ icon for the table or by opening the context menu for the table
and selecting ‘Remove Table’. You have to confirm if you want to remove a table from the current query.

Refreshing a Table

If a table has been modified outside the Query Builder, you can refresh the table in the Query Builder by right-clicking on the
table and selecting ‘Refresh Table’ from the context menu. This option will add any new columns or remove any deleted columns
to reflect the current state of the server table.

Selecting Columns

Once a table has been added, you can select columns by selecting their names individually or by right-clicking on the table
you can check or uncheck all the columns in the table. Alternatively, you can specify that the Query Builder checks all columns
automatically when a table is added using the ‘Select all Columns on drop’ option within the ‘Options’ dialog (see the Options
section).

Adding Column Aliases

You can add an alias for each selected column in the ‘Columns’ tab of the lower tab pane by clicking in the ‘Alias’ column of the
current line.

Figure 52:

You can reorder columns in this pane by dragging and dropping column names in the list.

Creating Joins

To construct your queries, you can create joins between tables either using drag and drop in the main Query Builder design area
or using the Table Joins dialog. To create a join, drag a column name from one table and drop it onto the column name within
the table you wish to join with. Alternatively, you can right-click on a table to open the ‘Table Joins’ dialog from the context menu.

The ‘Table Joins’ dialog lets you modify joins, set the operator and type, re-order using drag and drop and switch columns using
the context menu.

Joins may also be deleted via the context menu of the joined column in the main design area and Line and style preferences can
be set via the ‘Options’ dialog.

65



Figure 53:

You can set the default Join type for queries using ‘Join Type’ option in the Joins window, which can be opened by right-clicking
on a Join and selecting ‘Joins’.

Adding Column Expressions

In addition to specifying aliases, the ‘Columns’ tab of the lower tab pane lets you add expressions to a query via the context menu.
Selecting ‘Add Expression’ from the context menu opens a dialog where you can add common SQL expressions such as AVG,
COUNT, MAX, MIN and SUM.

Figure 54:

Adding a Where Clause

You can add a Where clause condition by dropping a column from a table onto the ‘Where Clause’ pane of the lower tab pane.
When you drop a column the ‘Where Clause’ dialog is opened automatically and the column is pre-selected. You can also right-
click on the Where Clause pane to Edit the column conditions for the current query.

Adding a Group by Clause

You can add a Group By clause, to group selected rows together to return a summary of information, by dropping a column name
onto the ‘Group By’ pane of the lower tab pane. You can also add a Having Clause to restrict the rows used by the Group By clause
either by dropping a column from a table or via the context menu.

Adding an Order by Clause

66



Figure 55:

Figure 56:

67



You can add an Order By clause by dropping columns onto the ‘Order By’ tab of the lower tab pane: when you drop a column
Descending order is selected by default but you can change it to Ascending. You can add Expressions to the Order By clause
using the context menu by right-clicking on the Order By pane.

Figure 57:

Modifying the SELECT Construct

The ‘Header Tab’ in the lower tab pane lets you enter an alternative construct, such as ‘SELECT DISTINCT’ and where supported
‘SELECT TOP 100’. This tab also lets you add comments to precede the generated SQL Statement.

Figure 58:

Adding Extra Query Text

The ‘Footer Tab’ in the lower tab pane lets you add any additional query text to be appended to the generated SQL Statement.

Figure 59:

Running a Query

You can run the current query from themain toolbar in the Query Builder window using the ‘Build and Run’ or ‘Run’ option. Both
buttons switch the main pane to the ‘Results’ pane showing the SQL script and results generated by the Query. You can make
changes to the SQL script generated if required and the query can be executed again using the ‘Run’ button. Note that using the

68



Figure 60:

69



‘Build and Run’ option will rebuild the statement from the saved query text and therefore overwrite any changes you may have
made.

Any errors which occur are reported in the status bar. If the full error text is not displayed, you can click on the status bar to open
a dialog showing the full error text.

You can resize the font in the Query Builder results pane using the Ctrl+/Ctrl- shortcut keys.

You can change the max line height in the result window using the context menu on the results grid; the setting is saved in the
Save Window Setup.

Saving a Query

You can save a query using the ‘Save’ or ‘Save As’ toolbar option. When using ‘Save’ option for the first time, or the ‘Save As’ option,
you can add a description for the query. The description is also available to view/edit via the ‘Query Info’ option of themain context
menu. Once saved, a Query is added to the list of Queries available in the dropdown list in the main Query Builder toolbar.

Deleting a Query

TheDelete button in theQuery Builder toolbar button lets you delete the currently selected query (youmust confirm the deletion).

Query Reports

There are two types of report available via the Print button on the main toolbar or the context menu opened by right-clicking on
the Query design pane: both these options open the Print Query dialog that allows you to print either the Structure or the Results
of the current query. In addition, you can include the generated SQL Script from the last executed SQL query in both reports.

Query Structure Report

The ’Query Structure’ report shows the tables and their joins where the selected columns are represented by an astrix ‘*’.

Query Results Report

The ‘Query Results’ report shows the results of the last executed SQL query. Column widths reflect those of the results pane and
may therefore be adjusted prior to printing.

Query Info

The ‘Query Info’ dialog available from themain query contextmenudisplays information about the current query. You can change
the name and description of query.

Options

You can set various options for the SQLQuery Builder in the ‘Options’ dialogwhich is available from the contextmenu on themain
query window. You can specify the line and color styles for joins, and you can set preferences for dragging and dropping during
table creation.

For databases where table names are prefixed by a username, the Omit Username option is particularly useful when running the
same query against different databases where the username is different, but the table and column names are the same.

Creating a Query Class

You can create an Omnis Query class based on the current query. To do this, you can drag the current query from themain query
design window on the right and drop it on to an open library in the main Studio Browser. When you create a query class in this
way, all the additional query text is added to the class, together with any associated Omnis Schema classes in order to map to the
server tables in the query. Note that this feature is restricted by the same limitations as a query class and therefore only supports
‘Where Clause’ joins.

Creating a Table class

You can create a table class from the current query using the ‘Create table class’ option which is available on the ‘Other’ toolbar
menu option: the option also gives you the option to create a window class and/or a remote form for viewing the data via the new
table class.

70



Figure 61:

71



Figure 62:

Figure 63:

72



Figure 64:

Creating a DB View

You can create a DB View from the ‘Other’ menu.

Exporting Data

You can export the results data using the ‘Export Data’ option available on the ‘Other’ toolbar menu option.

Creating a Statement Block

You can copy the generated SQL Script to the clipboard in a ‘Begin Statement’, ’Sta:’, ‘End Statement’ block by right-clicking on the
‘Results’ pane and selecting ‘Create Statement’ from the context menu. This option is also available on the Other menu option.

You can paste the statement into an Omnismethod, providing an alternativemethod of executing your query in an Omnis Studio
library where a query class is not appropriate.

SQL Query Builder App

A runtime or end user version of the SQL Query Builder application is available on request. Please contact your local Omnis sales
or support office for details.

Version Control System

Note that some editions of Omnis Studio do not allow access to the Omnis VCS.

The Omnis Version Control System (VCS) lets you manage and revise Omnis libraries and other application components system-
atically. In a team environment, with several people working on the same application at the same time, you need to ensure that
only one person can change a particular component at a time.

Using the Omnis VCS you can control the development of your Omnis applications, or any other project involving many different
files such as Internet or Intranet applications. Specifically, the VCS can manage Omnis libraries or their classes, external compo-
nents, DLLs or Code Fragments, Omnis data files, text or word processor files, Html and web server files, or any other types of file
required in your Omnis application.

The Omnis VCS has an easy-to-use environment that allows you to check-in and check-out components, plus it had a useful tool
that lets you compare different versions of the same library or different revisions of the same component.

The Omnis VCS is described in detail in a later section.

73

15vcs.html#chapter-15version-control


Auto Updates

You can perform updates or any other changes to your Omnis desktop application or folder structure upon restarting Omnis
by adding a script to the Omnis data folder. You can use the Auto Update feature to update any file in the Omnis Studio tree,
including the Omnis executable or program file itself: however, the studiorg.exe file cannot be updated under Windows.

To enable the Auto Update feature, write a batch file underWindows called update.bat, or onmacOS or Linux create a bash script
called update.sh, and add it to the Omnis data folder, i.e. the folder containing the Studio, Startup, and Welcome folders.

When Omnis starts up it will execute the update script automcatically at startup, before loading any external components, exter-
nals or libraries. If the call to run the script is successful, Omnis then deletes the update.bat/sh file.

When running on Windows, Omnis incorporates a request to run this as part of the existing UAC support implemented via stu-
diorg.exe. In this case, you will get a UAC prompt if the update script needs to run, or if the registry needs updating for some
reason, or if both updates and registry updates are required.

The Windows batch file or Unix script must have Execute permissions set in order to run. You can do this in the Properties of the
file or via the file system. To do this in your code on macOS or Linux you can use the $setunixpermissions() fileops function:

If sys(6)= 'U' ## macOS or Linux
Do fileops.$setunixpermissions( scriptPathName,'-rwxr--r--' ) ## set file to execute

End if

Update Feedback

When running the auto update script some feedback that the script is running can be provided in a console window. To enable
this, you must place a file (which can be empty) named ‘showconsole.txt’ in the same directory as update.bat. When this file is
present, a console window is displayed while update.bat is running.

Example

The following example shows typical commands that could be used in a batch script: the commands download two new xcomps
from a server (xcomp1.dll and xcomp2.dll), and store them in a folder specified by con(sys(115),pathsep(),updates,pathsep(),xcomp):

copy /y <studio data folder path>\updates\xcomp\xcomp1.dll
<studio program folder path>\xcomp\xcomp1.dll
del <studio data folder path>\updates\xcomp\xcomp1.dll
copy /y <studio data folder path>\updates\xcomp\xcomp2.dll
<studio program folder path>\xcomp\xcomp2.dll
del <studio data folder path>\updates\xcomp\xcomp2.dll

When a path has a space or spaces in it, e.g. Program files, the path should be enclosed in quotes:

“C:\Program Files\Omnis Software\OS11\xcomp\Dummy.dll”

External Class Editor

$editor and $editordata are properties of all class types except system tables – in previous versions these properties were only
available for object classes. The properties allow you to specify your own editor and to access the data for an Omnis class. The
definitions of these properties are:

• $editor
The name of the add-in tool library used to edit the class

• $editordata
Editor data stored with the class. Typically used by the library identified by $editor

By default, these properties are not visible in the Property Manager, therefore to make them visible, edit the show_editor item
under “properties” in the config.json file:

"properties": {
"show_editor": true

},

74



In addition, you shouldnote that $editordatawill only appear in thePropertyManagerwhenused in conjunctionwith theNotation
Inspector.

$editor overrides the default editor for a class. Omnis calls $exectool for the specified add-in library, passing it a single parameter
which is an item reference to the class.

Note that the specified editor is not used when using find and replace – instead, the normal editor for the class opens.

There is a Tech Note TNID0007 on the Omnis website that shows how you can create an alternative schema editor.

Omnis Help

In design mode, Omnis provides many different types of help: tooltips and helptips over toolbar controls: help text for the main
menus shown in the status bar at the bottom of the Omnis application window: plus when you’re writing a method the Code
Assistant will popup automatically to display the appropriate variable name, notation (property ormethod name), and the correct
parameters for the current object or context in your code.

In addition to these types of help, there is a fully context-sensitive Help system, available by pressing F1 or via the Help menu.
Omnis also provides ‘What’s This?’ help for individual functions and commandswhile you’reworking in theMethodEditor: ‘What’s
This’ type help is not provided for the main tools in the Omnis IDE.

Figure 65:

Under the Contents tab you can drill down to the topic or object type you’re looking for: you can double-click on an item in the
tree to load the page.

Under the Search tab you can type a command, function, or method name and Omnis will provide a list of matching topics: you
can double-click an item in the Topic list to load the page under the Topic tab (as shown below).

You can create your own Help system and add it to your own application using the Help Project Manager under the Tools menu.
Note that the Omnis Help available in the development version of Omnis is located in the omnis\idehelp folder.

System Notifications

Omnis can send notifications to the operating system on the end user’s computer, on both Windows 10/11 and macOS. You have
control over the content of notifications and when they are sent via your Omnis code using a new ONOTIFY object. When sent, a
notification will pop up on the end user’s screen and will be added to the Notification Center for the current operating system.

75

http://developer.omnis.net/technotes/tnid0007.jsp


Figure 66:

Figure 67:

76



The end user can click on a notification and either start Omnis, or if Omnis is already running, bring Omnis to the front. In both of
these cases, the method $localnotify() in the Startup_Task (in the library that sent the notification) receives parameters specific
to the notification and the method can then process the click, or call another method, for example.

As well as sending notifications, there are additional functions that allow you to add a badge to the application icon to alert the
end user about the notifications.

There are two interfaces provided to send a system notification:

• An object, providing a way to encapsulate notification parameters.

• A function, providing a simple interface to send a notification with a single line of Omnis code.

As with many features in Omnis, these interfaces provide a single, cross-platformmethod to interact with system notifications on
both Windows and macOS.

Notification Object

The Notification Object provides a way to encapsulate notification parameters. To use the object, you need to set the Subtype of
an Object variable to the LocalNotify external object. The object has the following properties:

Property Description

$action A value that specifies
up to 2 optional
actions that are to be
included in the
notification; on
Windows, this is via
one or two buttons; on
macOS, this is either
via a button for a
single action, or via an
options popup for two
actions. A ‘Specifying
Actions’ section

$delay The delay in seconds
between the call to
$sendlocal() and the
notification being
delivered. Omnis can
quit before the
notification is
delivered, as the
operating system
takes care of deferred
delivery

$messageimage Image(s) to be
displayed with the
notification. See the
‘Specifying Images’
section

$messagetext The text of the
notification. This is the
main notification
message, displayed in
a plain font. The
operating system will
truncate this if it
occupies more than 4
lines, either due to
word wrapping, or the
presence of newline
characters (kCr, lLf or
kCr kLf)

77



Property Description

$notifylib See section ‘Handling
Notification Clicks’ for
details about this
property

$title The title of the
notification. Some text,
displayed in bold font
above the main
notification text. The
operating system will
truncate this if it is too
long. Windows allows
this to occupy two
lines, if you separate
the lines using either
kCr, lLf or kCr kLf.
macOS only allows a
single line

$userinfo A row containing user
information that is
passed to the
$localnotify() method
when the user clicks
on the notification or a
notification action. It
must be possible to
convert $userinfo to
JSON. See section
‘Handling Notification
Clicks’

To send a notification, created using the current property values, use the $send() method of the object.

Do Object.$send([&cErrorText])

Sends a local operating system notification using the current property values. The parameters are as follows:

Parameter Description

cErrorText A character variable that receives text describing an error if $send()
fails

If the call to $send() fails, it returns the value #NULL, and sets the cErrorText parameter if it is provided.

If the call to $send() succeeds, it returns a character string. This is a string that uniquely identifies the notification. You can use
this string to remove the notification from the system Notification Center, if for example the notification is no longer relevant.

Notification Functions

The ONOTIFY.$sendlocal() function sends a system notification.

Do ONOTIFY.$sendlocal(cTitle,cMessage,vImage,iAction,wUserInfo,[iDelay=0,&cErrorText])

The parameters are as follows:

78



Parameter Description

cTitle The title of the notification. Some
text, displayed in bold font above
the main notification text. The
operating systemwill truncate this
if it is too long. Windows allows
this to occupy two lines, if you
separate the lines using either kCr,
lLf or kCr kLf. macOS only allows a
single line

cMessage The text of the notification. This is
the main notification message,
displayed in a plain font. The
operating systemwill truncate this
if it occupies more than 4 lines,
either due to word wrapping, or
the presence of newline
characters (kCr, lLf or kCr kLf)

vImage Image(s) to be displayed with the
notification. See the ‘Specifying
Images’ section

iAction A value that specifies up to 2
optional actions that are to be
included in the notification; on
Windows, this is via one or two
buttons; on macOS, this is either
via a button for a single action, or
via an options popup for two
actions. A ‘Specifying Actions’
section

wUserInfo A row containing user information
that is passed to the $localnotify()
method when the user clicks on
the notification or a notification
action. It must be possible to
convert $userinfo to JSON. See
section ‘Handling Notification
Clicks’

iDelay The delay in seconds between the
call to $sendlocal() and the
notification being delivered
(optional). Omnis can quit before
the notification is delivered, as the
operating system takes care of
deferred delivery

cErrorText A character variable that receives
text describing an error if
$sendlocal() fails

If the call to $sendlocal() fails, it returns #NULL, and sets the cErrorText parameter if it is provided.

If the call to $sendlocal() succeeds, it returns a character string. This is a string that uniquely identifies the notification. You can
use this string to remove the notification from the system Notification Center, if for example the notification is no longer relevant.

Specifying Images

You can specify an image for the notification via the $messageimage property of the object, or vImage parameter of the function.
macOS only allows a single image, whereas Windows allows up to three. The Windows images must each have an associated
type, and there can only be one image of each type. The image types are identified by constants:

79



Constant Description

kONOTIFYimageTypeNormal The image is to be displayed below the
notification.

kONOTIFYimageTypeLogo The image is to be used as the
application logo.

kONOTIFYimageTypeHero The image is to be used as the hero
image (this is Windows terminology).
This is an image displayed across the
top of the notification, and it must have
the size 364x180 (728x360 retina) to
look good, otherwise the system resizes
it and crops it.

Images can be specified either using a character variable, or by using a list. To include no image in the notification, either use an
empty character variable or value, or use a list with no lines and the correct number of columns (see below).

If you use a character variable, with a non-empty value, the notification has a single image; the character variable must contain
the full pathname of an image file (typically PNG or JPEG), and onWindows it will have the type kONOTIFYimageTypeLogo.

If you use a list variable, then the list must have at least one column onmacOS, and at least 2 columns onWindows. The number
of rows is limited to 1 on macOS, and 3 on Windows (one for each type). Column 1 of the list contains the full pathname of an
image file (typically PNG or JPEG), and column 2 contains a kONOTIFYimageType… constant.

The system is responsible for laying out the notification content (i.e. you have no control over layout), and you should avoid using
very large images in a notification.

Specifying Actions

You can specify up to 2 actions to be included with the notification. To specify no actions, the action value can be either zero or
kONOTIFYactionNone.

The actions are pre-defined, as macOS requires actions to be pre-defined. To specify one or more actions, use the following
constants, which can be added together when specifying 2 actions:

Constant Description

kONOTIFYactionAccept The notification displays the Accept action.
kONOTIFYactionClose The notification displays the Close action.
kONOTIFYactionDecline The notification displays the Decline action.
kONOTIFYactionDelete The notification displays the Delete action.
kONOTIFYactionNo The notification displays the No action.
kONOTIFYactionOpen The notification displays the Open action.
kONOTIFYactionPrint The notification displays the Print action.
kONOTIFYactionYes The notification displays the Yes action.

Handling Notification Clicks

By default, when the user clicks on either a notification, or a notification action, Omnis executes the method $localnotify() in the
Startup_Task of the library containing the code calling ONOTIFY.$sendlocal() or object.$send().

When using a LocalNotify object to send the notification, you can override the library using the $notifylib property; this property
is the internal name of the library whose startup task is to receive the $localnotify() call. If you do not assign $notifylib, or set it to
empty, the default behavior applies.

If Omnis is not running when the user clicks on either a notification or a notification action, the system starts Omnis. Omnis
defers calling $localnotify() until the startup task has completed, to allow startup libraries to be opened and their initialization to
complete.

If Omnis is running when the user clicks on either a notification or a notification action, the system brings Omnis to the front.

When the system calls Omnis to tell it about a notification, and the library in which $localnotify() is to be called is not open (after
waiting for startup to complete if necessary), Omnis ignores the call.

$localnotify appears in the built-in methods of a task class, so you can override it. It has 2 parameters:

80



Parameter Description

pAction A kONOTIFYaction…
constant that identifies the
action pressed by the user.
kONOTIFYactionNone (zero)
if the user clicks directly on
the notification, rather than
a button or popup.

pUserInfo A row. The user info value
that was supplied when
sending the notification.

$localnotify() is not required to return a value.

Removing Notifications

The notification object and function sendmethods (Object.$send() and ONOTIFY.$sendlocal()) both return a unique id to identify
the notification that was sent. If you want to remove the notification from the Notification Center at some point later (possibly
after restarting Omnis), you need to save the id somewhere, e.g. in a local SQLite database.

To remove one or more (or even all) notifications sent by Omnis, use the method:

Do ONOTIFY.$removelocal([vIDs,&cErrorText])

The parameters are as follows:

Parameter Description

vIDs Either a single
character id, or a
single column list of
ids, to remove. To
remove all local
notifications sent by
Omnis, pass an
empty character
string, a list with no
lines, or omit the vIDs
parameter.

cErrorText A character variable
that receives text
describing an error, if
$removelocal() fails.

If the call to $removelocal() fails, it returns the Boolean value false, and sets the cErrorText parameter if it is provided. If the call to
$removelocal() succeeds, it returns the Boolean value true.

Badges

ONOTIFY provides functions that allow a badge to be added to, or removed from, the application icon.

On Windows, this applies to the application icon in the taskbar. On macOS, this applies to the application icon in both the dock,
and the task switcher. The two operating systems behave differently, because of the way their APIs work.

The badge is only displayed while Omnis is running.

$setbadgecount

ONOTIFY.$setbadgecount(iCount[,&cErrorText,iBadgeColor,iBadgeTextColor])

Sets the application icon badge to the specified count. The parameters are as follows:

81



Parameter Description

iCount The count to display as the badge. Must be
greater than zero. When running on
Windows, a value greater than 99 is
displayed as 99+.

cErrorText A character variable that receives text
describing an error, if $setbadgecount()
fails

iBadgeColor Windows only. The background color of the
count badge. Defaults to
styledbadgebackgroundcolor in the system
section of appearance.json.

iBadgeTextColor Windows only. The text color of the count
badge. Defaults to styledbadgetextcolor in
the system section of appearance.json.

Note that the appearance.json items styledbadgebackgroundcolor and styledbadgetextcolor have been moved to the ‘system’
section of appearance.json.

If the call to $setbadgecount() fails, it returns the Boolean value false, and sets the cErrorText parameter if it is provided. If the call
to $setbadgecount() succeeds, it returns the Boolean value true.

$setbadgeicon

ONOTIFY.$setbadgeicon(vIconId[,&cErrorText,iBadgeColor=kColorHilight])

Sets the badge on the application icon to be the specified icon. Note this is available on Windows only. The parameters are as
follows:

Parameter Description

vIconId The icon id of the icon to display as the badge. The size
component is ignored, as badges are always 16x16.

cErrorText A character variable that receives text describing an error, if
$setbadgeicon() fails

iBadgeColor The color to be applied to the themed SVG; only applies if
the icon is a themed SVG. Default kColorHilight.

If the call to $setbadgeicon() fails, it returns the Boolean value false, and sets the cErrorText parameter if it is provided. If the call
to $setbadgeicon() succeeds, it returns the Boolean value true.

$removebadge

ONOTIFY.$removebadge([&cErrorText])

Removes the badge from the application icon. The parameters are as follows:

Parameter Description

cErrorText A character variable that receives text describing
an error, if $setbadgecount() fails.

If the call to $removebadge() fails, it returns the Boolean value false, and sets the cErrorText parameter if it is provided. If the call
to $removebadge() succeeds, it returns the Boolean value true.

Enabling Notifications

To receive notifications from Omnis, notifications have to be enabled for Omnis in the respective system settings. OnWindows,
youcanenable SystemNotifications via theSettings >>Systemdialog, then theNotifications&Actionsoption. OnmacOS, youcan
use the System Preferences >> Notifications & Focus option. (See the Enabling Notifications section for platform considerations.)

The following describes how Omnis is identified by each operating system in order to initialize system notifications.

82



macOS

The macOS operating system identifies applications using their application bundle identifier, so if you install multiple versions of
Omnis on the samemacOS system, notification settings, such as those in theNotifications & Focus section of SystemPreferences,
apply to all applications with that bundle identifier.

For Studio 11.0, the application bundle identifier now includes the version, that is, net.omnis.omnisStudio.11.0. In addition,
the Development, Server, or Runtime versions of Omnis are identified by type. Therefore, the application bundle identifier is
net.omnis.omnisStudio.<type>.11.0 where <type> can be Dev, Server, or Run, so these three executables can co-exist on the same
macOS system. In addition, the deployment tool caters to the different types.

Windows

For notifications to work on Windows, and in particular to allow clicks on notifications to be passed to Omnis, Omnis needs to
register an AppUserModelID and store the AppUserModelID in a shortcut to Omnis in the system Start menu.

There are two configuration entries in the ‘windows’ section of config.json:

Entry Description

initLocalNotifications Boolean. Default true. If
true, Omnis initialises the
interfaces required to
send notifications to the
local Notification Center.

createShortcut Boolean. Default true. If
true, and there is no
shortcut to itself in the
Start menu, Omnis
creates a shortcut to
itself in the Start menu. It
then modifies the
shortcut to contain the
AppUserModelID
required for local
notifications to work.

Omnis uses core resource string 9 as the template for its AppUserModelID. This defaults to “OmnisSoftware.OmnisStudio.$.11”. To
create the AppUserModelID, Omnis replaces $ with Dev, Server or Run to identify the Development, Server or Runtime version of
Omnis.

The deployment tool (Windows only) allows you to customize resource 9. Note that if there is no $ placeholder in the resource, the
resource value is not changed by the attempt to insert Dev, Server or Run.

Power Management Notifications

Omnis Studio can receive sleep and wake notifications from the operating system to indicate power management changes: the
following applies to macOS andWindows.

Requests from the system to go into idle sleep, when there is no user activity, can be denied onmacOS or disabled on bothmacOS
andWindows.

This allows the system to remain awake if Omnis Studio is busy.

Power Management Methods

Each task has a set of power management methods which can be overridden.

$systemcansleep (only sent on macOS)

All library task instances receive a call to the $systemcansleepmethod when the system is requesting permission to go into idle
sleep.

83



If all instances of this method return kTrue then sleep will be allowed to continue and there will be a subsequent call to $sys-
temwillsleep.

If any instance returns kFalse from this method then sleep will be aborted.

The total time taken to return from all calls to this method must not exceed 30 seconds or the sleep will continue.

$systemwillsleep

All library task instances receive a call to the $systemwillsleep method when the system is starting a sleep which cannot be
cancelled, e.g. low battery or laptop lid is closed. This is delivered before any hardware is powered off.

The total time taken to return from all calls to this method must not exceed 30 seconds on macOS or 2 seconds on Windows
otherwise the sleep will continue.

This call can be used by an application to save the state before the system sleeps.

Operations can be performed such as saving data to disk or disconnecting from databases.

$systemwillwake

All library task instances receive a call to the $systemwillwake method when the system is beginning to power on, i.e. most
hardware has not been powered on. Attempts to access disk, network, the display, etc. may result in errors or blocking the
process until those resources become available.

OnWindows once user interaction is detected, e.g. mouse or keyboard input, then the system will send $systemdidwake.

$systemdidwake

All library task instances receive a call to the $systemdidwakemethod when wakeup has completed and the system is powered
on. This call can be used by an application to resume the state which was saved when the system went to sleep. Operations can
be performed such as loading data from disk or reconnecting to databases.

Disabling idle sleep

Typically the system will be setup to sleep after a set period of inactivity. An Omnis application can disable this by using the
$disablesystemidlesleep root preference. If set to kTrue the system will be prevented from going into idle sleep.

An application will still receive a call to the method $systemwillsleep if the system is starting a sleep which cannot be cancelled.

OnmacOS the systemwill log a message to the system log to indicate the reason why the system is blocked from going into idle
sleep.

A Studio application can set this log message by using the $disablesystemidlesleepreason root preference.

The default for this message is set to ‘Omnis Studio is busy’ but can be altered by editing the string for resource number 1835.

The message should describe the name of the application and the activity blocking the sleep, e.g. “MyApp is searching appoint-
ments“.

Chapter 2—Libraries and Classes

The components for your Omnis application or project are stored in an Omnis library file. This file contains all the class definitions
that define the data and UI objects in your application. The class types available in Omnis include remote forms (for web or
mobile apps), remote tasks for handling web communications, schemas for defining your data structures, reports for presenting
your data, and so on.

OmnisClassesarepredefined structures that control the appearanceandbehavior of theobjects in your application, and therefore
classes are the main components or building blocks in your application. You can create classes using the wizards provided in the
Studio Browser, or you can create them from scratch using class templates. You can create any number of classes in each library
file and modify them at any time while you develop your application.

You can manage the classes in your application or project in the Studio Browser, or for a multi-library project, involving multiple
developers, you may like to use the Omnis VCS and work on different parts of your library on a collaborative basis (depending on
the developer license you have).

84

/developers/resources/onlinedocs/Programming/15vcs.html#chapter-15version-control


Omnis Libraries

Each library file contains a number of system classes and preferences that control the behavior of your library and its contents. A
library has certain properties (preferences) too, which you can examine and change using the Property Manager.

You can create and open any number of library files in the Studio Browser, and each library can contain any number of classes. In
practice, you may want to split your whole application into one or more libraries and store different types of objects in different
libraries.

Creating a New Library

• Start Omnis and open the Studio Browser: the Studio Browser should open by default, but if it is not open you can press
F2/Cmnd-2 to open it or bring it to the top, or you can select the Browser option from the View menu, or in Windows you
can click on the Browser button on the main Omnis toolbar (you can enable the toolbar via the Viewmenu).

• Click on the Project Libraries option to create a new library or open an existing library

Figure 68:

• To create a new library, click on one of the options under Create New Project Library, enter a name for the new library,
including the .lbs file extension and click on Save or press Return

The New Project Library options are:

• Web and Mobile
creates a new library containing a NewRemoteForm template ready for you to start designing & coding your first web and
mobile form layout; the library also contains aRemote_Task, a Startup_Task, and a folder containing various SystemClasses
You can click on the Test option, or Press Ctrl-T, to open the form in a web browser, or you could double-click on the button
(in design mode) to view its code in the Method Editor.

See JavaScript Remote Forms for more information about creating Remote forms and Remote tasks, or JavaScript Components
for information about adding components and other objects to your remote form.

• Desktop (hidden in the Community edition)
creates a new library containing a NewWindow template ready for you to start designing a form for Windows or macOS
desktop use only; the library also contains a Startup_Task, and a folder containing various System Classes

• Blank
creates an empty library containing only a Startup_Task and the System Classes

See Startup Task and System Classes for more information.

85

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#chapter-2javascript-remote-forms
/developers/resources/onlinedocs/WebDev/03jscomps.html#chapter-3javascript-components


Figure 69:

Library Name

When you name a new library, you can use the file naming standards for the current operating system. The .LBS file extension is
not obligatory, i.e. onmacOS, but it will help you distinguish library files from other types of file in your file system. The new library
is opened in the Studio Browser under the Project Libraries option and shown as a single icon in icon view, or as a single line in
details view.

You can also create a new library by importing a JSON tree using the Create Project Library from JSON option in the Studio
Browser (not available in some editions): the JSON treemust previously be exported fromOmnis Studio using the export to JSON
option: see Importing Libraries.

Note that libraries created in the Community Edition cannot be opened in the Professional Edition of Omnis Studio, and vice
versa.

Restoring Open Libraries & Classes

WhenOmnis starts up, it opens any libraries thatwere open at shutdown, togetherwith any class editors thatwere open in design
mode (this applies to the development version only). This is controlled by the restoreOpenLibsAtStartup item in the “ide” section
of the config.json file, that defaults to true.

When the development version of Omnis shuts down successfully, it saves a list of libraries to re-open. The library list saved
excludes all libraries in the startup and studio folders, and all private libraries (these libraries will typically re-open anyway). In
addition, Omnis will only run the startup task of a library that it re-opens, if the startup task was open when Omnis last shut down
successfully. Running the startup task is controlled by the openStartupTaskWhenRestoringOpenLibrary item in the “ide” section
of config.json. If this is true (the default), Omnis will run the startup task of each library that had an open startup task whenOmnis
closed. Set this to false if you do not want the startup tasks of libraries to be run.

In addition to libraries, Omnis opens any class editors that were open at shutdown when it next starts up (this applies to the
development version only). This is controlled by the restoreOpenClassEditorsAtStartup item in the “ide” section of the config.json
file (the value of this configuration entry is ignored, and treated as false, if the restoreOpenLibsAtStartup entry is false). If true (the
default), after completing startup, the development version of Omnis tries to re-open class editors that were open when Omnis
last shut down successfully. Note the system table editors are not reopened.

For class editors other than remote form and window editors (which automatically save their last position), the restored editors
open in their last screen position, provided that the screen configuration has not changed since Omnis was shut down; if the
screen configuration has changed, then the editors open at their default position for the new screen configuration.

Themethod editor attempts to restore the selection to themethod line being edited. The remote form, report andwindow editors
attempt to restore their current selection. These attempts will work unless the class has been changed, that is, by replacing the
library (or class) with a modified copy before restarting, e.g. from the VCS.

The restored class editors open behind any user windows opened by either startup libraries or libraries opened due to the restore-
OpenLibsAtStartup config.json entry.

86



Opening a Library

To open an existing library, select the Project Libraries option in the Studio Browser and click on theOpen existing project library
button and navigate to the library file to open it. If you have already opened the library, you can select its name from the Recent
Project Libraries list. Alternatively, you can double-click on a library file (icon) on your desktop to open it in Omnis Studio.

If you open a library created in a previous version of Omnis Studio it will need to be converted: see Library Conversion.

Opening a Library in code

You can open a library in your code, which can be useful if your application needs to open additional libraries at runtime. You can
use the $add() method which has the following syntax:

Do $libs.$add(cPath [,bCreate=kFalse, cIname, cPword, &iErrCode, &cErrText, iFlags=kLibFlagNone, startupParams...]) Returns LibraryRef

Opens or creates library at cPath and returns an item reference to the library. The parameter cIname overrides the default internal
name, and cPword is the library password (if required).

If an error occurs, the returned item reference is NULL; if passed, the iErrorCode and cErrorText parameters identify the error.

The iFlags parameter allows different options to be set when the Omnis Runtime opens a library. The iFlags parameter is a sum
of one or more of the following kLibFlag… constants:

Constant Description

kLibFlagNone If specified, has no effect
kLibFlagDoNotOpenStartupTask If specified, do not open the Startup_Task
kLibFlagEnableConversionByRuntime The Omnis runtime version will offer to convert the

library
kLibFlagConvertWithoutUserPrompts If specified, and conversion is allowed, Omnis will

immediately perform conversion without giving the
user any prompts that require a response; note the
user cannot cancel the conversion in this case

Any further parameters are passed to the $construct method of the Startup_Task (in the case where the Startup_Task is allowed
to run).

If you prefix cPath with “!!!”, then Omnis does not open the startup task of the new library.

Closing a Library

To close a library, select the library in the Studio Browser and click on the Close Project Library option, or you can right-click on
the library icon in the Studio Browser and select Close Project Library from the context menu.

Closing All Libraries

In the Runtime (desktop) and Server versions of Omnis Studio only, you can close all open libraries in a single command using the
Close All Libraries option in the Filemenu; note this option is not available in the Development version.

Library Properties

A library has a set of Properties and Preferences that control its settings and behavior. You can use the Property Manager to
display or change the properties of a library, or the properties of a library can be accessed in your code using the notation:
$clib.$<PropertyName>, or LibraryName.$<PropertyName> in a multi-library application.

To view the properties of a library

• Select the library icon or name in the Studio Browser and press F6/Cmnd-6 to open the Property Manager, or click on the
Props button on the main Omnis toolbar

or

• Right-click on the library icon or name in the Studio Browser, and select theProperties option from the library contextmenu

87



The Property Manager displays the properties of the currently selected library: to view all the properties (preferences) of a library,
ensure that the Advanced option is enabled. As with any property in the Property Manager, you can move the pointer over a
property name to display its help text. The following is a summary of all the Library Properties under the General tab; the default
value is provided below, where applicable.

Property Default Description

$disabledefaultcontextmenu kFalse If true, the default context menu for the object will not be
generated in response to a context click
(clib.disabledefaultcontextmenu and
$cobj.$disabledefaultcontextmenu must both be false for
the menu to be generated)

$disksize The total disk size of the file (in bytes)
$extension kFalse If true, the library is an extension library
$freesize The estimated free bytes within the file
$ignoreexternal kFalse The ignore external mode for the library
$isprivate kFalse If true, the instance or library is private
$name The name of the library, minus the extension: see Library

Default name below
$nodebug kFalse If true, the local debugger is disabled for the library
$parentfolder The pathname of the folder containing the library (with a

trailing pathname separator): see below
$pathname The full pathname of the library, including the library file

name
$prefs The library preferences group is a property of a library,

shown on its own tab in the Property Manager: see Library
Preferences

$remotedebug kFalse If true, remote debugging of this library is allowed. Cannot
be set to true in an always private library

$shared kTrue If true, the file is open in shared mode. On OSX 64 bit this
property cannot be set to true as shared access is not
supported

$userinfo A developer property that can store data of any type. The
property manager only allows assignment if its current
value is empty, null, or has character or integer data type.
Must be character to be used with client methods in the
JavaScript client

$userlevel 0 The current user level of the library
$vcsbuilddate The date and time when this library was built using the VCS
$vcsbuildersname The name of the user who built this library using the VCS
$vcsbuildnotes The notes entered by the user when this library was built

using the VCS

Library Parent folder

The $parentfolder property returns the pathname of the folder containing the library file (with a trailing pathname separator).
Note that this is only visible in the Property Manager when the properties of the library are accessed via the Notation Inspector.
Using this property, you could, for example, find the full notation for the library folder (path) and drag it to the Code Editor.

Library Methods

The Property Manager shows any methods for a library. The $modifypasswords([bSilent=kFalse]) method opens the #PASS-
WORDS system table which contains the master and user passwords for desktop libraries only, not JS Client applications.

The $overridetables method lets you override individual entries within the System Class tables at runtime: see Overriding System
Class Tables.

Library Preferences

The library preferences are displayed under the Prefs tab in the PropertyManager when viewing the properties of a library, or they
can be accessed in your code using the notation: $clib.$prefs.$<PropertyName>, or LibraryName.$prefs.$<PropertyName>. The
following is a summary of all the Library Preferences; the default value is provided, where applicable.

88

https://www.omnis.net/developers/resources/onlinedocs/Programming/02libsandclasses.html#library-default-name
https://www.omnis.net/developers/resources/onlinedocs/Programming/02libsandclasses.html#library-default-name
https://www.omnis.net/developers/resources/onlinedocs/Programming/02libsandclasses.html#library-preferences
https://www.omnis.net/developers/resources/onlinedocs/Programming/02libsandclasses.html#library-preferences


Property / Preference Default Description

$alwayslog kFalse If true, the Send to trace log command and tracelog() function
always write non-diagnostic messages to the trace log (overriding
the check for debuggable code)

$centuryrange 1980 The start of the default range for dates entered without a century
$defaultname Default internal library name: see below
asof 35439 $disableclassdatanotation kFalse If true, $classdata for all classes in the library will not be accessible.

Setting this property is an irreversible operation
asof 35439 $disablemethodtextnotation kFalse If true, $methodtext and $methodlines will not be accessible.

Setting this property is an irreversible operation
$disablewebservicelogging kFalse If true, WSDLWeb Service Server logging does not log any

requests to services in the library
$errorprocessing kEPreport A kEP… constant that indicates how unhandled errors in methods

belonging to this library are processed kEPlogStackAndContinue
kEPlogStackAndReport kEPreport

$exportcontrolcharacters kFalse If true, export types which normally map control characters to
spaces,leave the data unchanged

$exportedquotes kTrue If true, exported text is enclosed in quotes
$fiscalyearend 31 Dec 1900 00:00:00 Fiscal end of year date
$iconlib Internal name of the alternative library for retrieving icons from

#ICONS
$iconsets Comma separated list of icon set folders to be used for the library.

Folder names datafile, lib, studio and studioide are reserved and
cannot be used. Omnis searches the icon sets for icons in the
order specified by this property

$initiallayoutbreakpoints 320,768 A comma separated list of layout breakpoints. The initial value of
$layoutbreakpoints when making a remote form responsive

$justifiedtextthreshold 75 A percentage value,0-100. For fields with justification kJustifiedJst,
the minimum percentage of the total field width that an end of
paragraph line must occupy before the line of text is expanded to
fill the entire field width

$osdroplimit 100000000 Maximum number of bytes of dropped data that can be included
in pDragValue for evDrop when $osdropflags contains the flag
kOSDROPincludeData.
kOSDROPwithoutDataIfOsDropLimitExceeded specifies if evDrop
still occurs when the limit is exceeded

$reportcalculationerrors kTrue If true, Omnis reports errors that occur during calculation
evaluation

$reportnotationerrors kTrue If true, notation warnings will be handled as errors
$sensitivefieldnames kFalse If true, field names are case sensitive
$serverlessclientstringtable The string table (tab-separated value .tsv file in library folder)

shared by all JavaScript client remote forms in the library
Serverless Client Application File. Only assignable if your serial
number enables SC development

$sharedpictures kSharedPicModeNone Indicates if Omnis uses shared picture format. One of
kSharedPicModeNone, kSharedPicMode256Color or
kSharedPicModeTrueColor

$sqlstripspaces kTrue If true, Omnis strips trailing spaces from retrieved character
columns; provides backwards compatibility with v2 if true

$startuptaskname Startup_Task The name of the startup task class
$styleplatform <the current platform> The field styles platform group to use for this workstation

kJavaScript kmacOS kMSWindows kUnix
$userexportdelimiter ; The character the library uses for user-delimited import/export
$validcolumninbadrowisnull kFalse If true, a valid list column in a bad (non existent) row evaluates to

#NULL rather than an empty character string
$weekstart kMonday The beginning of the week, a day constant: kMonday kTuesday

kWednesday kThursday kFriday kSaturday kSunday

Disabling Class Data and Method Text

The library preferences $disableclassdatanotation and $disablemethodtextnotation control whether or not other Omnis libraries
can access class data and/or method code within the library. They can be set using the Property Manager or via the VCS when
building a library.

89



When $disableclassdatanotation is kTrue for a library, you will no longer be able to read or write $classdata from any Omnis class
using Omnis code. In addition, JSON export of the library is disabled as the class data is disabled. IMPORTANT: future access to
this library in the Omnis VCS will no longer be possible.

When $disablemethodtextotation is kTrue for a library, you will no longer be able to read or write $methodtext or $methodlines
from Omnis code or via the Property Manager. In addition, method text will not be exported during a JSON export of the library.

Library Default name

A library has an internal name stored in $name which Omnis uses to reference the library in your code and elsewhere, such as
the prefix for a class name in a multi-library structure, i.e. Libraryname.classname. The default internal library name is created
automatically using the name of the disk file, with the file extension removed. Any remaining characters in the set . $ ( ) [ ] (dot,
dollar, open and close parenthesis, open and close square bracket) are converted to _ (underscore), although you should avoid
using these characters in your library name. Thedefault internal library namewill have the case of the library name tobe consistent
with Omnis running on the macOS and Linux platforms. (Prior to Studio 10, library name and file paths on theWindows platform
were converted to upper case when opened which resulted in the default internal name for a library being upper case on the
Windows platform.)

You can assign an alternative internal name for a library by setting the $defaultname library property and once set this is used to
reference the library, overriding the auto-generated name. The characters and format of the string allowed in $defaultname are
limited: no leading or trailing spaces, the name cannot start with a digit, or contain the following characters: . $ ( ) [ or ].

Omnis prevents the internal name of a library frombeing set to the name of a static function group, such as FileOps, by appending
a digit (or digits) to the internal name that would otherwise be used, in the same way as it does when opening a library which
would result in a duplicate internal name. So in the case of FileOps, the internal name of the library would typically be fileops1.
However, it is best to avoid using a function group name, or any other function or command name, as a library name to avoid any
possible conflicts.

If you rename the library file on disk the $defaultname remains the same retaining all class references. If you change the $de-
faultnameproperty after you start developing your library, all class references that use it will fail: therefore, in amulti-library system
you should set it once before you start adding classes to your library.

Multi-library Projects

Omnis lets you structure your application into one or more libraries that you can load either together or separately. This lets you

• break up your application into smaller, less complex subsystems

• develop the subsystems in different programming groups or departments

• test the subsystems or modules separately

• reuse libraries in different applications, mixing and matching reusable code without modification

Although Omnis always ensures the integrity of objects, there is no built-in locking or concurrency checking to prevent two users
frommodifying the same object. Ifmore than one user opens an object in designmode, the last one to close the object overwrites
the changes made by the other users. There is no way to ensure that changes made to an object are seen by other users before
the library is reopened: objects are cached inmemory and it is not possible to predict when Omnis will discard an object from the
cache. In a team of developers you should therefore use the Omnis VCS.

Library APIs

You can use the $getapiobject method to expose the methods in a library to be used in another library. The $root.$modes
method $getapiobject returns a reference of an object in another library, allowing you to use its methods. You can use
$root.$modes.$getapiobject(“libraryA”) from libraryB to call into $getapiobject method of libraryA startup task whichmust return
an object reference. For example, the startup task method $getapiobject of libraryA can do:

Quit method $clib.$objects.libAPI.$newref()

Where libAPI is an object within the library which implements some methods that you can use. If libraryA does not return an
object reference, the returned value to the caller is NULL. The startup task in the called library must be named ‘Startup_Task’ (the
default name) in order for this to work.

90



Omnis VCS

The Omnis VCS provides you with a full-featured version control system for your Omnis libraries and other components. If you put
your application under version control, you eliminate the inherent risks involved in group development. See later in this manual
for details about the Omnis VCS.

Comparing Classes

The Studio Browser includes a tool that lets you compare classes in two different versions of the same Omnis library or different
revisions of the same class in a VCS project. The Compare Classes tool lets you compare all the classes in one library or VCS project
or individual classes. To use the new tool, click on the Compare Classes option in the Studio Browser.

Shared Access to Libraries on macOS

The 64-bit macOS version of Omnis Studio does not support shared access to libraries. For libraries ($root.$libs.LIB) on 64-bit
macOS, the $shared property cannot be set to true as shared access is not supported: in effect, this property is redundant on this
platform.

Starting Omnis with a file

Omnis can be started up by double-clicking on a file, such as a library file, or via the command line. The sys(250) function returns
a list of files which were used to open Omnis, e.g. double-clicked from the Finder or passed on the command line. This is empty
if Omnis was opened directly by double-clicking.

In addition, the task method $openfiles can be overridden and will be called when Omnis is used to open a file or set of files by
the OS. This will be passed the list of files as a parameter.

On Windows, the $singleinstance root preference needs to be set to kTrue to use the same instance of Omnis to open a file,
otherwise another instance of Omnis will be started.

Opening Initial File As Library error

The reportErrorOpeningInitialFileAsLibrary item in the “defaults” section of the config.json file (default value true) allows you to
control whether or not Omnis reports an error trying to open the initial file as a library; this applies when a file is dropped on the
Omnis program, or the file is double-clicked. If the option is set to false, the error message is not shown.

Library Conversion

When you try to open an existing Omnis library, created in a previous version of Omnis Studio, Omnis will prompt you to convert
the library. You shouldmake a secure backup of the old library before you open and convert it in the latest version of Omnis Studio
since THE LIBRARY CONVERSION PROCESS IS IRREVERSIBLE.

The library conversion prompt applies to libraries you openmanually inOmnis Studio and any libraries located in the Startup folder
that are loaded automatically and require conversion.

Class Locking and Library Conversion

In order to enhance the integrity and security of deployed Omnis Studio libraries, themechanism used to lock classes in a private
library has changed in Omnis Studio Revision 35659.

Consequently, all libraries opened in Omnis Studio 11 revision 35659 or laterWILL REQUIRE CONVERSION, INCLUDING LIBRARIES
CREATEDWITH ALL PRIOR REVISIONS OF OMNIS STUDIO 11 (as well as Studio 10 or earlier libraries). THE LIBRARY CONVERSION
PROCESS IS IRREVERSIBLE.

THEREFORE, AND IN ALL CASES, YOU SHOULDMAKE A SECURE BACKUP of all existing Omnis Studio 11 libraries BEFORE OPEN-
ING THEM in Omnis Studio 11 Revision 35659 or later.

Library Conversion Logs

The library converter adds an entry to the Find and Replace log that allows you to quickly navigate to each change made by the
converter by double-clicking on a line in the log. In addition, the converter writes a log file to the ‘conversion’ folder in the logs
folder in the data part of the Studio tree. The log file provides a more permanent record of the changes applied to the converted
library.

91



Conversion Log Delimiter

The conversion log file uses tab-delimited format, with exported text in quotes (the default). You can change both of these options
using configuration items in the config.json file, in the log section:

"conversionLogDelimiter": "\t",
"encloseConversionLogTextInQuotes": true

If conversionLogDelimiter is empty, Omnis uses the default log delimiter, a semicolon (;).

Conversion Prompts & Working Messages

You can enable the option “disableAllLibraryConversionPrompts” to suppress conversion prompts when a library that needs to be
converted is opened from the Startup folder: the option is in the “defaults” section of the Omnis Configuration file (config.json)
and defaults to false, so you can set this option to true to prevent library conversion prompts.

You can disable the working messages such as “Converting class…” during library conversion by setting the “showLibraryConver-
sionWorkingMessage” option located in the “defaults” section of the config.json file. The option defaults to true, but you can set
it to false to disable the conversion working messages.

Default Classes

When you create a new library in Omnis, it contains certain default classes including a task class called Startup_Task, a remote
task called Remote_Task (in a web/mobile app), and various System Classes that control the behavior and appearance of your
library. As you begin to prototype your application, you don’t need to modify the default classes, but this section gives you a brief
overview of how they affect your library.

Startup Task

When you create a new library, it contains a task class called Startup_Task. When you open your library in design mode (or in a
runtime environment), the Startup_Task is opened and the initialization code within it is run automatically. Therefore, if you want
your library to perform some action when it starts up (such as open a remote form or a database session), you can put the code
to do it in the $construct method in the Startup_Task. (Many of the example apps under the Samples option in the Hub use the
Startup_Task to setup the data or open the forms for the demo, so examine those to get an idea how the Startup_Task can be
used.)

The Startup_Task is not relevant for web or mobile apps, since the end user will be opening your application in their web browser
or application wrapper: any initialization of a web or mobile app should be done in the initial remote form to open in the end
user’s browser.

Each library has a preference called $startuptaskname which stores the name of the startup task, and is set to Startup_Task by
default. To change the task that is run when your library opens, you need to change this property, but inmost cases you can leave
it set to Startup_Task.

The startup task has a special function when you are designing your library and adding other classes and variables to your library.
When you start to create or prototype your app you don’t need to change the Startup_Task, so you can proceed to create your
data schemas and UI classes in your library.

Library Startup Task

The Omnis root preference $clibstartuptask reports the startup task for the library containing the current executing method.

Open/Close Library Notifications

There is a task message $openlibschanged that is sent after a library or libraries have been opened or closed. It is sent in a
development version of Omnis only.

Remote Tasks

To open or test a Remote form it needs a Remote Task, therefore you need to create a Remote Task in your library and assign it
to the $designtaskname property of the remote form. If you use a wizard to create a Remote form, you can create a remote task
during the wizard process which is assigned to the remote form automatically.

When you create a new web/mobile library using the Create New Project Library option in the Studio Browser it will contain a
Remote_Task class.

92



System Classes

Every new library contains a number of System Classes, contained in a folder called ‘System Classes’. You can hide or show them
using the Class Filter option in the Studio Browser (the Class Filter option is visible when the library is selected).

System classes are special types of class that hold information about the Omnis environment, including field styles, fonts, input
masks, and external components. You can edit some of the system classes to change the way Omnis behaves. The settings for
these tables are stored for each separate library. You can copy system classes from one library to another and you can edit them,
but some options available for normal classes are not available for these tables. Like other classes, you can check system classes
into the Omnis VCS, so you could maintain one set of system classes for use with a number of different libraries in a multi-library
project.

System class Description

#BFORMS Boolean formats: these specify the format of Boolean
fields allowed in your library

#DFORMS Date formats: these specify the format of short date,
and date and time values

#EXTCOMPLIBS the External components available in the current
library: here you can load or remove ext comps for
your library or Omnis itself

#ICONS the icon datafile for the current library used in legacy
apps (double-click to edit it); use Icon sets for new
web and mobile apps using the JS Client

#JSMASKS input masks for edit controls in remote forms
#JSWFONTS font table for remote form classes
#MXRFONTS#WIRFONTS#UXRFONTS font table for report classes under macOS, Windows,

or Linux/Unix; cross platform apps may contain all
these

#NFORMS number formats for numeric data entry fields
#STYLES character styles for window and report fields, and text

objects: you can print a list of styles by right-clicking
on the class and selecting Print Class

#TFORMS text formats for character-based fields
#DEBUGGER the current local debugger code breakpoint locations,

which means code breakpoints (and their conditions)
are restored when a library is reopened. #DEBUGGER
does not appear in the Studio Browser class list, but it
is included in clib.classes

The following system classes relate to window classes and desktop library user access only, and therefore are not used for web or
mobile apps:

System class Description

#MASKS input masks for data entry fields in window classes only
#MXWFONTS#WIWFONTS#UXWFONTS font table forwindow classes under macOS, Windows, or

Linux/Unix; cross platform apps may contain all these
#PASSWORDS the master and user passwords for desktop libraries only, not JS

Client: this is hidden by default, but you can show it via the Class
Filter option or by pressing Shift+Ctrl+A in the Studio Browser

You can edit a system table by double-clicking on it in the Studio Browser. For example, you can double-click on #DFORMSwhich
opens the Date formats dialog showing all the date formats for the current library.

By using the FONT system tables for remote forms, report classes (or window classes), you can map fonts used on one operating
system to fonts appropriate for the other operating systems.

#BFORMS: Boolean formats

Formats used for the $formatstring property in Masked Entry fields when $formatmode is set to kFormatBoolean.

93



Formatting

1 T
2 t
3 Y
4 y
5 O
6 1
7 [GREEN]O;[RED]O
8 [GREEN]Y;[RED]Y

#DFORMS: Date formats

The entries in #DFORMS are used to specify the format of Date Time variables (when defined in the Method Editor), and for the
$formatstring property in Masked Entry fields when $formatmode is set to kFormatDate.

Formatting

1 D m y
2 H:N
3 h:N A
4 H:N:S
5 H:N:S.s
6 D m Y H:N
7 Dm Y H:N:S
8 Dm Y H:N:S.s
9 M/D/Y
10 w, n D, y
11 D/M/Y
12 w, D n, y
13 M/D/Y h:N A
14 D/M/Y H:N

The following standard date formatting characters are supported:

Character Description

D Day (12)
V Day of week (Fri)
w Day of week (Friday)
E Day of year (1..366)
n Month (June)
M Month (06)
m Month (JUN)
y Year (1989)
Y Year (89)
A AM/PM
H Hour (0..23)
h Hour (1..12)

#JSMASKS or #MASKS – Input masks

Formats used for the $inputmask property in Masked Entry fields.

Formatting

1 >>(###) ###-####
2 >>(###) ###-#### Ext(#####)
3 >>(####) ######
4 >>(####) ###### Ext.###
5 >>#### #### #### ####
6 >>###-###-###
7 >>aa ## ## ## a
8 >>##-aaa-##

94



Formatting

9 >>##-aaa-####
10 >>##/##/##D/M/Y
11 >>##/##/####D/M/y
12 >>##/##/##M/D/Y
13 >>##/##/####M/D/y

#NFORMS – Number formats

Formats used for the $formatstring property in Masked Entry fields when $formatmode is set to kFormatNumber.

Formatting

1 0
2 0.00
3 #,##0
4 #,##0.00
5 #,##0;[RED](#,##0)
6 #,##0.00 ‘cr’;#,##0.00 ‘dr’
7 ‘£’ #,##0;[RED]‘£’-#,##0;;‘Nil’
8 ‘$’ #,##0;[RED]‘$’-#,##0;;‘Nil’
9
10
11 0.00 E+00
12 0.00 E-00

#TFORMS – Text formats

Formats used for the $formatstring property in Masked Entry fields when $formatmode is set to kFormatCharacter.

Formatting

1 ‘(’@@@‘)’ @@@‘-’@@@@
2 ‘(’@@@‘)’ @@@‘-’@@@@ ‘Ext(’@@@@@‘)’
3 ‘(’@@@@‘)’ @@@@@@
4 ‘(’@@@@‘)’ @@@@@@ ‘Ext.’@@@
5 @@@@@@@@@@@@@@@@
6 @@@‘-’@@@‘-’@@@
7 @@@@@@@@@U

Overriding System Class Tables

You can override individual entries within the System Class tables at runtime, without modifying the system classes in the library.
Thismay be useful in amulti-library deployment, where all the libraries need to share the same base set of system classes, but you
may want to change individual settings in the formatting tables, such as the date format, according to the language or location
of the end-user.

The definitions for these alternative formatting tables canbe stored in a JSONfile, which should benamed “tables.json” andplaced
in the Studio folder under the main Omnis folder. You can use the $overridetables method to load an entry from the JSON file to
override an entry in one of the default system tables in the current library.

The override only applies while the library is open: therefore, if you close and re-open the library, you need to call $overridetables
again if you want to override the default system tables: typically, you would do this at the start of $construct in the Startup task
of your library.

The tables.json file should contain a JSON object, and eachmember of the JSON object defines the content of one or more of the
formatting tables: tables which do not have an entry for a member are not affected when that member is used. The following
format is used:

{
"en": {

"#BFORMS": [ "[GREEN]Y;[BLUE]Y","y","Y" ],
"#DFORMS": [ "D/M/Y H~N", "D m Y H:N"],

95



"#TFORMS": [ "@@ @@ @@ @@ @U", "'('@@@@')' @@@@@@ 'EXT'@@@"],
"#MASKS": [ ">>###-###-###", ">>##/##/####~M/D/y~"],
"#NFORMS": [ "0.00 E+00"]

},
"de": {
"#BFORMS": [ "[GREEN]Y;[YELLOW]Y" ],
"#DFORMS": [ "D/M/Y H~N" ]

}
}

The $overridetables method has the following syntax:

• $clib.$overridetables(cJsonPath,cEntry[,&cErrorText])
Uses member cEntry in JSON table file cJsonPath to override the system tables with entries stored in member cEntry.
Returns Boolean true for success, false and cErrorText for failure

Therefore, you could execute the following to load tables.json from the Studio folder:

Do $clib.$overridetables(con(sys(115),"studio",pathsep(),"tables.json"),"en",lErrorText) Returns bStatus

Locale-style names have been used, such as “en”, to indentify the members for which the tables are to be loaded, but the text
could be anything to identify the set of tables to be loaded so long as you use the same name in the $overridetables() method.

$overridetables replaces the contents of the system tables with the members of the array, and sets any entries after the array
members to empty. The corresponding system table class becomes read-only: you can open its class editor, but you cannot
change it within the class editor.

Using the $clib.$prefs notation group for the table will change the table used at runtime, but a change made using the notation
will not be saved to disk.

Class Types

There are several different types of class in Omnis, each one performing a particular function in your library, or your application as
a whole. In general, classes are either Data classes or UI classes, depending on whether they define the data structures or the UI
and other visual elements in your application. The types of class are:

• Schema class
data class that defines a server table and its columns on your server database; see Schema Classes

• Query class
data class that defines one or more server tables and their columns on your server database; see Query Classes

• Table class
data class that maps to a schema class and contains default methods for processing your server data; see Table Classes

See SQL Classes and Notation for more info.

• Remote form class
UI class that defines the forms to be displayed on web or mobile devices using the JavaScript Client; all remote form in-
stances require a remote task to open; see JavaScript Remote Forms

• Remote menu class
UI class that that can be used by the JS Popup menu component; see Remote Menus

• Remote task class
a remote task class controls JavaScript remote form instances and a remote task class controls JavaScript remote form
instances and maintains the connection between a client and the Omnis App Server in web and mobile apps; see Remote
Tasks

• Report class
UI class that defines the reports that can be generated in your code, saved to a file and displayed in the JS client as a PDF;
see PDF Printing

96

08sqlclass.html#chapter-8sql-classes-and-notation
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#chapter-2javascript-remote-forms
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#remote-menus
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#remote-tasks
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#remote-tasks
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#pdf-printing-1


• Task class
all libraries contain a Startup_Task class used to initialize the library when it is opened (not required for web & mobile apps,
use a Remote task class); otherwise, a task class can be used to control instances and events in a Desktop application

• Object class
class that contains methods and variables defining your own structured data objects that can be instantiated in your UI

• User Constants
class that contains user-defined constants for use in yourmethods and expressions. A user constant is a named value, where
the value cannot be changed during execution; see User Constants

• Code class
class that containsmethods you canuse throughout a library, but only in server executed or local desktop code (code classes
cannot be used in client methods so should not be used for web or mobile apps using the JavaScript client)

The following classes are used for Desktop applications (thick client) only, and should not be used for JavaScript web or mobile
applications (these are hidden in the Community Edition):

• Window class
UI class that defines the data entry windows and forms for Desktop apps only (do not use for web or mobile apps)

• Menu class
UI class that defines standard pulldown, popup, and hierarchical menus for Desktop apps only (described under Window
components)

• Toolbar class
UI class that defines the toolbars for Desktop apps only; the toolbars can be installed on themain Omnis toolbar or floating
in the application window (described under Window components)

See Window Components for information about Window, Menu, and Toolbar classes.

The following classes are used for accessing Omnis data files in legacy applications, and are only included for backwards com-
patibility, so they should not be used for new applications (these are hidden in the Community Edition):

• File class
data class that defines the structure of a file (the Omnis equivalent of a table) in an Omnis data file

• Search class
data class that filters the data stored in an Omnis data file

Creating New Classes

The Studio Browser gives you the option of creating new classes using the blank or empty class templates, using the New Class
option, or using the class wizards which let you build fully functional classes complete with data fields and methods created for
you automatically. These methods of creating classes are accessed using the list of hyperlink Options in the Studio Browser.

The New Class option in the Studio Browser (available when a library is selected) lets you create a blank or empty class that you
can build and modify from scratch. Templates are available for all the different class types in Omnis. If you are new to Omnis or
you want to prototype your application quickly, you can use the Class Wizards. When you are more experienced, or you want to
create classes from scratch, then you can use the New Class templates.

Class Names

The name of a class can be anything you like, but the name would normally take account of its function within your application.
You may like to use a prefix in the class name to denote the type of class, so for example, you could prefix the name of a Schema
Class that is linked to a Customer server table with “s”, therefore you could name it “sCustomers”. Similarly, a JavaScript Remote
Form used for Customer information could be named “jsCustomerForm”, prefixed with “js” to denote a JavaScript remote form
class.

To remove all possibilities of any conflicts or errors in Omnis code, it is recommended that you only use alphanumeric characters
and do not use spaces in class names; however, you can use _ (underscore) to separate words if necessary.

You cannot use the following characters in class names: any character with a value less than space, a character in the string ” . , ;
: ! ? ) ] } ( [ { + - * /| & > < = “, or a single or double quote character. In addition, a class name cannot start with the dollar character $.

Remote Form names should not include the hash symbol (#) or other special symbols since this may cause unexpected results in
a web browser, or in the case of #, the remote formmay not open in test mode at all.

97

/developers/resources/onlinedocs/Programming/03programming.html#user-constants
11wincomps.html#chapter-11window-components


Extra validation

For Studio 11, stricter class name validationwas introduced to prevent certain characters frombeing used in class names, including
most of the characters described above. The extraClassNameValidations item in the ‘defaults’ section of the config.json file is
set to True meaning that Omnis performs extra validations before assigning a name to a class. This extra validation is strongly
recommended, as using the characters it excludes in class names can cause confusion and potentially errors. This property is
present only to allow code from previous versions to continue working if the additional validations cause any code to fail.

Class Wizards

The Class Wizards option in the Studio Browser (available when a library is selected) lets you create fully functioning classes
(e.g. remote forms) based on the selections you make during the wizard, and in the case of UI wizards, the class you are building
can be linked to other classes in your library. The class wizards are good for building or prototyping your application very quickly
and save you building classes from scratch. For example, you can create a JavaScript remote form based on a schema class in
your library using the SQL JavaScript Remote Formwizard.

Data Classes and Wizards

Depending on the type of data you want to enter or retrieve in your client application you will need to define certain structures in
your library to handle this data. These structures are stored in your library file as data classes.

This section introduces schema, query, table, file, and search classes. All these classes are covered in greater detail later in this
manual.

Accessing SQL databases

If youwant tohandledata fromaSQL-compliantDBMS, youmust createOmnis schema and/orquery classes thatmap to the table
and column structures on your server database. You can create schemaclasses fromscratch, or you can create themautomatically
from the tables on your database server using the SQL Browser (the Tutorial shows you how to do this).

Data type mapping

When creating schema classes, you need to choose column data types that map directly to the tables or views on your server
database. To do this successfully, you need to choose the data type for each column that best represents the type of data in your
database server. See SQL Programming for more information.

Omnis Datafiles

File classes and Search classes are used for accessing Omnis data files in legacy applications, and are only included for back-
wards compatibility, so should not be used for new applications.

If you want to store and retrieve your data using a non-client/server setup, you can store it in an Omnis data file. In this case you
need to design the structure for your data using Omnis file classes. In addition, you can use an Omnis search class to filter the
data stored in an Omnis data file.

A good alternative to using an Omnis data file is to use SQLite and if you are converting a legacy Omnis app that uses an Omnis
data file, you may like to convert your data to SQLite using the Convert Data File to RDBMS option, available under the Add Ons
option in the Toolsmenu.

Omnis Data Types

This section describes in detail the standard data types you can use to represent data in Omnis. Choosing the right type for your
data ensures that Omnis will do the right thing in computations requiring conversion. It also lets Omnis validate the data as you
enter or retrieve it. Some of the basic data types have subtypes, or restrictions of size or other characteristics of the data that give
you finer control over the kind of data you can handle. The following data types are available.

Field or Variable Type Description

Character standard character set sorted by ASCII value or UTF32
encoded characters

National Same as Character but sorted by National sort order

98

07sqlprog.html


Field or Variable Type Description

Number multiple types for representing integers, fixed point and
floating point numbers

Boolean single-byte values representing true or false values, or their
equivalents

Date Time multiple types for representing simple dates and times, or
composite date and times, between 1900 and 2099 to the
nearest hundredth of a second

Sequence proprietary data type for numbering Omnis data file records
Picture stores color graphics of unlimited size and bit-depth in

platform-specific format or in a proprietary shared picture
format

List structured data type that holds multiple columns and rows of
data of any type

Row structured data type that holds multiple columns of data in a
single row

Object your own structured data type based on an object class
Binary stores any type of data in binary form, including BLOBs
Item Reference stores the full notation of an object in your library or Omnis

itself
Field Reference passes a reference to a field (parameter variables only)
Object Reference lets you create an object instance of local, instance, class or

task variable scope

Character

Character data can contain characters from any of the various single-byte standard character sets or UTF32 encoded characters.
You can define a Character column of up to 100 million (100,000,000) characters in length, so can store up to 400MB of character
data. Omnis only uses the amount needed for each string, and not the maximum amount.

Character columns or fields in Omnis generally correspond to SQL VARCHAR data on database servers and have a varying length
format.

In Omnis character data is sorted according to its ASCII character set representation, not the server representation. The ASCII
character set sorts any upper case letter in front of any lower case letter. For example, these character values

adder, BABOON, aSP, AARDVARK, Antelope, ANT

are sorted as

AARDVARK, ANT, Antelope, BABOON, aSP, adder

National

Like Character data, National data can contain characters from any of the various single-byte standard character sets or UTF32
encoded characters. You can define a National column of up to 100million (100,000,000) characters in length. However, when you
sort National data, Omnis sorts the values according to the ordering used by a particular national character set.

The ordering for the English language follows: A, a, B, b, C, c, D, and so on. For example, if the previous values were values of a
national column or field, Omnis would sort them as follows:

AARDVARK, ANT, Antelope, adder, aSP, BABOON.

If you store data in an Omnis data file, Omnis stores a copy of the ordering in the file along with the data. If you use the data file
on another machine, Omnis preserves the original ordering.

Number

A number variable can be an integral or floating point number having various storage and value characteristics, depending on its
subtype. The following table summarises the different subtypes for numbers.

Number type Storage (bytes) Range

Integer
Short integer 1 0 to 255

99



Number type Storage (bytes) Range

32 bit integer 4 -2,000,000,000 to +2,000,000,000
64 bit integer 8 -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
Number
Short 0 dp ** 4 Single-precision floating

pointapprox -3.4E38 to +3.4E38
*Display format: n decimal places

Short 2 dp ** 4 e.g. 123.50
Floating dp 8 Double-precision floating

pointapprox. -1.8E308 to +1.8E308
*Displayed using 16 significant
digits

Number 0 dp 8 Display format: n decimal
places,e.g. 123

Number 1 dp 8 e.g. 123.4
Number 2 dp 8 e.g. 123.45
Number 3 dp 8 e.g. 123.456
Number 4 dp 8 e.g. 123.4567
Number 5 dp 8 e.g. 123.45678
Number 6 dp 8 e.g. 123.456789
Number 8 dp 8 e.g. 123.45678901
Number 10 dp 8 e.g. 123.4567890123
Number 12 dp 8 e.g. 123.456789012345
Number 14 dp 8 e.g. 12.34567890123456

*When Number fields are used to store integer values, the largest scalar value that can be stored precisely is 9007199254740992
(2^53). Values larger than this will incur rounding error proportional to their magnitude. Numeric values with precision > 16 will
also incur rounding error.

** The types Short 0 dp and Short 2 dp can temporarily store numeric values outside their range, until they are converted to their
CRB storage format. To prevent this behavior and ensure the correct values are stored, you can add validation to your code.

File Classes and Integers

You can use 64 bit integers in file classes, provided that a field (column) is not indexed. In Integer subtype droplist in the file class
editor, the 64 bit subtype is available but only when the field is not marked as indexed, otherwise if the field is indexed 64 bit is
not present: the 64 bit subtype is not allowed in compound indexes either. The notation to manipulate file classes and indexes
does not allow 64 bit integers to be used for indexed fields.

Floating Point Numbers

There are many pitfalls in using floating point numbers in programming. Computers do not represent these numbers exactly,
only approximately within the precision of the machine. This can lead to all kinds of anomalous problems with comparison of
values, particularly with equality comparisons. Two floating point numbers may differ by an infinitesimal amount depending on
the technique used to generate the values, even though logically they should be the same.

In general, you should not use equality comparisons with floating point numbers. If you are working with “fixed-point” data such
as money values, use scaled integers for comparison and arithmetic.

For example, instead of comparing two floating point variables F1 and F2 containing the amounts $5.00 and $10.00, compare two
integer variables I1 and I2 containing 500 and 1000. Display I1 * .01 when you need a decimal value. You can also use the rnd()
function to round the numbers to a certain number of decimal places before comparing them.

Boolean

The boolean data type represents single-byte values of true (yes), false (no), empty, or null. You should take care to give each
Boolean column or field an initial value, because Omnis initializes boolean data to “empty”, not NO or null.

When used in a data entry field in a window, boolean data is treated as three characters in which any data entry is interpreted as
a YES or NO. A ‘Y’, ‘YE’ or 1 is seen as YES while an ‘N’ or 0 will suffice for No. If the field is a check box, you enter the boolean value
by clicking on the box. If you don’t initialize the field and the user does not click on the box, the field has an “empty” value.

You can use boolean values in expressions. The numeric value is 1 for Yes values and 0 for No and empty values. NULL values are
treated as undefined in numeric calculations. For example, (null+1) is null and (null>1) is null.

100



When converted to character strings, Boolean columns or fields can take values “YES”, “NO”, “NULL”, or empty, “”. In some cases,
for example when setting up search criteria, you can enter values other than these for a Boolean field: in this case, Omnis converts
them and matches them with empty. Thus, for example, the value ‘FALSE’ is converted to empty, as are values like SAM, HAPPY,
and so on.

Date time

The date and time group of data types contains three basic subtypes: a four-byte Short date, a two-byte Short time, and an
eight-byte Long date and time. The following table summarizes the date and time subtypes.

Date Time subtypes Storage (bytes) Range

Short date 4 1900..1999
Short date 4 1980..2079
Short date 4 2000..2099
Short time 2 Minute resolution
Date time(#FDT) 8 Formatted #FDT, to centiseconds
Date time(D m Y) 8 Formatted Dm Y, to centiseconds

Note that the display of dates depends on the settings in the #DFORMS system table. Also the long date and time subtypes are
identical in value, only displaying differently in window fields.

Short Date

The short date type spans the range JAN/1/0000 to DEC/31/9999. There are three specific built in ranges: 1900 to 1999, 1980 to 2079,
and 2000 to 2099. By choosing the appropriate range, you can enter just two digits for the year andOmnis recognizes the century
correctly. For example, if you select the range as 2000 to 2099, a date you enter as 7,12,57 will be read as 7,12,2057 rather than 1957.
To enter a date outside the three specific year ranges, you need to set up your own date display format.

Omnis accepts dates in different formats automatically, with the exact format depending on whether your system is US or Euro-
pean. For example, you could enter the 7th of December, 1998, as any of the following strings.

US system European system

12-7-98 07-12-98
12/7/98 7/12/98
98 98
DEC 7 98 7 DEC 98

You can use any character to delimit the day and month figures. If you don’t specify the year or month and year, Omnis assumes
the current year or month and year, respectively.

Omnis supports three kinds of date arithmetic in expressions.

• Addition of days:
Date + Days = Date (forward)

• Subtraction of days:
Date - Days = Date (back)

• Subtraction of dates to yield number of days between the dates:
Date1 - Date2 = Number of Days between the dates

Omnis uses the string variable #FD to define the display format of dates. There are also several date functions that let youmanip-
ulate date strings.

Short Time

Short time types have two-byte values in the form HH:NN. The range of possible time values is from 00:00 to 23:59.

You can use time in expressions. Omnis automatically converts the time into numeric values using the conversion HH*60+NN,
giving the total number of minutes. The #FT string variable controls conversions between time and string types.

101



Long Date and Time

The combined Date Time type can hold a complete date and time to 1/100th second. It has various subtypes depending on the
display format you select (stored in #FDT) and uses 8 bytes when stored in a data file.

Date and Time Calculations

The numeric value of a date or time variable in an expression depends on the format string for that variable. So, if DATE1 has
date format string H:N and DATE2 has date format string H:N:S, DATE1 has a numeric value equal to the number of minutes since
midnight and DATE2 has numeric value equal to the number of seconds since midnight. It follows that DATE1+1 adds 1 minute to
DATE1 and DATE2+60 adds 1 minute to DATE2.

Addition and subtraction involving two date/times cause the numeric value of each to adjust so that they are both based on a
common denominator. Thus DATE1-DATE2 returns a numeric value equal to the correct difference between the two times in
seconds. However, DATE1*1-DATE2*1 loses the information that DATE1 and DATE2 represent date times and returns ameaningless
difference between the DATE1 value in minutes and the DATE2 value in seconds, for example, 500 minutes - 600 seconds.

Note that calculations involving combined dates and times do not work properly if the date part is before 1900. Comparisons
between two datetimes with different date format strings work properly.

When you compare parts of dates, for example, the month part of a date, dtm(‘11 June 98’), Omnis compares the string represen-
tation of themonth unless some calculation forces it to use the number representation of themonth. Thus the expression dtm(‘11
Dec 98’) is less than dtm(‘11 June 98’) because ‘D’ is before ‘J’ in the alphabet. To force a correct numeric comparison, add 0. For
example

If dtm('11 June 98')<(dtm('11 Dec 98')+0)
OK message {6 is less than 12}

End If

You should try to use straight date comparisons if you are comparing full dates. Don’t try to convert them into integers or other
types of data. Let Omnis do the work for you.

Century Ranges for Dates

When entering data into a date time field or variable without specifying the century, the date normally defaults to be within the
hundred year range startingwith 1st January 1980. However, you can specify the start of the hundred year default range as a library
preference with the option of overriding it for individual date types.

You can use the $centuryrange library preference to set the default century range ($clib.$prefs.$centuryrange), a four digit year is
specified which defaults to 1980. So if, for example, $centuryrange is set to 1998, dates for which no century is entered default to
between 1st January 1998 and 31st December 2097.

In addition, the 30 date formats which are stored in the #DFORMS system table can include the century range by including a four
digit year at the end of the date format. For example, date formats starting at 1st January 1998 include ‘DmYH:N:S 1998’ and ‘YMD
1998’. This can be used to override $centuryrange for particular date types.

The samemechanism can be used to control the conversion of character values to dates using the dat() function, for example:

Do dat(charvar,'D m Y 1998') Returns datvar

Century ranges are used when dates are entered from the keyboard or when a character string is converted to a date. If you enter
a date that includes the century, the century range is ignored. Century ranges do not affect how a date value is stored or displayed,
Omnis always stores the full date including the century.

Sequence

Every time Omnis inserts a new record into an Omnis data file, it assigns a unique number, a record sequencing number or RSN
to that record. There is a special data type, the sequence, for this type of data. Each RSN references a location in the data file. If
you delete a record, Omnis does not reuse the RSN. The RSN is stored as a 32-bit integer so its maximum value is 2^32-1, which is
approximately 4,295 million! The sequence type is not applicable to client/server data.

Omnis assigns record sequencing numbers (RSNs) according to the following rules:

• The first record in a file has RSN 1, the second record RSN 2, and so on

• An RSN is never used again, even though the record may no longer exist

102



A window field with sequence type provides a way for the user to see the RSN for any record in an Omnis data file, even though
they cannot change it.

Omnis assigns the RSN just before saving the record in the data file, so it is not available for any calculations prior to the Update
files command.

Picture

The picture data type holds color graphics with a size limited only bymemory. The space each picture consumes depends on the
size and resolution of the image. The internal storage of a picture is either in native format (Windows bitmap or DIB or metafile
or Mac PICT) or in Omnis shared color format. Server databases store picture data as binary objects (BLOBs).

List

The list is a structured data type that can hold multiple columns and rows of data. A list can hold an unlimited number of lines
and can have up to 400 columns. When you create a list variable you set the type of each column. The data type of each column
in your list can be any one of the other data types including Character, Number, Date, Picture, and List: Yes, you can even have
lists within lists!

Omnis makes use of the list data type in many different kinds of programming tasks. Normally you would create a variable with
list data type and build your list in memory from your server data or Omnis data file. Then you could use your list data as the basis
for a grid or list field on a window, or you could use it to generate a report.

You can store lists in Omnis data files directly. To store a list in a SQL table on a server, you can map it to a binary field of some
kind.

Row

The row is a structured data type, like a list, that can holdmultiple columns and types of data, but has one row only: it is essentially
a list type with a single row. A row can have up to 400 columns. When you create and define a row variable, you set the type of
each column. As with lists, the data type of each column in your row can be any one of the other data types including Character,
Number, Date, Picture, List, and Row.

Object

Object classes let you define your own structured data objects. Their structure, behavior, and the type of data they can hold is
defined in the variables andmethods that you add to the object class. A variable with object type is a variable based on an object
class: the subtype of the variable is the name of an object class. For example, you can create an instance variable of Object type
that contains the class and instance variables defined in an object class.

Object instances created from an object class (via subtype) belong to the current task at the point of their creation; this provides
consistency with object instances created via $new.

When you reference a variable based on an object class you create an instance of that object class. You can call its methods
with the notation VarName.$MethodName(). For an object variable the initial value contains the parameters which are passed to
$construct() for the class when the instance is constructed. The instance lasts for as long as the variable exists.

You can store object instances in a list. Each line of the list will have its own instance of the object class. You can store object
variables, and hence their values, in an Omnis data file or server database which can store binary values. If an object variable is
stored in a data file the value of all its instance variables are stored in binary form. When the data is read back into Omnis the
instance is rebuilt with the same instance variable values.

Object reference

The Object reference data type provides non-persistent objects that you can allocate and free using notation. Non-persistent
means that objects used in this way cannot be stored on disk, and restored for use later.

You can use the Object reference data type with local, instance, class and task variables. It has no subtype. To create a new
Object instance, referenced by an Object reference variable, you use the methods $newref() and $newstatementref(). These are
analogous to the $new() and $newstatement() methods, and they can be used wherever $new() and $newstatement() can be
used.

Object references are deleted automatically when they are no longer required in order to free up memory. Object references
are deleted when a variable or list column no longer contains the reference. Therefore calls to $deleteref are not required unless
you want to release memory sooner than would otherwise occur under the automatic process. Object reference variables are no
longer valid after the task that created the variable closes.

103



Binary

The binary type can store structured data of unlimited length up to your maximum available memory. Omnis does not know
anything about the format and structure of the data in a binary column or field. In this type of column or field you could place,
for example, desktop publishing files, MIDI system exclusive files, CAD files, and so on. You could store the definition of an Omnis
class in a binary field.

Binary data corresponds to binary large objects (BLOBs) on most database servers.

Item Reference

You can use a variable of type Item reference to store an alias or reference to an object in Omnis or in your library. You assign the
notation for the object to the item reference variable using the Set reference command. You can use an item reference variable
in calculations or expressions which saves you having to quote the full path to the object. You can also use an item reference
variable with the Do command to return a reference to the object or instance created by the command.

Field reference

You can pass a reference to a field using the field reference data type, available for parameter variables only. A parameter variable
with the field reference typemust have a valid field in the calling method. Once the field reference parameter variable is set up, a
reference to the parameter is the same as using the field whose name is passed.

Nulls and empty values

A variable or column of any data type can be NULL. This means the value is unknown or irrelevant, and that there is therefore no
way to operate on the column value. A null value is distinguishable from an empty value, which represents empty or uninitialized
data.

When defining a file class, you can specify that a field Can Be Null or Cannot Be Null. This controls the handling of rows written
to Omnis data files only and is irrelevant for client/server data, since it doesn’t prevent fields from getting null values in Omnis
calculations. Null data from a SQL database corresponds to null values in Omnis fields and variables, and null values are sent to a
server database as SQL nulls.

You can use the hash variable #NULL to represent null values in calculations. For example, to set a variable to null:

Calculate LV_Variable as #NULL

The result of arithmetic, comparison, and logical operators on null data is always null. With string functions such as con() and jst(),
however, Omnis translates null to empty. The isnull() function returns kTrue if the value is null and kFalse if not.

When you use an Omnis sort on columns or variables with nulls, Omnis sorts the nulls first and separately from the empty values
(or, for a descending sort, last). In a sorted report the nulls come first and do generate a break.

When exporting records in a text format, null values export as an unquoted stringNULL, unless a particular format doesn’t support
nulls. In this case, Omnis translates the null to empty. Occurrences of this unquoted string in an import file import as nulls.

Formatting strings and input masks

You can further structure the display of Character, Number, Date, and Boolean data using Masked Entry (window class) fields and
the $formatmode and $formatstring properties.

Current Record Buffer

The Current Record Buffer, or CRB, is an area of RAM, that Omnis uses to hold your current data. For example, if you are accessing
a number of file classes or a SQL view, the CRB holds the current record or data for those files or view.

104



Schema Classes

A schema class is a type of data class that represents a table or view on your server database. A schema class contains the name
of the server table or view on your server, and a list of column names and Omnis data types that map directly to the columns in
your server table or view. The Omnis data types defined in a schema class should map to the equivalent server types, and the
column names must conform to any conventions about case used by the server. For example, if the server column names are
case sensitive, the column names in your schema class must be in the correct case.

Schema classes do not contain methods, and you cannot create instances of them. You can however use a schema class as
the definition for an Omnis list using the $definefromsqlclass() method, which lets you process your server data using the SQL
methods against your list.

To create a new schema class

• Select your library in the Studio Browser

• Click on the New Class option, then click on the Schema option

• Name the new class and press Return

• To edit the class, double-click the class in the Studio Browser

The schema editor lets you enter the name of the server table or view and the column definitions You can move from column to
column in the editor either using the Tab key, by clicking in the column, or with the keyboard Up and Down arrows.

Having created a schema (or query) class, you can use the SQL FormWizard to create a SQL form based on the class to view and
enter data into your server database.

Creating a schema class automatically

You can create a new schema class from scratch, as described above, or you can create one based on a server table on your SQL
database. To do this:

• Open a database session in the SQL Browser and navigate to your server tables.

• Drag the server table from the SQL Browser and drop it onto your library in the Studio Browser.

This process creates a schema class thatmaps to your server table (or view) automatically, and ensures that the data classes in your
Omnis librarymap to the data on your server exactly. You can then use the SQL FormWizard (described in theUIwizard section) to
create a form based on the automatically generated schema class. This is covered in the Tutorial in the Making a Schema section.

Query Classes

A query class is a type of data class that lets you combine one or more schema classes or individual columns from one or more
schemas, to give you an application view of your server database. A query class contains references to schema classes or individual
schema columns.

Query classes do not contain methods, and you cannot create instances of them. You can however use a query class as the defi-
nition for an Omnis list using the $definefromsqlclass() method, which lets you process your server data using the SQL methods
against your list.

To create a new query class

• Select your library in the Studio Browser

• Click on the New Class option, then click on the Query option

• Name the new class and press Return

• To edit the class, double-click the class in the Studio Browser

• Enter the names of the schema classes or schema columns

When you open the query class editor the Catalog pops upwhich lets you double-click on schema class or column names to enter
them into the query editor. Alternatively, you can drag schema class or column names into the query editor. Furthermore, you
can reorder columns by dragging and dropping in the fixed-left column of the query editor, and you can drag columns from one
query class onto another. You can also drag a column from the schema editor to the query editor.

105

/developers/resources/onlinedocs/WebDev/01tutorial.html#making-a-schema


Table Classes

A table class provides the interface to the data modeled by a schema or query class. When you create a list based on a schema
or query class, a table instance is created automatically which contains the default SQLmethods. You should only need to create
a table class when you want to override the default methods in a table instance, or you want to add methods to a table. A table
class contains the name of the schema or query class it uses, and your own custom methods that override or add to the default
table instance methods.

To create a new table class

• Select your library in the Studio Browser

• Click on the New Class option, then click on the Table option

• Name the new class and double-click on it to edit it

You add methods to a table class in the Method Editor, and change its properties in the Property Manager. To associate a table
class with a schema or query class, you need to set its $sqlclassname property to the name of a schema or query class.

Like Schema and Table classes, you can use a table class as the definition for anOmnis list using the $definefromsqlclass()method,
which lets you process your server data using the methods you added to the table class. See the Omnis Programmingmanual
for further details about the SQL lists and their methods.

Exporting Libraries to JSON

The ability to export and import Omnis libraries in JSON format allows you to use a third-party version control system, such as GIT
or SVN, in order to manage Omnis application (library) source code. This will allow efficient and secure application development
in a team of Omnis developers, as well as the sharing of Omnis libraries and third-party tools among members of the Omnis
community: we have a repository on GitHub containing many example libraries: https://github.com/OmnisStudio

If you are using GIT to store your JSON files, all ‘end of line’ (eol) characters in .omh files need to be converted to ‘carriage return
linefeeds’ (crlf), to avoid errors when importing the files. Therefore, you should create a .gitattributes file in the root of your GIT
repo, and add the following line to it, to configure the line feeds:

*.omh text eol=crlf

You can export an Omnis library to a directory tree containing several text files in JSON format representing your library. Addition-
ally, you can import an Omnis library from a JSON tree previously exported fromOmnis. Exporting and Importing libraries is done
in the Studio Browser, but there are several methods you can use to create your own library export and import tools.

Exporting Libraries

To export a library to JSON, you need to select the library under the main Libraries option in the Studio Browser. After selecting
the library, the Export Lib to JSON option will be visible in the library options, allowing you to export the library to JSON. (After you
have exported a library to JSON, the Update and Rebuild options will appear in the Studio Browser.)

If youhavemultiple libraries open in theStudioBrowser, theExport, Update andRebuild optionswill apply to the currently selected
library. In addition, different libraries will be exported to different JSON trees, under the export folder.

Export Lib to JSON

The Export Lib to JSON option exports the currently selected library to a new JSON tree. The location of the export folder defaults
to ‘exports’ in the main Omnis tree, and the export process automatically creates and names a sub-directory in the export folder
using the name of your library.

You can export multiple libraries to JSON by selecting the Libraries node in the Studio Browser tree and selecting one or
more libraries in the Library pane (on the right). The ‘Export to JSON’ option will appear allowing you to export the selected
library/libraries.

The oldWeb Client plugin or iOS client remote forms are not exported (or imported). In addition, #PASSWORDS or the old system
table classes such as #MAWFONTS are not exported (or imported).

106

https://github.com/OmnisStudio


Figure 70:

Figure 71:

107



Update JSON tree

The Update JSON tree option exports the library to its associated JSON tree, which in effect will update any classes or methods
that have changed, or add any new classes in your library. You should be aware that the update process deletes the existing JSON
tree, and replaces it with a completely new JSON tree built from the updated library.

The update process first checks for any conflicts and reports these if any are found. For example, Omnis will report an error if a
JSON file or folder is missing or has been renamed. You need to rectify these errors before you can update, or you can ignore the
conflicts in the error log window and proceed with the update.

The conflict detection process uses the modify date of each file in the JSON tree for the class, so if a date has changed a conflict
will still be reported even if the file contents have not changed.

Rebuild from JSON

The Rebuild from JSON option archives the current library open in the Studio Browser to the ‘archives’ folder and replaces it with
a new library built from the associated JSON tree.

Each time you use the Rebuild option, Omnis places a new copy of the current library in the archives folder and appends a number
to the name of the library. The last version of the library in the archive folder is then used during the restore process as the most
recent archive.

Once the Rebuild option has been run, the Restore Library option appears.

Restore Library

The Restore Library option overwrites the current library in the Studio Browser with the previously archived version.

Library and JSON mapping

The Studio Browser maintains a log of which library maps to which JSON folder, which is essential when working with multiple
libraries. A file called ‘exports.json’ is created in the ‘studio’ folder that contains the mapping for all your exported libraries, so for
each library there is a record of the name and path of the Omnis library file, the name and path of its associated JSON folder, and
the path of the archived library, if it exists: note the name of the most recent archive library is used.

Importing Libraries

Note the options to import or export a library from or to JSON are not available in some editions.

You can import a library into the Studio Browser froman existing JSON tree thatwas previously exported fromOmnis Studio using
the Export Lib to JSON option. For example, you could check out an Omnis JSON tree from a third-party VCS, such as GIT or SVN,
and import it into Omnis to start a new project. For example, you can get sample Omnis libraries in JSON format from our GitHub
repository at: https://github.com/OmnisStudio

Note you cannot open a library from a JSON tree using the standard Open Library option in the Studio Browser (which can only
open a .LBS file). You have to import a JSON tree first to create the library before it can be opened in the Studio Browser.

New Library from JSON

To import a library from a JSON tree, you need to select the Libraries node in the Studio Browser and click on the New Lib from
JSON option.

The New Lib from JSON option imports a JSON tree that was previously exported from Omnis and creates a new Omnis library
file (.LBS); the import folder must already exist. When you have imported and created the new library, its classes will appear in the
Studio Browser.

Directory and JSON File Structure

The following sections describe the JSON file & folder structure of a library exported from Omnis Studio using the Export Lib to
JSON option, which may help you understand how the exported JSON could be managed. Note that all text files exported from
Omnis use UTF-8 encoding, including the .json and .omh files, and are formatted suitable for viewing in a text editor.

108

https://github.com/OmnisStudio


Figure 72:

Libraries

An Omnis library is represented by a folder that contains the file called ‘library.json’: this folder has the same name as the library
and is referred to as the ‘library folder’. library.json contains top-level information about the library, such as the library preferences
and version number.

Within the library folder, there is a tree of class directories that represents the folder structure of the Omnis library. Each class in
your library has its own directory, and if the class itself is an Omnis folder class, it contains sub-directories for the Omnis classes
contained in that Omnis folder.

Classes

Each class directory has the same name as the class name (see the note on directory and file naming below). Every class directory
contains a JSON file named ‘class.json’. This contains top-level information about the class, including:

• Class type

• Class properties

• For classes that supportmethods: definitions of class and instance variables, and for task and remote task classes, definitions
of task variables.

File classes also have a file called ‘indexes.json’ within the class directory, if the file class defines any indexes.

Methods

If the class supports methods, the class directory also contains a JSON file named ‘methods.json’ provided that there are some
classmethods. methods.json contains an array of the classmethods, where each entry contains various properties of themethod
and definitions for parameters and local variables.

There is a file in the class directory for each method defined in methods.json, named <method name>.omh (subject to the file
naming rules below), that contains the method code. The ‘.omh’ file extension is proprietary to Omnis, but the file format is text
like the other files.

LF (linefeed) characters in code are exported as Unicode private-use character 0x2fffe, to reduce issues with other tools (note CR
characters are also mapped to 0x2ffff).

Objects

If the class can contain objects, then there are two different structures depending on the class type:

• For file, query, schema and search classes, all objects and their properties etc. are in a single file called ‘objs.json’ in the class
directory. objs.json contains an array of objects.

109



• For all other class types that can have objects, the class directory can have a number of sub-directories:

• objs

• bobjs

• inheritedobjs

The ‘objs’ directory contains a sub-directory for each object in the class, where the directory name is the object name (subject to
the directory naming rules below). Each object sub-directory contains a file named ‘object.json’ that contains object properties
etc, and if the object has methods, there is an identical structure to that used for the class methods: a methods.json file, and
<method name>.omh files.

The ‘bobjs’ directory is only present for window classes (JavaScript forms do not have background objects). It contains a sub-
directory for each background object in the class, named using the object ident (subject to the directory naming rules below
as older libraries can unfortunately contain objects with duplicate idents). Each background object sub-directory contains a file
named object.json that contains object properties, etc.

The ‘inheritedobjs’ directory is only present for classes that support inheritance. It contains a sub-directory for each superclass ob-
ject that either definesor overrides amethod in the subclass. Each sub-directory containsmethods.jsonand<methodname>.omh
files just like those used for class and object methods, representing the methods defined or overridden for the object.

Binary Data

There are various properties which require a binary representation in the JSON library representation. These are handled in two
ways:

• If Omnis recognises a PNG, e.g. in #ICONS or a report background picture, it outputs a PNG file to the tree, and the JSON
contains the name of the PNG file.

• Otherwise, Omnis outputs the BASE 64 encoding of the binary data to the JSON file.

Directory and File Naming

Where possible, directories and files are named using the Omnis name (class name, object name, object ident, or method name).
However, there are some considerations:

• Although it is not recommended for naming objects in Omnis, class and object names can contain characters that are not
allowed in file system names, e.g. path separators for all platforms, ?, *. To cater for this, the JSON library representation
escapes these characters as % followed by the 2 lower case hex characters that represent the escaped character. As a
consequence, Omnis also escapes the % character.

• Omnis libraries can contain classes where the names only differ by their case. In addition, they can contain objects with
duplicate names. In these cases, the JSON library representation prefixes the name with the string %_<n>_ where <n> is
an integer index (for objects this is the order value, and for classes this is a value starting at 1 and incremented for each
class with the same case-insensitive name: note that Omnis always exports classes in ascending name order, meaning that
the prefix for each class in a set of classes with the same case-insensitive name will be the same each time you export the
classes, unless you add or remove a class with the same case-insensitive name).

Library Dependencies

Libraries can depend on other libraries. Inmany cases, the presence of the external library is not required for Omnis to successfully
import or export the JSON library representation. However, there are three cases that affect tokenization, and as a consequence,
mean the external library or libraries must be open when exporting or importing a library:

• Design task. If the design task is in an external library, the external library must be open.

• Superclass. If the superclass is in an external library, the external library must be open.

• External file classes. If the code or tokenized properties use a variable in a file class in an external library, the external library
must be open.

The export option detects the required external libraries in cases 1-3 above while it generates the JSON library representation. It
adds an error to the error list when it encounters a reference to an external library that is not open, and returns kFalse. In addition,
if the export succeeds, it adds an array to library.json named “includes”: this is an array of all required external libraries. The import
library option will fail if any of the included libraries are not open.

110



External File classes & Tokenization

By default, Omnis tokenizes variables in external file classes using the file name and a field token. For development, you should
use both file and field names (to avoid untokenization issues when the external library is not open), whereas for deployment it
might be more desirable for performance to use both file and field tokens.

In Studio 8.0, the only control over these tokenization options is via the browser context menu Retokenize… option. For Studio 8.1,
there are some new root preferences that you can use to control this:

• $tokenizeexternalfilenames: If true, Omnis uses tokens rather than text when tokenizing external file names

• $tokenizeexternalfieldnames: If true, Omnis uses tokens rather than text when tokenizing external field names

You can use these preferenceswhen importing a library to control how the output library tokenizes variables in external file classes.
The values of these preferences are stored in the “defaults” entry in config.json.

Export & Import JSON Notation

$exportjson

The $exportjson method can be used to export a library to a JSON tree.

• $root.$exportjson(rLib, cOutPath [,&lErrList, &lWarningList])
exports a JSON tree for the library and returns kTrue for success, or kFalse for failure. Parameters:
rLib is an item reference to the library to export.
cOutPath is the pathname of the directory into which $exportjson will generate the JSON for the library, or the pathname
of a directory which already contains a previous JSON representation of library, and which $exportjson will update to reflect
the current contents of the library.
lErrorList and lWarningList are lists that receive errors and warnings about the export process. $exportjson defines these
lists, so there is no need to define or clear the parameters before calling $exportjson. See Error Messages

In the case of failure, lErrorList contains error reports, and subject to the Omnis preferences discussed later $exportjsonmay have
cleaned up by removing any partially output JSON library representation before it returned.

In the case of success, lErrorList is empty. lWarningList may contain various warnings about the export process, such as duplicate
object idents or object names.

In addition, certain errors or warnings contain a note that there is an entry in the Find andReplace log, which allows you to identify
the problem. Errors in the Find and Replace log are drawn in the theme red color.

The error list and warning list each contain 3 columns:

• class: Item reference to the class for which the error or warning is being reported.

• errorcode: Unique integer error code for the error or warning.

• errortext: Error text corresponding to the errorcode.

The $exportjson method displays a working message if it executes for more than a second, allowing you to cancel the export if
required, in which case $exportjson returns kFalse and adds error 23433 to the error list.

If $exportjson is being used to overwrite an existing JSON library tree, and an error occurs during the export of a class, Omnis
will mark the class.json file for the class in error by adding an “error” entry. This allows a subsequent export to recognise classes
exported with an error, and automatically attempt to replace their content.

$importjson

The $importjson method allows you to import a JSON tree previously exported with $exportjson; the method creates an Omnis
library file at the specified path.

• $root.$importjson(cJsonFolder, cLibPath [,&lErrorList, &lWarningList , bReplaceExisting])
imports a JSON library representation tree, and returns kTrue for success, and kFalse for failure. Parameters:
cJsonFolder The pathname of the JSON library representation directory. $importjson validates this by checking for the
presence of library.json in this directory.
cLibPath The pathname of the new library file to be created from the input JSON library representation. This file must not
already exist.
lErrorList and lWarningList are lists that receive errors and warnings about the import process. $importjson defines these
lists, so there is no need to define or clear the parameters before calling $importjson. See Error Messages
bReplaceExisting allows you to replace an existing library, backing up the existing library; see below

111



In the case of failure, lErrorList contains error reports, and $importjson has deleted a partially created output library.

In the case of success, lErrorList is empty. lWarningList may contain various warnings about the import process, such as duplicate
object idents or object names.

The error list and warning list each contain 4 columns:

• pathname: The pathname of the file containing the problem.

• errorcode: Unique integer error code for the error or warning.

• errortext: Error text corresponding to the errorcode. If amethod line cannot be parsed, the text causing the error is included
in the error message.

• lineno: For some errors, the line number (in the file with the specified pathname) where the error occurred.

The $importjson method displays a working message if it executes for more than a second, allowing you to cancel the import if
required, in which case $importjson returns kFalse and adds error 23433 to the error list.

Note that $importjson ignores classes where the folder name ends in .conflict<n> (see later).

If bReplaceExisting is true (the default is kFalse), $importjson() closes the library if it is already open, backs it up to the import
archives folder, and imports the library to replace the backed up version; if the import fails, $importjson() restores the original
library from the archived copy. Omnis keeps the last 10 archived copies.

The archived copies are stored by default in the archives folder in the Omnis data folder. Each library has its own sub-folder
in archives, named using the library name. You can override the archive folder by setting the archivefolder member of
$prefs.$exportimportjsonoptions Omnis preference.

$comparejson

The $comparejson method checks the specified library against the JSON library tree stored at cOutPath, and returns wChanges-
Row to indicate what will occur when $exportjson runs. The method behaves identically to $exportjson, except that it builds
wChangesRow.

• $root.$comparejson(rLib, cOutPath, &wChangesRow[, &lErrList, &lWarningList]) checks the specified library against the
JSON library tree; returns kTrue for success.

For success (kTrue returned), wChangesRow has 4 columns, and each column is a 2 column list, where column 1 is the class name
and column 2 is the path to the class representation in the JSON library tree. The columns in wChangesRow are:

• new Each entry in the list identifies a new class, that is, a class that will be exported because it is in the library, but not the
JSON library tree.

• delete Each entry in the list identifies a class that will be deleted from the JSON library tree, because either it is no longer
present in the library or it has beenmoved to a different folder in the library. NOTE: If a folder is to be deleted, there will not
be delete entries for its content (which is implicitly deleted).

• replace Each entry in the list identifies a class which has changed in the library since the last JSON import or export of the
class.

• conflict Each entry in the list identifies a class which has possibly been changed in the library, but more importantly, the
copy of the class in the JSON library tree has definitely changed since the last JSON import or export of the class.

The $comparejson method provides you with some information before overwriting the contents of an existing JSON library tree.

There are two conditions which will cause Omnis to arbitrarily overwrite a class during export:

• The method text file extension has been changed (see the section on Omnis preferences).

• The copy of the class in the JSON library tree is marked to indicate that an error occurred during a previous export.

112



Export & Import JSON Preferences

There is a root preference $exportimportjsonoptions (a row containing parameters) that affects the behavior of $exportjson(), $im-
portjson(), and $comparejson() (the settings are also stored in the ‘exportimportjsonoptions’ group in config.json). The parameters
are:

• hideexportworkingmessage
Boolean (default false). If true, the working message is hidden for $exportjson and $comparejson.

• hideimportworkingmessage
Boolean (default false). If true, the working message is hidden for $importjson.

• deleteexportoutputtreeifcancelled
Boolean (default true). If true, $exportjson deletes a partially exported output tree, if the export is cancelled by the user.

• exportoverwritesconflicts
Boolean (default false). If true, $exportjson replaces conflicts when overwriting an existing tree (conflicts are ignored when
themethod text file extension has changed, or class.json contains the errormarker - in other words, in these cases, the class
is always replaced). If false, $exportjson does not replace the folder for a conflicting class, and before it exports the class,
renames the folder for the class to be of the form name.conflict<n> where <n> is an optional integer added if the .conflict
folder already exists from a previous export; this makes both the original JSON and the new JSON available in the library
tree.

• importtreatsunknownpropertyaswarning
specifies whether or not unknown properties in imported JSON are treated as a warning; it is true by default.

• exportcodefoldingstate
controls whether or not the code-folding state in themethods in your library is exported; the option is set to false by default
so the code folding state is not exported.

• includenotationinide
Boolean (Default false). Specifies whether the notation methods $comparejson(), $exportjson() and $importjson() are
present in the IDE property manager tables. This also controls whether these notation methods appear in the code
assistant.

• fullexportimport
Boolean (Default true). When true, all library information is included in the JSON export
If set to false, Omnis does not export certain informationwhich is not required to represent the library, including ‘internalver-
sion’, ‘omnisbuild’ and ‘moddate’. A library exported with fullexportimport set to false can only be imported if fullexportim-
port is set to false.

Error Messages

The following error messages may be returned by the export & import JSONmethods.

Error Code Error Text ($ is replaced at runtime)

23428 Property in input JSON is only allowed in custom styles:$
23429 Bad fieldname in object $
23430 Import requires external library to be open: $
23431 Export requires external library to be open:
23432 JSON import and export must be executed on the main thread
23433 Operation cancelled by user
23434 Invalid class type:
23435 Image file is not a PNG
23436 Error reading PNG file: $
23437 Error opening PNG file: $
23438 Error reading method text file
23439 Error opening method text file
23440 Internal error: invalid path:
23441 Superclass is missing:
23442 Error creating class:
23443 External class must be available before the library can be imported:
23444 File does not exist
23445 Error creating output library:

113



Error Code Error Text ($ is replaced at runtime)

23446 Output library path is invalid
23447 Output library already exists
23448 library.json does not exist in the input JSON folder
23449 Error creating directory:
23450 Error writing output file:
23451 Cannot export class because it is protected
23452 Cannot export class because its superclass ‘$’ is not available
23453 Cannot export class because its design task ‘$’ is not available
23454 Added external library dependency for library that masks the export library $defaultname:
23455 Parameter 2 of $exportjson() must be the pathname of an existing folder
23456 Parameter 1 of $exportjson() must be an item reference to a library
23457 See find and replace log:
23458 Object number $ (ident $) has a duplicate name: $
23459 Input JSON folder does not exist
23460 Object number $ has a duplicate ident: $
23461 Internal error: property definition does not contain data source for property:$
23462 Internal error: Invalid field number when accessing fields CRB:$
23463 Internal error: Unable to access CRB for object:$
23464 Internal error: no CRB for property:$
23465 Internal error: invalid property data type:$
23466 Cannot export or import custom style because the property cannot be found:$
23467 Internal error: cannot extend field list
23468 Internal error: Error extracting multi-value property when generating JSON property definition
23469 Internal error: cannot get list for multi-value properties
23470 See find and replace log: Invalid method line - tokenizing and untokenizing the method line does

not result in the same text:
23471 Error setting up new imported object:
23472 Cannot export or import custom style because the object cannot be found:$
23473 Invalid property: $
23474 Internal error: Unknown property in library information property definitions:$
23475 Internal error: Bad format table id:$
23476 Internal error: Invalid attribute passed to getExporterValue() or setImporterValue():$
23477 Internal error: Cannot create temporary complex grid object
23478 Internal error: Invalid external component set property:$
23479 Cannot obtain object definition for field: $
23480 Cannot create output directory: $
23481 Invalid user tool type value encountered when exporting toolbar object:$
23483 Internal error:External component has no data block:$
23484 Internal error:Invalid row:$
23485 Error parsing responsive position information:
23486 Cannot export remote form $. Only JavaScript client remote forms can be exported to JSON
23487 Imported object with a duplicate ident: $
23488 Imported object with a duplicate name: $
23489 Discarded inline comment ($) as Omnis cannot tokenize Sta: command with inline comment

appended using libConverterAddsInlineCommentToStaCommandParameter from config.json
23490 Member missing:
23491 Row has no content:
23492 Cannot obtain row:
23493 Unknown property in input JSON:$
23494 Cannot import table from JSON:$
23495 Invalid type for property $ (expected Boolean)
23496 Invalid non-primitive data for property $
23497 Object has invalid member count:
23498 Invalid type (expected Character):
23499 Invalid constant for $
23500 Invalid date for $
23501 Invalid type for $ (expected Integer)
23502 Value is too long for property $
23503 Invalid value for property $
23504 Integer value of property $ is outside valid range
23505 Invalid constant:
23506 Class type in JSON does not match destination class type

114



Error Code Error Text ($ is replaced at runtime)

23507 Error creating temporary class: $
23508 Error getting imported class data: $
23509 Error setting imported class data: $
23510 Error creating record definition or list: $
23511 Internal error:cannot obtain member name for record definition for file $
23512 Column of array is not defined as expected:
23513 Invalid or missing integer value:
23514 Invalid or missing constant value: $
23515 Invalid record definition entry:
23516 Missing parameter number for parameter:
23517 Object name is empty
23518 Non-primitive value must be stored as an object:
23519 Unable to allocate method number for imported method $
23520 Error setting method name:
23521 Error setting operation id:
23522 Error setting method text:
23523 Error storing method in class:
23524 Duplicate object name:
23525 Invalid or missing Boolean value:
23526 Could not add file class object:
23527 User constants or file class entry already used when importing:
23528 Could not add file class index:
23529 Could not set file connection:
23530 Could not find index part name:
23531 Could not find object type:
23532 Could not find section type:
23533 Invalid object type:
23534 Invalid section type:
23535 Invalid screen size:
23536 Invalid layout breakpoint:
23537 Unable to resolve search object name:
23538 Error tokenizing calculation:
23539 Invalid or missing calculation value:
23540 Invalid order value for object
23541 Error saving system table: $
23542 Invalid number of hotspots:
23543 Custom property entry count does not match custom property value count:
23544 Invalid or missing character value:
23545 Cannot find field name:
23546 Error setting page setup item:
23547 Could not locate constant value for property:
23548 Value not stored as an object:
23549 Cannot find column: $
23550 Invalid events:
23551 Object does not support events:
23552 Value out of range:
23553 Invalid property value:
23554 Custom property name does not match:
23555 Error setting shortcut value:
23556 Cannot resolve parent folder name:
23557 Error importing date:

Chapter 3—Omnis Programming

Omnis Studio has a powerful programming environment that lets you create almost any type of enterprise orweb application. The
Omnis programming environment contains hundreds of 4GL commands and functions, as well as a low-level scripting language,
calledOmnis Notation, that allows you tomanipulate objects dynamically in a web browser, on a phone, or an end user’s desktop
computer. To program in Omnis, you must consider the following things:

115



• Variables
variables are the principal data container in Omnis: most objects in Omnis can contain variables, but their scope and the
kind of data they can contain depends on the type of variable: you can use themethod editor to add variables to an object:
the definition and dynamic manipulation of variables is at the heart of programming in Omnis Studio.

• Methods
methods are pieces of Omnis code containedwithin the objects in your application, each performing a particular operation
specific to the object or the application as a whole: creating andmodifyingmethods in your library is key to creating the UI
and business logic in your application.

• Events
almost all user actions in Omnis generate an event: when an event occurs a message is sent to the object in which the
event occurred: you can write methods behind the objects in your library to handle the events.

• Tasks
when your application runs inOmnismany object instances are created, such asweb forms, reports, and data objects: these
instances are opened and handled within a task. Omnis creates a default task for web & desktop apps, but you can create
your own tasks that allow you to handle the objects in your application.

All the above topics are covered in this chapter. You create and modify methods in Omnis using the Method Editor and Omnis
code is written in the Code Editor.

Variables

Variables can hold different types of data and are visible in different parts of your application depending on their data type and
scope. For example, if you create a variable of list data type in a remote form, the list variable and hence its data is visible within the
remote form and all its instances, but is not accessible elsewhere in your library. The Data Types available in Omnis are described
in detail in the Libraries and Classes chapter.

Declaration and Scope

A variable may be global, accessible from all parts of your application, or it may have its scope restricted to certain areas so that it
cannot be referred to from elsewhere. By declaring variables in the proper scope, you limit the potential for arbitrary connections
across your application and thus reduce the potential for error and the complexity of your application.

The following table lists the different kinds of variables and their scope. It also shows when they are initialized and destroyed.

Variable When Initialized When Destroyed Scope

Parameter on calling the method returning to the calling method the recipient method
Local on running the method on terminating a method the method
Instance on opening an instance on closing the instance a single instance of a class
Class on opening a library on clearing class variables or closing a library the class, and all instances of the

class
Task on opening an instance of the task on closing the task instance the task, and all its classes and

instances
Hash on starting Omnis on quitting Omnis global

Apart from hash variables which are permanently built into Omnis, you must create all variables with the appropriate type and
scope in the objects in your library using the method editor. After you have declared them, variables that are in scope are listed
in the Catalog, or in the Code Assistant in the Method Editor. You can remove a variable using the Delete Variable option in the
variable pane context menu. Declared variables are removed frommemory when they are destroyed.

Parameter Variables

You can use a parameter variable to receive a value in a method, for example, a value that has been passed to the method using
the Do method. You would normally do something with the value in the method and possibly return a new value. Parameter
variables are visible within the called or recipient method only. They are initialized when the method is called, and cleared when
the method returns to its caller.

Local Variables

Local variables are local to the method. You can refer to the variable within that method only. Local variables are initialized when
the method begins execution, and are cleared automatically when the method terminates.

116

02libsandclasses.html#omnis-data-types


Instance Variables

Instance variables are visible to the instance only, that is, all methods and objects in the instance. You can define an instance
variable only for classes that can be opened or instantiated, that is, remote forms, remote tasks, tasks, tables, reports, and object
classes, as well as External Objects (in desktop apps you can also instantiate window, menu, and toolbar classes). Note that you
cannot declare instance variables in code classes. There is a set of the declared instance variables for each instance of a class:
these are initialized when the instance is constructed (opened) and cleared when the instance is destructed (closed).

Class Variables

Class variables are visible within the class and all its instances. You can declare class variables for tasks, tables, reports, and code
classes (in desktop apps you can add class variables to window, menu, and toolbar classes). Any object or method in the class can
refer to a class variable, and all instances of the class also have access to the class variable.

Class variables are not automatically cleared frommemory. You can remove them frommemory by closing the library containing
the class, or using the Clear class variables command.

Task Variables

Task variables are visible within the task, all its design classes and instances. In practice, you can refer to a task variable from
any method within any class or instance that belongs to the task. Omnis initializes task variables when you open the task: so
for the Startup_Task this is when the library opens. Note that you cannot declare a task variable for a class until you have set the
$designtaskname property for the class.

Hash Variables

Omnis has a built-in set of global variables, called hash variables since they start with the “#” symbol. You can view them in the
Catalog (F9/Cmnd-9). Hash variables are global, unlike any other variables, so all libraries have access to them. The advantage of
having global variables is that you can use these variables to pass data between libraries in an application. The disadvantage is
that any data you place in hash variables remains there when you switch between libraries or combine libraries, with potentially
unpredictable results.

Adding a Variable

You can add variables to a class or object in the Variable Pane of theMethod Editor. If the variable pane is not visible you can show
it using the View>>Show Variable Panesmenu option on the Method Editor menu bar. Alternatively, you can add a new variable
simply by typing its name in a line of code in the Code Editor and declaring the variable in the Create Variable dialog; see below.

The tabs in the Variable Pane let you define Task, Class, Instance, Local and Parameter variables: note that the local and parameter
tabs only appear after you have added or selected amethod in themethod editor. You can add up to 400 variables of each type to
the current object, including 400 local and parameter variables for each method in the current object. The name, type, subtype,
and initial value of each variable is listed in the variable pane. You can size the columns in the variable pane by sizing the column
headers.

You cannot declare a task variable within a class until you have set the $designtaskname property for the class: see the section
below on Adding Task Variables.

To add a new variable

• Open the class in which you want to add the variable

• Right-click on the background of the class and select theMethods option to open the Method Editor

The variable pane is at the top of the Method Editor window:

• Choose the tab for the type of variable you require, for example, the Instance tab to create an instance variable

• Click in the blank field under the Variable column header

• Enter the name of the variable

or

• Right-click in the variable pane to open the variable context menu

117



Figure 73:

• Choose Insert New Variable and click in the variable name to edit it, or type over the new variable name if it is selected (see
Variable naming below)

• Tab to the Type box and choose the type from the droplist using the mouse or arrow keys

or when the focus is in the Type box

• Type the first letter(s) of a data type to select it, for example, you can type “nu” to select the Number data type, or “b” for
Boolean and “bi” for Binary type

For Number and Date Time variables

• Tab to the Subtype box and choose a subtype: again, you can type the first letter(s) of a subtype, for example, for Numbers
you can type “L” to select the Long Integer subtype

For Object and Object Reference variables

• Click on the dropdown list in the Subtype box to open the Select Object dialog

• Open the External Objects node and choose the object for your variable; you can use the Search box to find an object in
the list

You can enter an initial value or calculation for all types of variables. The initial value allowed for a variable depends on its type.

Variable Type

As well as scope, the data type you choose for a variable is critical to how it functions in your code and any calculations, The types
available include Character, Number, Boolean, Picture, List, Row and Object, which are described in full under the Omnis Data
Types section in the Libraries and Classes chapter.

Variable Naming

Variable names can be up to 255 characters long, although in practice you should keep them as short but descriptive as possible.
When you name a variable you should prefix its name with one or more letters to indicate its scope. For example, parameters
variables can begin with the letter “p”, local variables “lv” or just the letter “l”, instance variable “iv” or just the letter “i”, and so on.
(You could use the variable prefixes described in the Creating Unrecognized Variables section.)

There are certain limits or restrictions on the characters you can use in a variable name. Each character in a variable name must
either be a Unicode alpha character, a decimal digit, or a character in the range U+80 to U+ff inclusive. The first character cannot
be a decimal digit. As with class names, you cannot use the following characters in variable names: . $ & ( ) [ ] and #. In addition,
do not use spaces in variable names, however you can use _ (underscore) to separate words if necessary.

Duplicate names and Scope

To avoid all ambiguity between variables of different scope, you should not use duplicate names, and use a naming convention
similar to the one described above. When two or more types of variable use the same variable name, a reference to that variable
could be ambiguous. In a situation wheremore than one variable of the same name exists, Omnis automatically uses the variable
with the smallest scope. Therefore, it is possible, thoughnot goodpractice or recommended, to have local, class, and task variables
called “MYNAME”. As Omnis resolves ambiguity, a reference to MYNAME will refer to the local variable if it exists for the current
method.

118

/developers/resources/onlinedocs/Programming/02libsandclasses.html#omnis-data-types
/developers/resources/onlinedocs/Programming/02libsandclasses.html#omnis-data-types


Adding Local and Parameter Variables

Local and parameter variables are inserted into the currently selectedmethod. Therefore, to insert these variables for a particular
method, you need to select the method before inserting local and parameter variables.

Parameter variables receive values from a calling method in the order that they appear in the variable pane. You can reorder
parameter variables by dragging them into position in the variable pane. To do this, click and drag the fixed-left column or row
number for a parameter variable in the list.

Normally youmust declare all types of variable, including local variables, in the variable pane before you can use them in your code.
However, you can declare a special type of local variable in your code without first declaring it in the method editor. To declare
such a variable, prefix the variable name with %% to create a string variable, or prefix the variable name with % for a numeric
variable of Floating point type. You can type such variable names directly into your code in themethod editor, at which time their
names are added to the Local variables pane.

Item Reference Classes

When creating an Item Reference variable, the variable subtype dialog (that allows you to enter the class for a variable) has two
tabs at the bottom: Generic and Instance:

• Generic allows you to enter a class.

• Instance allows you to enter a class of the form@classname or@library.classname (these classes are identified by a leading
@ character).

An item reference that uses a class in thisway provides code assistance for both the built-inmethods andproperties of an instance
of the class, as well as user methods for instances of the class.

In addition, there is an entry field that allows additional notation to be appended, e.g. $objs.objname (this field has code assis-
tance; the additional notation must start with a $). For example, if you have a field named test in window classmyWindow, you
can enter $objs.test in the entry field, and select the window class from the tree. This results in an item reference class @myWin-
dow.$objs.test. When using the variable, code assistance is for this field, so you get both the built-in methods and properties and
the user methods for the field.

Creating Unrecognized Variables

You can add a new variable simply by typing its name in a code line and declaring the variable in theCreate Variable dialog. When
you type the name of the new variable in your code, initially it will not be recognized and ismarked as an error (red curly underline
by default).

Figure 74:

You can click on the Fix button (at the bottom of the Code Editor window, as above) to open the Create Variable dialog, allowing
you to declare the new variable, including its scope, data type, subtype, initial value and description (Omnis will try to guess the
scope and type based on the current context and variable name; see below about naming).

The unrecognized variable dialog can open when assigning a new or unknown variable name to a property in the Property Man-
ager. In this case, for properties such as $dataname, the initial type of the variable creation dialog is set to the most likely data
type for the control, e.g. List data type for a list form control. The dialog restricts the scope of the new variable to what makes
sense based on class type, and so on.

119



Figure 75:

The Create Variable dialog will open when Omnis encounters an unrecognized variable name, but you can disable this behavior
if you set the “canUseCreateVariableOnVarNotFound” setting in the “ide” section of config.json to false (it is true by default).

Create Variable Prefixes

When you type the name of a new variable in your code, you can specify the initial scope for the variable using a predefined prefix;
in this case, the Create Variable dialog will select the scope automatically. For example, you can begin the variable name with “i”
to create an instance variable, or “p” to create a parameter. The default variable prefixes are:

Prefix Variable scope

i Instance
c Class
p Parameter
l Local
t Task

The prefixes allowed in the Create Variable dialog can be configured in the Omnis configuration file (config.json) using the entry
called “createVariableScopePrefixes” located in the ‘codeAssistant’ section in config.json:

"createVariableScopePrefixes": [
"i:Instance",
"c:Class:",
"p:Parameter",
"l:Local",

"t:Task"
],

The Create Variable dialog processes these entries in array order, and as soon as it finds a scope that is allowed for the method
being edited (e.g. instance variables are only allowed for class types that have instances), where the first part of the entry value
case insensitively matches the start of the variable name, it uses the configured scope (the second part of the entry value after
the colon) to set the initial scope suggested by the dialog. If no prefix match occurs, the scope suggested is local.

Create Variable Suffixes

As well as setting the scope of a variable, using a prefix, you can specify the data type of a variable using one of a set of predefined
suffixes. For example, you could enter the name “iDataRow” which would create an instance variable of type Row, or typing
“iDataList” would create a list, and typing “iVarRef” would create an item reference. The default variable suffixes are:

120



Suffix Variable type

Row Row variable (kRow)
List List variable (kList)
Ref Item reference variable (kItemref)
Date Date variable (kDate)
Obj Object variable (kObject)
Bin Binary variable (kBinary)

The suffixes allowed in the Create Variable dialog can be configured in the Omnis configuration file (config.json) using the entry
called “createVariableTypeSuffixes” located in the ‘codeAssistant’ section in config.json:

"createVariableTypeSuffixes": [
"Row:kRow",
"List:kList",
"Ref:kItemref",
"Date:kDate",
"Obj:kObject",
"Bin:kBinary"

],

Omnis strips any consecutive digits from the end of the desired variable name, and then compares (case independently) the end
of the resulting name string against the suffixes in the config.json array (strings before the colon in each array entry). If there is a
match, and if the variable type is suitable (e.g. it is not a non-client executed type when creating a variable for a client-executed
method), then the initial type is set using the type constant after the colon.

Deleting Unused Variables

The contextmenu of the Variable pane has the optionDelete Unused Variables…, available by Right-clicking on the variable pane
away from a variable line. When selected, it opens a dialog from which you can select variables to delete. The dialog displays the
variables of the current type displayed in the variable pane, which are potentially unused. This means the variables could still be
in use, for example, they could still be used in subclasses or notation.

Adding Task Variables

To add a task variable for a class youhave to set its $designtasknameproperty. Inmost cases, the design task for a class is specified
as the Startup_Task by default. You can change it using thePropertyManager or the notation. The design task for a class is ignored
at runtime.

To set up the design task for a class

• Click on the class in the Browser

• Display the Property Manager or bring it to the top (F6/cmnd-6)

• Click on the droplist in the $designtaskname property to view the current tasks

The list of tasks will contain a Startup_Task, and any tasks you may have created.

• Select the design task by clicking on it

You will now be able to define task variables for this class.

Changing the Scope of Variables

You can change the scope of a variable at any time by dragging the variable from one variable pane to another. For example, you
can change a class variable into an instance variable by dragging and dropping it onto the instance variable tab. Note you cannot
change the scope of task variables.

121



Variable Initial Values

When you declare a variable in the variable pane of the method editor you can assign it an initial value. The first time a variable
is referenced in a method, Omnis assigns the specified initial value to the variable. You can set the initial value to be a number,
string, calculation, some notation, an Omnis constant, or another variable name. In the latter case, when you first use the variable
it gets the value in the other variable, regardless of the order of declaration.

For class variables only, the Clear class variables command clears the current values in all class variables and resets them to their
initial values.

You can set the initial value of parameter variables, which in effect gives them a default value, but when and if a value is received
in the method the initial value is overridden. For example, you may want to assign an initial value of zero to a parameter value to
avoid it being null if a value is not received.

For instance variables, the initial value is assigned when the instance is created, e.g. when a form is opened.

Initial Parameter Values

Any parameters that are omittedwhen you call amethod are initialized using their initial value. This is the default behavior for new
libraries. The library preference $clib.$prefs.$useoldparameterpassing controls this behavior. If true, an empty parameter that is
not the last parameter is initialized to empty or zero, rather than its initial value in the called method parameter definition (this
does not apply to client executed client methods in the JavaScript client). The library preference defaults to false in new libraries,
and true in converted libraries to maintain backwards compatibility.

Variable Context Menu

You can lookup and edit the value of any variable or constant in Omnis at any time using its context menu. You can Right-click
on a variable name wherever it appears in Omnis to open its context menu and view its current value. The Variable context menu
displays the variable name, its current value, which group of variables or class it belongs to, and its type and length. You can also
perform various debugging functions from this menu as well.

If you select the first option in the Variable context menu, Omnis opens a variable window containing the current contents of the
variable which you can edit. Note that you cannot edit binary variables.

Variable Tooltips

You can pass the pointer over a variable or constant and a variable tooltip will pop up displaying the variable’s current value and
description. Variable tooltips are available wherever variable names appear in Omnis including the method editor and Catalog.
However, they are not available if Help tips are enabled for the tool containing the variable.

For some variable types, such as list or binary variables, the tip may say “not empty” which tells you the variable has a value, but it
is too long to display.

The value of Boolean variables is shown when you hover over the variable. The “Show Empty Booleans” option in the Debugger
Options menu in the Code Editor controls whether empty Booleans are shown as Empty or No/False; the default is on, meaning
that unset Booleans are shown as empty.

Variable panel

The Variable panel is displayed in the lower-right section of the Method Editor and allows you to view and modify variables while
debugging or stepping through your code. This is described in more detail in the Debugging Methods chapter.

Viewing Variables in the Catalog

You can view the variables in your library and the current class using the Catalog (press F9/Cmnd-9 to open it). The Variables
pane shows all the Task, Class, and Instance variables for the current class, plus all Local and Parameter variables for the currently
selected method. Following the Event Parameters group, the Catalog also lists any file classes in your library. You can enter the
name of any variable that appears in the Catalog into your code either by double-clicking on the name in the Catalog (assuming
the cursor is at a position that can accept input), or by dragging the variable name out of the Catalog into the method editor.

When you drag a variable from the Catalog, Omnis shows you what type of variable it is and its name. Note that you can also drag
variables from the Catalog and drop them onto window and report classes to create a data field for the variable.

You can also drag a variable from the variable pane in themethod editor to any calculation or entry field in the command palette.
To drag a variable name you need to click and drag the fixed-left column or row number in the variable list.

122

/developers/developers/resources/onlinedocs/Programming/04debug.html#variable-panel


Auto Fill Variable Option

When you want to enter a variable in the method editor command palette and you can’t remember its full name, you can type
the first few characters of the variable, wait a short while for a list to appear, and choose the variable from the list that pops up.
The list contains all the variables beginning with the characters you typed. The time it takes for the autofill option to work is set in
the $notationhelptimer Omnis preference (the default is 1000 milliseconds).

Custom Variable Types

You can define your own custom variable types. To do this you have to create a custom method called $<customatttribute
name>.$assign, and then the $type, $subtype and $sublen properties of the custom variable return their value according to the
type of parameter 1 of $<customatttribute name>.$assign.

Comparing Variables

You can do comparisons in the Omnis language between binary variables, object variables and object reference variables, when
both sides of the operator are the same type.

Binary comparisons compare the data byte by byte until there is a non-matching byte, in which case the first variable is greater
than the second variable if the non-matching byte in the first variable is greater than that in the second variable. The comparison
extends to the length of the shortest variable: if all bytesmatch, then the first variable is greater than the second if it is longer than
the second, and vice versa.

Object comparisons compare the object instance – if the instance is the same, the variables are equal.

Methods

Omnis provides a complete 4GL programming language comprising over 400 commands, each command performing a specific
function or operation. In addition, Omnis provides a means to manipulate the objects in your library called the notation: this
accesses the standard properties and methods contained in the objects in your library. Method are added or updated in the
Method Editor.

In previous versions of Omnis, the number of method lines was limited 1024, but this limit has been removed. However, although
the number of method lines is theoretically unlimited, the maximum number of method lines is capped at 256,000 to maintain
efficiency in your code.

Eachmethod line can contain anOmnis command, or somenotation, or often a combinationof these: you canalso addcomments
tomethod lines. For example, to open a window from amenu line you only need one command in yourmethod, that is theOpen
window instance command, which as the name suggests opens an instance of a window. Amethod that connects you to a server
database requires several commands executed in a particular order. You can performmost operations using the notation and the
Do command. For example, you can open a window using the Do command and the $open() method.

For further details about specific commands and notation used throughout this chapter, see the Omnis Help (press F1 to open it),
or the Omnis Referencemanuals. When you start to programmethods, you will need to use the debugger which is described in
the Debugging Methods chapter.

Notation

Omnis structures its objects in an object tree, or hierarchical arrangement of objects and groups that contain other objects. The
complete tree contains all the objects in Omnis itself, together with your design libraries, classes, and other objects created at
runtime. You can view the complete object tree in the Notation Inspector.

The object at the base of the tree is called $root. The $libs group contains all the current open libraries and lets you access each
library and its classes at design time. The classes and objects in each library are stored in their own separate groups: for example,
the $remoteforms group contains all the remote form classes in a library. Most of the other groups directly under $root contain
the objects created at runtimewhen you run your application: for example, the $iremoteforms group contains all the remote form
instances currently open, or $iremotetasks contains all the remote task instances currently open.

When you want to reference a particular object, a class or instance perhaps, you must access the right branch of the object tree.
For example, you must access the $remoteforms group to reference a remote form class. Whereas, to access a remote form
instance, say an instance of the same remote form class, you must reference the remote form instance via the $iremoteforms
group, which is contained directly under the $root object.

To facilitate a system of naming or referring to an object in the object tree, and its properties and methods, Omnis uses a system
called the notation. The notation for an object is really the path to the object within the object tree. The full notation for an object

123

/developers/resources/onlinedocs/Programming/04debug.html#method-editor


is shown in the status bar of the Notation Inspector. You can use the notation to execute a method or to change the properties
of an object, and you can use a notation string anywhere you need to reference a variable or field name.

In the notation all property and standardmethod names begin with a dollar sign “$”, andmethods are further distinguished from
properties by having parentheses after their name. Standard objects and group names also begin with a dollar sign. To write the
full notation for an object you need to include each object and group in the path to the object, separating each object using “.” a
dot. For example, to refer to a remote form class in a library you would use the following notation

$root.$libs.LIBRARYNAME.$remoteforms.RemoteFormName

This notation includes $root as the base object, the $libs group containing all the open libraries, the name of your library, the
$remoteforms group containing all the remote form classes in your library, and lastly the name of the remote form itself. If you
want to refer to a particular object in your remote form you need to add the $objs group and the name of the object

$root.$libs.LIBRARYNAME.$remoteforms.RemoteFormName.$objs.Objectname

In addition, there are a number of shortcuts that let you reference objects, without always referring right back to the $root object,
and certain global objects that you can use to make your code more generic. These are described below.

Item References

To save you time and effort, and tomake your codemore efficient, you can create an alias or reference to an object which you can
use in place of the full notation for the object. To do this, you create a variable of type item reference and use the Set reference
command to assign the notation to the variable. The item reference variable can be of any scope, and the notation can be any
valid Omnis notation for an object, a group, or even an object property. For example

# Declare variable WinRef of type Item reference
Set reference WinRef to Libraryname.$windows.Windowname
# creates a reference to the window which you can use in your code
Do WinRef.$forecolor.$assign(kBlue) ## changes the window forecolor

You can enter the notation for an object in the initial value field for the item reference variable. You can also find the full notation
for an object in the Notation Inspector and drag it to the notation field when you enter the Set reference command.

You can also use an item reference variable to return a reference to a new object, when using methods to create a new class,
instance, or object. Furthermore Omnis contains a special property called $ref which you can use to return an item reference to
an object. Both these features are used in the section describing the Do command below.

Note that WinRef.$parentfolder, whereWinRef is an item reference to a class, will return an item reference to the parent folder of
the class and not the $ident value of the folder class containing the class which is usually the case.

Max Chain Depth

The maxChainDepth item in the ‘defaults’ section of config.json allows you to configure the maximum number of field or item
references that Omnis will chain through in order to reach the referenced variable.

The default or minimum is 20, and in all but exceptional cases, you should leave this item set to 20. You can change it if you have a
heavily recursive method that uses field reference parameters. Since the minimum value is 20, setting this to any value less than
20 results in Omnis using the value 20. The debugger field menu still only chains through up to 20 references.

Current Objects

Under $root, Omnis contains a number of global state variables that tell you about how Omnis is currently executing, or what
objects, instances, andmethods are currently being used. These objects provide a shortcut to the current object or instance that
is currently executing. Mostly their names begin with “$c”, and they include

• $cclass
the current class

• $cdata
the current open data file

• $cinst
the current instance: usually the instance containing the currently executing method

124



• $cfield
the field where the current method is executing

• $clib
the current library

• $cmethod
the current executing method

• $cobj
the current object within a class or instance

• $cparmcount
the number of parameters that the caller has passed to the current method

• $crecipient
the current recipient of an event: if a custommethod is being processed, $crecipient is the recipient of that method

• $ctarget
a reference to the target field, that is, the field which currently has the focus (shows the caret and is sent keyboard events)

• $ctask
the current task: is usually the startup or default task until you open another task

• $cwind
the current window instance

• $topwind
the topmost open window instance

You can use the current objects in place of the full notation for a specific object to make the object and its code reusable and
portable between libraries. For example, you can use $cinst in a method within a window instance to refer to itself, rather than
referring to it by name

$cinst
# rather than
$root.$iwindows.WindowInstanceName

You can refer to the current library using $clib. For example, to make the current library private use

Do $clib.$isprivate.$assign(kTrue)
# is more generic than
Do $libs.MyLibrary.$isprivate.$assign(kTrue)

The Flag (#F)

Many of the Omnis commands set a Boolean Omnis variable called the flag, or #F, to true or false depending on the success of
an operation. Other commands test the current value of the flag and branch accordingly. The Omnis Studio Help documents
whether or not a command affects the flag. You can return the current status of the flag (#F) in client executed methods in the
JavaScript Client using the flag() function.

Functions

There are over 350 functions available in Omnis to perform all types of operation and actions that you can include in your Omnis
methods. For example, the sys() function returns information about the current system, such as the current printer name, the
pathname of the current library, or the screen width or height in pixels. The group of String functions can be used to manipulate
character data, such as the replace() function which replaces the first occurrence of a target string, within a source string, with
a replacement string, and returns the resulting string. The functions that you can use in your methods are listed in the Omnis
FunctionReference, where they are listed in functional groups to show the full range and scope of the functions available inOmnis.

Commands

The following sections outline themore important commands or groups of commands inOmnis. The commands that you canuse
in yourmethods are listed in the Omnis Command Reference. Here the commands are listed in functional groups to show the full
range and scope of the commands available in Omnis. For example, the Calculations… group contains the Calculate command
that lets you do calculations and assign a value to a variable, and theDo command that lets you execute andmodify objects using
the notation. The Constructs… group contains programming constructs such as If…Else If, Repeat…Until, and For loops.

125

/developers/resources/onlinedocs/FunctionRef/index.html#omnis-function-reference
/developers/resources/onlinedocs/FunctionRef/index.html#omnis-function-reference
/developers/resources/onlinedocs/CommandRef/index.html#omnis-command-reference


Custom Methods and Properties

You can addmethods to the objects in your library and call themwhat you like; you execute these methods fromwithin the class
or instance using the Domethod command.

You can also create your own properties andmethods and execute themusing the notation, as youwould the standard properties
and methods. These are called Custom Methods and Custom Properties, or collectively they are referred to as Custom Notation.
Custom notation can only be executed at runtime, in an instance of the class (e.g. Do $cinst.$custommethodname), and applies
either to the instance, or an object contained in the instance.

The name of a custom property or method is case-insensitive. It can be any name starting with the dollar “$” sign, except for the
set of reserved names (reserved words) in the following table.

Reserved names or words

$add
$assign
$canassign
$chaincount
$default
$findname
$ident
$isinherited
$makelist
$name
$ref
$serialize
$wind

Any class that can be instantiated can contain custom notation, including remote form, report, table, and object classes (and
window classes). In practice you can use custom notation to override the behavior of the standard notation, or to add your own
properties and methods to an object.

With the exception of the names in the above table, if the name of a custommethod (or property) is the same as a standard one,
such as “$printrecord()”, it will override the standard one.

You create custommethods for an object in themethod editor. You enter custom notation for a field in the Field Methods for the
field, and for a class in the Class Methods for a class.

The code for a custom method must define the method parameters as you would for any other method, and then return the
result of executing the method.

The code for a customproperty typically comprises twomethods. The first, called $propertyname returns the value of the property
using the Quit method command. The second called $propertyname.$assign defines a single parameter, which is the new value
to be assigned to the custom property; this method usually returns a Boolean value, which is true if the property was successfully
assigned. Note that $canassign is always true for custom properties.

An instance of a class contains whatever custommethods and properties you define in the class, together with the properties and
methods for that type of instance. The object group $attributes contains all the built-in and custom notation for an instance. You
can use $first() and $next() against $attributes, but $add() and $remove() are not available.

You can reference custom notation using the notation “Notation.$xyz”,where Notation is some notation for an instance of a class
and “$xyz” is the name of your custom property or method. If you specify parameters, such as Notation.$xyz(p1,p2,p3), they are
passed as parameters to the custommethod, and a value may be returned.

You can use the Do default command within the code for a custom method or property, to execute the default behavior for a
method or property with the same name as the custom notation. You can use the Do redirect command to redirect execution
from custom notation in one instance to another instance containing custom notation with the same name.

To create a custommethod

• Open the Class or Field methods for a class

• Right-click on the method names list, and select Insert New Method from the context menu

• Enter a name for your custommethod, including a dollar sign at the beginning of its name

• Enter the code for the custommethod as you would any other method

126



Userinfo property

File, window, report, menu, toolbar, schema, and query classes have the $userinfo property which you can use to store your own
value. The Property Manager only allows you to assign to $userinfo if its current value is empty, null or has character or integer
data type. The data stored in $userinfo can be of any other type but it must be assigned to the class at runtime using the $assign()
method.

Using Custom Methods

The following example uses a task class containing a custom method called $printprinter(). You can call this method from any-
where inside the task instance using

Do $ctask.$printprinter()

The $printprinter() method sets the print destination and calls another classmethod depending onwhether the user is accessing
SQL or Omnis data; it contains the following code

# $printprinter() custom method
Begin reversible block
Send to printer
Set report name REPORT1

End reversible block
If iIsSQL
Do method printSQLData

Else
Begin reversible block

Set search name QUERY1
End reversible block
Do method printOmnisData

End If

The next example uses a window that contains a pane field and a toolbar with three buttons. When the user clicks on a button,
the appropriate pane is selected and various other changes are made. Each button has a $event() method that calls a custom
method called $setpage() contained in the window class. Note that you can send parameters with the custom method call, as
follows

# $event() method for second toolbar button
Do $cwind.$setpage(2)

The $setpage() custommethod contains a parameter variable called pPage, and has the following code

# $setpage() custom method
Switch pPage
Case 1

Do $cwind.$objs.MainPane.$currentpage.$assign(1)
Do $cwind.$title.$assign('Queries')

Case 2
Do $cwind.$objs.MainPane.$currentpage.$assign(2)

Do $cwind.$toolbars.$add('tbModify1')
# installs another toolbar
Do $cwind.$title.$assign('Modifying')

Case 3
Do $cwind.$objs.MainPane.$currentpage.$assign(3)
Do $cwind.$menus.$add('MReports')
# installs a menu in the window menu bar
Do $cwind.$title.$assign('Reports')

Default
Quit method kFalse

End Switch

127



The final example uses a window containing a subwindow, which in turn contains a tree list. The subwindow contains a custom
method called $buildtree() that builds and expands the tree list. You can call the $buildtree() method from the parent window
and send it parameters, using the notation

Do $cwind.$objs.SubWin.$buildtree(lv_ClassList)

The $buildtree() method contains a parameter variable called pv_SourceList of List type that receives the list passed to it, and a
reference variable called TreeRef set to the tree list field, and contains the following code

# $buildtree() custom method
Do TreeRef.$setnodelist(kRelationalList,0,pv_SourceList)
Do TreeRef.$expand()

Do Command and Executing Methods

While you can use Calculate to change an object property or evaluate an expression, you can use the Do command for all ex-
pressions that execute some notation, including custommethods. In this respect, the Do command is the single-most powerful
command in Omnis. You can use the Do command to set the value of a property, or to run any standard or custommethod. The
Do command has several variants which include

• Do
sends a message to an object in your library, or assigns a value to an object property. Normally you should execute the Do
command in the context of the current object or instance to execute one of its methods or assign to one of its properties.
There are a number of common methods that you can use with the Do command including $open() to open an instance
of a class, $assign() to change an object property, and so on

• Do inherited
executes the inherited method for the current method

• Do default
runs the default processing for a custommethod

• Do redirect
redirects method execution to a custommethod with the same name as the current method contained elsewhere in your
library

• Domethod
calls a method in the current class and returns a value

• Do code method
runs a method in a code class and returns a value

Note that you can display a list of built-inmethods for an object or object group by clicking on the object in the Notation Inspector
and opening the Property Manager. Themethods for an object are listed under theMethods tab in the Property Manager: to view
all the methods of a class or object, ensure that the ‘Show All’ option in the Property Manager is enabled. See Omnis Studio Help
for a complete list of methods for all the objects in Omnis. The Show Runtime Properties option in the Property Manager context
menu lets you view properties that are normally available in runtime only, that is, properties of an instance rather than a design
class. When runtime properties are visible in the Property Manager the methods for the instance are also shown. You cannot
set runtime properties or use methods shown in the Property Manager, they are there as a convenient reference when you are
writing code.

Do command

You can use theDo command in Omnis to do almost anything: execute some notation, evaluate an expression, and so on. Specifi-
cally, you can use it to execute amethod for an object or assign a value to one of its properties. TheDo command returns a value to
indicate whether the operation was successful or not, or for somemethods a reference to the object operated upon. This section
shows you how you can use the Do command and introduces some of the most useful methods.

Calling Private Methods

The callprivate() function allows you to call a private method within the current class or instance and return a value. The syntax is:

Do callprivate(method[,parameters...] ## calls the private method

The function can be called in client methods in the JavaScript Client.

128



$open() method

Using the Do command with the notation you can perform many operations that are otherwise performed with a command.
For example, the class types that you can open contain an $open() method which you can execute using the Do command. For
example, you can open a window using

Do $windows.style="font-variant: small-caps;">WindowName.$open('InstanceName',kWindowCenter)
# opens a window in the center of the screen

The $open() method returns a reference to the instance created. For example

# Declare variable WindRef of type Item reference
Set reference WindRef to LIB1.$windows.WindowName
Do WindRef.$open('WindowInstance') Returns WindRef
# WindRef now contains a reference to the window instance
# '$root.$iwindows.WindowInstance' which you can use elsewhere, e.g.

Do WindRef.$forecolor.$assign(kBlue) ## changes the instance

You can use a null value instead of an instance name: therefore CLASS.$open(‘’) would force Omnis to use the class name as the
instance name. Alternatively, you can use an asterisk in place of the instance name and Omnis assigns a unique name to the
instance, using the notation CLASSNAME_number. You can return the instance name in an item reference variable and use the
reference in subsequent code. For example

# Declare variable iMenuRef of type Item reference
Do $menus.MCUSTOMERS.$open('*') Returns iMenuRef
# iMenuRef now contains a reference to the menu instance, which

# will be something like '$root.$imenus.MCUSTOMERS_23'

You can close an instance using the $close() method. For example, the following method opens a window instance, lets the user
do something, and closes the instance

# initially WindRef contains a reference to the window class
Do WindRef.$open('WindowInstance') Returns WindRef
# let the user do something

Do WindRef.$close()

You can close the current window from inside the instance using

Do $cwind.$close()

Classes that contain the $open() methods also have the $openonce() method. This method opens an instance if one does not
already exist (excluding windowmenus, window toolbars, and cascadedmenus). In the case of a window, $openonce() brings the
window to the top if it is already open. $openonce() returns an item reference to the new or existing instance, like $open().

$assign() method

You can change the properties of an object, including the properties of a library, class, or field, using the Do command and the
$assign() method. The syntax for the $assign() method is Notation.Property.$assign(Value) where Notation is the notation for
the object, Property is the property of the object you want to change, and Value is a value depending on the context of the
object being changed. Usually you can use an Omnis constant to represent a preset value, and for boolean properties, such as
preferences, you can use kTrue or kFalse to set the property as appropriate. For example

Do $clib.$prefs.$mouseevents.$assign(kTrue)
# turns on mouse events for the current library
Do $cclass.$closebox.$assign(kTrue)
# adds a close box to the current window class
Do $cfield.$textcolor.$assign(kGreen)

# makes the text in the current field green

129



$add() method

You can create a new object in your library using the $add() method. In the notation you are really adding a new object to a
particular group of objects. For example, to create a new field on a window you need to add the object to the $objs group of
objects for the window, as follows

Do $cwind.$objs.$add(kPushbutton,iTop,iLeft,iHeight,iWidth)
# adds a pushbutton to the window with the

# specified size and position

When using $add(), you can return a reference to the new object in a return field of type item reference. You can use the reference
to change the properties of the new object. For example

# Declare variable WindRef of type Item reference
Do $windows.$add('NewWindowName') Returns WindRef
# now use the reference to change the new window
Do WindRef.$style.$assign(kPalette)
Do WindRef.$title.$assign('Window title')
Do WindRef.$clickbehind.$assign(kTrue)
Do WindRef.$keepclicks.$assign(kFalse)
Do WindRef.$modelessdata.$assign(kTrue)
Do WindRef.$backcolor.$assign(kRed)
Do WindRef.$forecolor.$assign(kWhite)

Do WindRef.$backpattern.$assign(2)

$redraw() method

Note the $redraw() method is only relevant for fat client windows, not JavaScript Remote Forms which redraw content automat-
ically.

When you change an object or several objects on an openwindow using theDo command, you often need to redraw the window.
However if you change an object before $construct() completes execution for the window instance, you don’t need to redraw the
window. You can redraw an object, window, or all open windows using the $redraw() method. For example

Do $cfield.$redraw()
# redraws the current field
Do $cwind.$redraw()
# redraws the current window
Do $root.$redraw()

# redraws all window instances

The $redraw()methodhas threeparameters that allow you to specify the extent of the redraw forwindowfields and/or background
objects: the parameters are: $redraw(bSetcontents,bRefresh,bBackObjects) where bSetcontents defaults to true, bRefresh de-
faults to false, and bBackObjects defaults to false.

$root.$redraw(kTrue,kTrue)
# redraws the contents and refreshes all the field in all window
$root.$redraw(kFalse,kFalse,kTrue)

# redraws all background objects for all open windows

$sendall() method

You can send a message to all the items or objects in a group using the Do command and the $sendall() method. For example,
you can redraw all the objects in a group, you can assign a value to all the members of an object group, or you can hide all the
members of a group using the $sendall() method and the appropriate message. The full syntax for the method is:

Do [group].$sendall({message|message,condition [,bIgnoreUnrecognizedCustomAttribute=kFalse,bRecursive=kFalse]})

wheremessage is the message you want to send to all the objects and condition is a calculation which the objects must satisfy
to receive the message. For example

130



Do $iwindows.$sendall($ref.$objs.style="font-variant: small-caps;">FieldName.$redraw())
# redraws the specified field on all window instances
Do $cwind.$objs.$sendall($ref.$textcolor.$assign(kYellow))
# makes the text yellow for all the fields on the current window
Do $cwind.$objs.$sendall($ref.$visible.$assign(kFalse),$ref.$order<=5)
# hides the first five objects on the current window useful

# for window subclasses if you want to hide inherited objects

The optional third argument bIgnoreUnrecognizedCustomAttribute causes $sendall() to ignore unrecognized custom attribute
errors, which would otherwise cause a runtime error when the library preference $reportnotationerrors is kTrue. This argument
defaults to kFalse if omitted.

If bRecursive is kTrue, $sendall() sends themessage to all items recursively in window class and instance $objs/$bobjs groups,and
remote form class $objs groups.

$sendallref() method

When using $sendall(), you can use $ref to refer to the group member receiving the message. However, you can use $sendallref,
which is an item reference to the item currently receiving the message sent with $sendall (note that $sendallref is not supported
in client methods). Consider the case where a parameter passed to the message is evaluated by calling another method, or a
function implemented in an external component. In this case, if you use $ref in the parameters passed to this other method or
function, it will actually refer to the item involved in making the call to evaluate the parameter. This is where $sendallref() could
be used, if you wish to pass some property of the group member receiving the message to the other method or function.

For example:

Do $cinst.$bobjs.$sendall($ref.$text.$assign(StringTable.$gettext( $cclass.$bobjs.[$sendallref.$ident].$text)))

The example uses the text stored in the class as the row id in the string table, and assigns the text stored in the string table to the
background object. In the example, $sendallref.$ident returns the ident of the background object receiving the message. If you
were to use $ref.$ident, the $ref would refer to the custom attribute representing the external component function, and the call
to $sendall would not have the desired effect.

$makelist() method

Quite often you need to build a list containing the names of all the objects in a group, and you can do this using the makelist()
item group method. The syntax is:

• Itemgroup.$makelist($ref.$att1,$ref.$att2,…) generates a list from the item group

Some examples: to build a list of all the classes in the current library and places the result in cLIST:

Do $clib.$classes.$makelist($ref.$name) Returns cLIST

To build a list of all the currently installed (desktop) menus:

Do $imenus.$makelist($ref.$name) Returns cLIST

To return only the methods overridden if “MyObject” has a superclass:

Do $clib.$objects.[MyObject].$methods.$makelist (...)

To build a list of external components currently available in your system:

Do $components.$makelist($ref.$name) Returns lXcompList

To build a list of window instances currently open in the order that they appear on the screen:

Do $iwindows.$makelist($ref.nam) Returns lWinList.

If the first argument is the constant kRecursive, the $makelist method ignores containers and adds all objects to the returned
list (this also applies to $appendlist, $insertlist, and $count methods for window class and instance $objs and $bobjs groups, and
remote form class $objs groups).

131



Do inherited

The Do inherited command runs an inherited method from a method in a subclass. For example, if you have overridden an
inherited $construct() method, you can use theDo inherited command in the $construct() method of the subclass to execute the
$construct() method in its superclass.

Do default

You can use the Do default command in a custommethod with the same name as a standard built-in method to run the default
processing for method. For example, you can use the Do default command at the end of a custom $print() method behind a
report object to execute the default processing for the method after your code has executed.

Do redirect

You can use the Do redirect command in a custom method to redirect method execution to another custom method with the
same name that is contained in another object in your library. You specify the notation for the instance or object you want execu-
tion to jump to.

Inheritance and custommethods are further discussed in the Object Oriented Programming chapter.

NULL values in Calculations

The item “nullValuesWhenORtestedBecomeZero” in the “default” section of the Omnis Configuration file (config.json) controls
how null values are treated in calculations.

If “nullValuesWhenORtestedBecomeZero” set to is true, when Omnis finds a NULL value as part of an OR ‘|’ in an If calculation
it will treat the NULL as zero. If false (the default), a NULL in a calculation results in the entire calculation becoming NULL. For
example:

If kTrue|#NULL
# this should fail by default (when nullValuesWhenORtestedBecomeZero is false)

End if

By setting “nullValuesWhenORtestedBecomeZero” to true, Omnis will process this if statement as true.

Calculate Command and Evaluating Expressions

This section describes how you use the Calculate command with an expression. It also discusses using square bracket notation
for strings.

The Calculate command lets you assign a value to a variable calculated from an Omnis expression. Expressions can consist of
variables, field names, functions, notation strings, operators, and constants. For example

Calculate var1 as var2+var3

in this case, “var2+var3” is the expression.

Calculate var1 as con('Jon', 'McBride')

Here the expression uses the con() function which joins together, or concatenates, the two strings ‘Jon’ and ‘McBride’. You must
enclose literal strings in quotes.

See the Omnis Studio Help for a complete list of functions. In expressions, functions appear as the function name followed by
parentheses enclosing the arguments to the function. The function returns its result, substituting the result into the expression
in place of the function reference. Calling a function does not affect the flag.

The Omnis operators are shown below, in precedence order, that is, the order in which they get evaluated by Omnis. Operators in
the same section of the table are of equal precedence, and are evaluated from left to right in an expression.

Operator Description

() Parentheses
- Unary minus
* / Multiplication, Division

132



Operator Description

+ - Addition, Subtraction
< > = <= >= <> Less than, Greater than, Equal to, Less than or equal to, Greater than or equal to, Not equal

to
& | Logical AND, Logical OR

When you combine expressions with operators, the order of expressions will often make a difference in the interpretation of the
expression: this is a consequence of themathematical properties of the operators such as subtraction and division. You can group
expressions using parentheses to ensure the intended result. For example

Calculate lv_Num as 100 * (2 + 7)

evaluates the expression in parentheses first, giving a value of 900. If you leave off the parentheses, such as

Calculate lv_Num as 100 * 2 + 7

Omnis evaluates the * operator first, so it multiplies 100*2, then adds 7 for a value of 207.

Square Bracket Notation

You can use a special notation in strings to force Omnis to expand an expression into the string. You do this by enclosing the
expression in square brackets: Omnis evaluates the expression when the string value is required. You can use this in all sorts of
ways, including the technique of adding a variable value to the text in the SQL or text buffer.

You can use square bracket notation wherever you can specify a single variable or field name, including

• Command parameters, for example, OKmessage

OK message {Your current balance is [lv_curbalance]}

• Window or report fields: you can include values in text objects, such as

Your current balance is [lv_curbalance]

• Variable or field names within a Calculate command or text object

• Function parameters

Square bracket notation lets you refer to a value indirectly letting you code general expressions that evaluate to different results
based on the values of variables in the expression: this is called indirection. For example, you can include a variable name enclosed
in square brackets in a text object to add the value to the text at runtime. However in general, there is a significant performance
penalty in using indirection.

If you need to use [ or ] in a string but do not want the contents evaluated, then use [[ and ] to enclose the contents—double up
the first or opening square bracket. This is useful when you use square bracket notation with external languages that also use
square brackets, such as the VMS file system or DDE.

Type Conversion in Expressions

Omnis tries its best to figure out what to do with values of differing data types in expressions. For example, adding a number and
a string generally isn’t possible, but if Omnis can convert the string into a number, it will do so and perform the addition. Some
other examples are

# Declare local variable lDate of type Date D m Y
Calculate lDate as 1200
# 1200 is no. of days since 31st Dec 1900
Calculate lDate as 'Jun 5 93'
# conv string to date in format D m Y
OK message {Answer is [jst(lDate,'D:D M CY')]} ## reformat date

Calculate lNum as lDate ## sets lNum to 1200, the no. of days

133



Boolean values have a special range of possibilities.

• YES, Y, or 1 indicate a true status

• NO, N, or 0 indicate a false status

FALSE and TRUE are not valid values: Omnis converts them to empty.

# Declare local variable LBOOL of type Boolean
Calculate LBOOL as 1 ## is the same as...
Calculate LBOOL as 'Y' ## or 'YES'
# the opposite is
Calculate LBOOL as 0 ## or 'NO' or 'N'
OK message { The answer is [LBOOL] }
Calculate LBOOL as 'fui' ## is the same as...

Calculate LBOOL as ''

You can convert any number to a string and any string that is a number in string form to a number.

# Declare local variable lChar of type Character
# Declare local variable lNum of type Number floating dp
Calculate lChar as 100
OK Message { [lChar], [2 * lChar], and [con(lChar,'XYZ')] }
# Gives message output 100 200 and 100XYZ
Calculate lNum as lChar
Calculate lChar as lNum
OK Message { [lChar], [lNum * lChar], and [con(lChar,'ABC')] }

# Gives message output 100 10000 and 100ABC

Constants

You will often find situations in Omnis where you must assign a value that represents some discrete object or preset choice.
Omnis has a set of predefined constants you should use for this kind of data. For example, a class type can be one of the following:
code, file, menu, report, schema, and so on. Each of these is represented by a constant: kCode, kFile, kMenu, kReport, kSchema,
respectively. You can get a list of constants from the Catalog: press F9/Cmnd-9 to open the Catalog. You can use constants in
your code, like this

Calculate obj1.$align as kRightJst ## or use Do
Do obj1.$align.$assign(kRightJst)

# aligns the object obj1 to the right

Although you can use the numeric value of a constant, you should use the predefined string value of a constant in your methods.
In addition to ensuring you’re using the right constant, your code will be much more readable. Moreover, there is no guarantee
that the numeric value of a particular constant will not change in a future release of Omnis.

Calling Methods

You can execute another method in the current class using Domethod (or call a method in a code class using Do code method).
These commands let you pass parameters to the called method and return a value in a return field – note that the value of the
return field is cleared before themethod is called. For example, the followingmethod named Setup calls anothermethod named
Date and returns a value.

# Setup method
Do method Date (lNum,lDate+1) Returns lDate

OK message {Date from return is [lDate]}
# Date method, the called method
# Declare Parameter var lpNum of type Number 0 dp
# Declare Parameter var lpDate of type Short Date 1980..2079
OK message {Date from calling method is [lpDate], number is [lpNum]}

Quit method {lpDate + 12}

134



Note that when you call a code class method from within an instance the value of $cinst, the current instance, does not change.
Therefore you can execute code in the code class method that refers to the current instance and it will work.

WARNINGOmnis does not stop amethod calling itself. Youmust be careful how themethod terminates: if it becomes an infinite
loop, Omnis will exhaust its method stack.

Quitting Methods

You can use the Quit command, and its variants, to quit methods at various levels.

• Quit method
quits the current method and returns a value to the calling method, if any

• Quit event handler
quits an event handling method

• Quit all methods
quits all the currently executing methods, but leaves Omnis running

• Quit all if canceled
quits all methods if you press Cancel

• Quit Omnis
exits your application and Omnis

You can also clear the method stack with the Clear method stack command, which does the same thing as the debugger menu
Stack>>Clear Method Stack: it removes all the methods except for the current one. If you follow Clear method stack with Quit
method, it has the same effect as Quit all methods.

Note: By enabling the Use Minimum Lengths option on the Modify>>Filter Commands submenu in the Method Editor, the Quit
method command is selected by default when you type just the letter ‘q’ (rather than the Queue commands); by typing ‘qu’ all
the Quit methods will be shown in the Code Assistant help list.

TheQuitmethod command allows you to exit amethod and return a value to the callingmethod (it is the same as Return in other
languages). For example:

# Quit the method myMethod and return the flag from the Yes/No message
# to the calling method the calling method

Do method myMethod Returns lReturnFlag
# method myMethod
Yes/No message {Continue ?}

Quit method #F

It is possible to call another method in the return value of a Quit method command, but this can lead to unpredictable results,
especially if the called method contains an Enter Data command, e.g.

Quit method Returns iOtherObject.$doSomeThingThatContainsEnterData

Flow Control Commands

The Constructs… group contains many commands that let you control the execution and program flow of your methods. If state-
ments let you test a condition and branch accordingly: loop commands iterate based on tests or sequences: the Comment com-
mand lets you comment your code: and reversible blocks let you manipulate objects and values and restore their initial values
when the block terminates.

Several commands in this command group have starting and terminating commands (If and End if, for example). You must use
the correct terminating command, or youwill get unexpected results. If chromacoding is enabled, the beginning and terminating
commands for most branching and looping constructs are highlighted. You can enable chromacoding using the View>>Show
ChromaCoding menu option in the method editor.

135



Highlighting Blocks

The start and end of any block commands are highlighted when one of the statements that makes up the construct formed by
the commands is selected in the method editor. For example, if a For statement is the current line, then the “End for” and “For”
will both be highlighted. Or if a Case statement is the selected line, then all cases in the same switch, “Default”, “Switch” and “End
switch” will all be highlighted. The style or color of the highlighting uses a pair of chroma coding options, $currentblocktextcolor
and $currentblockstyle.

Branching Commands

The If command lets you test the flag, a calculation, or a Cancel event. The Flag is an Omnis variable with a True or False value
which is altered by some commands to show an operation succeeded, or by user input. The Else command lets you take an
alternative action when the If evaluates to false, Else if gives you a series of tests. Youmust use the End If command to terminate
all If statements.

A simple test of the flag looks like this:

If flag true
Do method Setup

End If

You can do a sequential checking of values using a calculation expression:

If CollCourse ='French'
Do method Languages

Else If CollCourse = 'Science'
If CollSubCourse = 'Biology'

Do method ScienceC1
Else

Do method ScienceC2
End If

Else
OK message {Course is not available.}

End If

While Loops

The While loop tests an expression at the beginning of a loop. The While command will not run the code block at all if the
expression is false immediately. You would use aWhile command when you want to loop while an expression is true.

# Declare Count with initial value 1
While Count <= 10
OK message {Count is [Count]}
Calculate Count as Count + 1

End While

This loop will output 10 messages. If the condition was ‘Count <= 1’, it would run only once.

Repeat Loops

ARepeat loop lets you iterateuntil an expressionbecomes true. Repeat loops always execute at least once, that is, the test specified
in the Until command is carried out at the end of the loop, after the commands in the loop are executed, whereas While loops
carry out the test at the beginning of the loop.

# Declare Count of Integer type with initial value 1
Repeat
OK message {Count is [Count]}
Calculate Count as Count + 1

Until Count >= 10

This loop will output 9 messages.

136



For Loops

The For field value command lets you loop for some specific number of iterations, using a specified variable as the counter. The
following example builds a string of ASCII characters from their codes using the functions con() and chr().

# Declare Count
Calculate cvar1 as '' ## clear the string
For Count from 48 to 122 step 1 ## set the counter range
Calculate cvar1 as con(cvar1,chr(Count)) ## add char to string
Do $cwind.$redraw()

End For

The For each line in list command loops through all the lines in the current list.

Set current list LIST1
For each line in list from 1 to LIST1.$linecount step 1

# process each line

End For

Switch/Case Statements

The Switch statement lets you check an expression against a series of values, taking a different action in each case. You would
use a Switch command when you have a series of possible values and a different action to take for each value.

The following method uses a local variable lChar and tests for three possible values, “A”, “B”, and “C”.

# Parameter pString(character 10) ## receives the string
Calculate lChar as mid(pString, 1, 1) ## takes the first char
Switch lChar
Case 'A'

# Process for A
Case 'B'

# Process for B
Case 'C'

# Process for C
Default

# do default for all cases other than A, B, or C

End Switch

It is a good idea to use the Switch command only for expressions in which you know all the possible values. You should always
have one Case statement for each possible value and a Default statement that handles any other value(s).

Escaping from Loops

While a loop is executing you can break into it at any time using the break key combination for your operating system: under
Windows it is Ctrl-Break, under macOS it is Cmnd-period, and under Unix it is Ctrl-C. Effectively, this keypress ‘quits all methods’.
When Omnis performs any repetitive task such as building a list, printing a report, or executing a Repeat/While loop, it tests for
this keypress periodically. For Repeat/While loops, Omnis carries out the test at the end of each pass through the loop.

To create a more controlled exit for the finished library, you can turn off the end of loop test and provide the user with a working
message with a Cancel button. When the Cancel button is visible on the screen, pressing the Escape key under Windows or
Cmnd-period under macOS is the equivalent to clicking Cancel. For example

Disable cancel test at loops ## disables default test for loops
Calculate Count as 1
Repeat
Working message (Cancel box) {Repeat loop...}
If canceled

Yes/No message {Do you want to escape?}
If flag true
Quit all methods

End If

137



End If
Calculate Count as Count+1

Until Count > 200

The If canceled command detects the Cancel event and quits the method. To turn on testing for a break, you can use the Enable
cancel test at loops command.

The Break to end of loop command lets you jump out of a loop without having to quit the method, and the Until break provides
an exit condition which you can fully control. For example

Repeat
Working message (Cancel box) {Repeat loop...}
If canceled

Yes/No message {Are you sure you want to break out?}
If flag true
Break to end of loop

End If
End If

Until break

OK message {Loop has ended}

If you have not disabled the cancel test at loops, a Ctrl-Break/Cmnd-period/Ctrl-C terminates all methods and does not execute
theOKmessage. Having turned off the automatic cancel test at loops, you can still cause aQuit all methodswhen canceled. For
example

Disable cancel test at loops
Calculate Count1 as 1
Calculate Count2 as 1
Repeat
Repeat

Working message (Cancel box) {Inner repeat loop}
Calculate Count2 as Count2 + 1

Until Count2 > 12
Calculate Count2 as 1
Working message (Cancel box) {Outer repeat loop...}
Quit all if canceled
Calculate Count1 as Count1 + 1

Until Count1 > 20

If the user selects Cancel in the outer loop, the method quits, but from the inner loop there is no escape.

Optimizing Program Flow

Loops magnify a small problem into a large one dependent on the number of iterations at runtime, and other program flow
commands can use a lot of unnecessary time to get the same result as a simpler command.

Here are some tips to help optimize your methods.

Use the For command instead of the equivalentWhile or Repeat commands. For has a fixed iteration, while the other commands
test conditions. By eliminating the expression evaluation, you can save time in a long loop.

Use the Switch command instead of equivalent If /Else commands where possible. Arrange both the Case commands within a
Switch and the several If and Else if commands so that the conditions that occur most frequently come first.

Use the Quit method command to break out of a method as early as possible after making a decision to do so. This can be a
tradeoff with readability for long methods because you have multiple exits from the method: if falling through to the bottom
of the method involves several more checks, or even just scanning through a large block of code, you can substantially improve
performance by adding the Quit method higher up in the code.

Avoid using commands that don’t actually executewithin a loop. For example, don’t put comment lines inside the loop. You can
also use Jump to start of loop to bypass the rest of that iteration of the loop.

You can speed up a frequently called method by putting Optimize method at the start: refer to Omnis Studio Help for details of
this command.

138



Reversible Blocks

A reversible block is a set of commands enclosed by Begin reversible block and End reversible block commands: a reversible
block can appear anywhere in a method. Omnis reverses the commands in a reversible block automatically, when the method
containing the reversible block ends, thus restoring the state of any variables and settings changed by the commands in the
reversible block.

# commands...
Begin reversible block
# commands...
End reversible block

# more commands...

Reversible blocks can be very useful for calculating a value for a variable to be used in the method and then restoring the former
value when the method has finished. Also you may want to change a report name, search name, or whatever, knowing that the
settings will return automatically to their former values when the method ends.

The Omnis Help (press F1) indicates which commands are reversible.

Consider the following reversible block.

Begin reversible block
Disable menu line 5 {Menu1}
Set current list cList1
Define list {cvar5}
Build window list
Calculate lNum as 0
Open window instance Window2

End reversible block

# more commands...

When this method terminates:

• Omnis closes windowWindow2

• Omnis restores lNum to its original value

• The definition of cList1 returns to its former definition

• Omnis restores the former current list

• Omnis enables line 5 of Menu1

At the end of the method, Omnis steps back through the block, reversing each command starting with the last. If there is more
than one reversible block in amethod, Omnis reverses the commands in each block, starting from the last reversible block. If you
nest reversible blocks, the commands in all the reversible blocks are treated as one block when they are reversed, that is, Omnis
steps backward through each nested reversible block reversing each command line in turn. You cannot reverse any changes that
the reversible block makes to Omnis data files or server-based data unless you carefully structure the server transaction to roll
back as well.

Losing property values

Certain notation properties affect other properties when they are assigned, for example, assigning $calculated to kFalse clears
$text for the field. Therefore, if the $calculated property is set within a reversible block, and the state of $calculated is reversed,
the value in the $text property is not reinstated. Such relationships between properties are not supported by the reversible block
mechanism. If you wish to maintain the value of a property that may get cleared during notation execution, you should store the
value in your own variable and assign the value to the property at runtime.

139



Error Handling

When you enter a command, Omnis automatically checks its syntax. When a command is executed in a method, you can get a
runtime error, a processing error rather than a syntax error. Fatal errors either display a message and stop method execution or
open the debugger at the offending command.

You can cause a fatal error to occur with the Signal error command, which takes an error number and text as its argument. This
lets you define your own errors, but still use the standard Omnis error handler mechanism.

In addition, Omnis maintains two global system variables #ERRCODE and #ERRTEXT that report error conditions and warnings
to your methods. Fatal errors set #ERRCODE to a positive number greater than 100,000, whereas warnings set it to a positive
number less than 100,000.

You can trap the errors and warnings by adding amethod to test for the various values of #ERRCODE and control the way Omnis
deals with them: this is called an error handler. The command Load error handler takes the name of themethod and an optional
error code range as its parameters:

Load error handler Code1/1 {Errors}

# warnings and errors will be passed to handler in code class

Once you install it, Omnis calls the error handler when an error occurs in the specified range. Please refer to the Omnis Studio
Help for a detailed description of the Load error handler command and examples of its use.

There are several commands prefixed with SEA, which stands for Set error action. Using these commands, you can tell Omnis
what to do after an error:

• SEA continue execution
continuesmethod execution at the command following the command that signaled the error: if the error handling routine
has not altered them, #ERRCODE and #ERRTEXT are available to the command

• SEA report fatal error
if the debugger is available, it displays the offending command in the method window and the error message in the de-
bugger status line

• SEA repeat command
repeats the command that caused the error.

Repeating a command should be done with care since it is easy to put Omnis into an endless loop. If the error has a side effect, it
may not be possible to repeat the command. If an ‘Out of memory’ condition occurs, it may be possible to clear some lists to free
up enough memory to repeat the command successfully.

Errors in the JavaScript Client

You can return the values of #ERRCODE and #ERRTEXT in client executedmethods in the JavaScript using the functions errcode()
and errtext().

Error Reporting for External Components

The item “allExternalComponentErrorsAreFatal” in the “defaults” section of the Omnis configuration file (config.json) allows you
to manage whether or not #ERRCODE and #ERRTEXT are reported by external components. When allExternalComponentError-
sAreFatal is true (the default), and an external component sets #ERRCODE and #ERRTEXT, the error always generates a runtime
error, entering the debugger in the development version of Omnis.

Calculation Errors

The library preference $reportcalculationerrors (default is true) specifies whether or not calculation errors are reported. When
true, Omnis will report errors that occur when evaluating calculations, such as divide by zero errors. The report message is sent
to the trace log, containing the error and code that caused the problem.

In addition, when executing calculations using Do and Calculate, Omnis enters the debugger when the error occurs (provided
debugging is allowed). (This will not occur when these commands execute in the Omnis Web Client plug-in.)

140



Notation Errors

The item “stricterNotationErrorChecks” in the “defaults” section of the Omnis configuration file (config.json) allows you to control
the sensitivity for detecting certain errors in notation. When set to true (the default), certain unresolved name errors, e.g. such as
notation in the form $cinst.name or $ctask.name, result in a debugger (or runtime) error if $clib.$prefs.$reportnotationerrors is
kTrue.

Redrawing Objects

There are a number of commands that let you redraw a particular object or group of objects. The Redraw command has the
following variants.

• Redraw field or window
redraws the specified field orwindow, or list of fields orwindows: note this commandwith refresh all instances of thewindow

• Redraw lists
redraws all list fields on the current window or redraws all lists in your library

• Redrawmenus
redraws all the currently installed menus

• Redraw toolbar
redraws the specified custom toolbar

You can use the $redraw() method to redraw a field or fields, a window or all windows, as described earlier in this chapter.

Refreshing window instances

You can use the $norefreshwindow instance property to control the refreshing of windows. When set to kTrue screen updates are
disabled and the window is not refreshed. You can use this property to improve performance, for example when setting a large
number of exceptions for a complex grid. Setting the $norefresh property to kFalse will enable screen refreshing.

Message Boxes

There are a number of message boxes you can use in your library to alert the user. The commands for these messages are in the
Message boxes… group. They include

• OKmessage
displays a message in a box and waits for the user to click an OK button. For emphasis you can add an info icon and sound
the system bell. You can use square bracket notation in the message text to display the current value of variables or fields.
For example, OK message {[sys(5)]} will display the user’s serial number. You can use the kCr constant enclosed in square
brackets to force a line break in the message, e.g. ‘First line[kCr]Second line’.

• Yes/No message, and No/Yes message
displays a message in a box and waits for Yes or a No answer from the user. Either the Yes or the No button is the default.
You can use the kCr constant enclosed in square brackets to force a line break in the message, e.g. ‘First line[kCr]Second
line’.

• Prompt for input
displays a dialog prompting the user for input

• Working message
displays a message while the computer is processing data or executing amethod: with a Cancel button the user can break
into the processing with Ctrl-Break/Cmnd-period/Ctrl‐C

Events

Events are reported in Omnis as Event Messages. These messages are sent to the event handling methods as one or more
Event Parameters. The first parameter of an event message, pEventCode, contains an event code representing the event. Event
messages may contain a second, a third, or subsequent parameters that tell you more about the event. For example, a click on a
list box will generate an evClick event plus a second parameter pRow telling you the row number clicked on. All event codes are
prefixed with the letters “ev”, and all event parameters are prefixed with the letter “p”. You can use the event codes in your event
handling methods to detect specific events, and the event parameters to test the contents of event messages.

141



When an event occurs the default action normally takes place. For example, when the user presses the tab key to move to the
next field on a data entry field, the default action is for the cursor to leave the current field and enter the next field on the window,
and normally this is exactly what happens. However you could put a method behind the field that performs any one of a number
of alternative actions in response to the tab. That is, the event handling method could use the tab to trigger a particular piece of
code and then allow the default action to occur, it could pass the event to somewhere else in your library, or it could discard the
event altogether and stop the default action from happening.

Event Handling Methods

You canwrite an event handlingmethod for each field andobject contained in remote form, remotemenu, window,menu, toolbar,
and report classes. The other class types do not generate events. Events for remote forms and the JS components are described
in the Creating Web & Mobile Appsmanual.

You can add the event methods for window and report fields in the Field Methods for the class. For menu classes you can add an
event method to the Line Methods for a menu line, and for toolbar classes you can enter an event method in the Tool Methods
for each toolbar control.

Window fields, toolbar controls, andmenu lines contain a default event handlingmethod called $event, and report fields contain
a default event handling method called $print. If you open the field methods for a window field, toolbar control, or menu line
you will see an $event method, and for each report field you will see a $print method for the object. These are the default event
handling methods for those objects.

To view the event handling method for a field or object

• Show the design screen for the class

• Right-click on the field, menu line or toolbar control

• Choose Field Methods, Line Methods, or Tool Methods, as appropriate

Themethod editor opens showing the first method in the list for the field or object. If this is not the $event method, select it from
the list to view it. Some event handlers will contain code to handle a range of possible events in the object.

The event handling method for some types of field may be empty, because there is only one possible event for the object. For
example, the event handling method for a menu line is empty since you can only select a menu line. Therefore any code you put
in the $event method for a menu line runs automatically when you select the line.

To enter the code for an event handling method

• Assuming youhaveopenedadefault $eventmethod for a field, click on thenext command line after theOnevent command

• Then on the next line enter the code you want to run for that event

• For example, you can open the event method for a pushbutton, that contains a single On evClick command which will
detect a click on the button.

Some $event methods are empty, so for these:

• Select the first line of the method

• Type on to select the On command

• Type ev plus the first letter of the event you want to enter, or select the event from the Helper window that pops up in the
Code Editor

Omnis validates the event codes you have entered, that is, it checks to see if the event code is valid for the current object, and if
not, it will flag it as an error.

• When the line is complete, press Return and enter the code for your event method

The code for an eventmethod could literally do anything, but in practice it would generally perform an action of some kind related
to the object triggering the event (e.g. a button might trigger a Save, so you need to write code to do the save operation). You
could use the Do command and some notation in your event handling method, or you can use the Domethod command to run
another method in the current class or instance, or the Do code method command to run a method in a code class: in all cases,
you can put literally any code in an event handling method and it will run given the right event.

142



The On Command

You can use theOn command to detect events in your event handlingmethods. Fields from the Component Storemay contain a
default event handling method with one or more On commands to detect different events. For example, an entry field contains
the method

On evBefore ## Event Parameters - pRow ( Itemreference )

On evAfter ## Event Parameters - pClickedField, pClickedWindow, pMenuLine, pCommandNumber, pRow

These lines detect the events evBefore and evAfter, which are the event codes contained in the message sent when the user
enters or leaves the field, respectively. The in-line comments indicate which event parameters Omnis supplies for that event. In
most cases, the event parameters are references containing values to do with the context of the event: the field clicked on, the
list row number, the menu line number, and so on.

When you select the On command in the method editor, the list of possible events changes to reflect the events supported by
the object to which $event belongs. You can also view events divided into categories, by using the Events tab of the Catalog.

You can use the default event handling method for a field or add your own. The following event handler for a data entry field
detects an evBefore as the user enters the field and performs a calculation changing the value of the field.

On evBefore ## user tabs into date field
Calculate cDate as #D ## cDate is the dataname of the field
Redraw {DateField} ## the current field

Quit event handler

Code which is common to all events should be placed at the start of the event handling method, before any On commands. You
can use the On default command to handle any events not covered by an earlier On command line. The general format is

# code which will run for all events
On evBefore
# code for evBefore events

On evAfter
# code for evAfter events

On default

# code for any other events

When you enter theOn command in an event handlingmethod, it displays a list of all the available event codes in the command
palette. You can click on the one you want, or you can enter more than one event code for a singleOn command, for exampleOn
evClick, evDoubleClick. On commands cannot be nested or contained in an If or loop construct.

When you have entered the On command line for a particular event and selected the next command line, you can open the
Catalog to view the event parameters for that event code.

• Click on the line after an On evClick command line

• Open the Catalog (F9/Cmnd-9)

• Click on Event Parameters under the Variables tab

For example, an On evClick command displays the parameters pEventCode and pRow in the Catalog. You can use these event
parameters in your event handling methods to test the event message. A click on a list box generates an evClick event message
containing a reference to the row clicked on, held in the pRow event parameter. You can test the value of pRow in your code

On evClick ## method behind a list box
If pRow=1 ## if row 1 was clicked on

# Do this...
End If
If pRow=2 ## if row 2 was clicked on

# Do that...

End If

143



All events return the parameter pEventCode, which you can also use in your event handling methods.

On evAfter,evBefore ## method behind field
# Do this code for both events
If pEventCode=evAfter

# Do this for evAfter events only
End If
If pEventCode=evBefore

# Do this for evBefore events only

End If

The parameters for the current event are returned by the sys(86) function, which you can use while debugging or monitoring
which events are handled by which methods. For example, you could use the Send to trace log command and the functions
sys(85) and sys(86), to report the current method and events, in the $event method for a field

# $event method for field 10 on the window
Send to trace log {[sys(85)] - [sys(86)]}
# sends the following to the trace log when you tab out of the field
WindowName/10/$event - evAfter,evTab

WindowName/10/$event - evTab

You canuse any of theparameters reported for an event in your event handlingmethods. However, if you enter an event parameter
not associated with the current event, the parameter will be null and lead to a runtime error.

Mouse Events

Mouse events allow you to detect usermouse clicks inside fields and the backgroundof awindow. Mouse and right-mouse button
events are generated only if the $mouseevents and $rmouseevents library preferences are enabled. Under macOS, right-mouse
events are generated when you hold down the Ctrl key and click the mouse.

• evMouseDouble and evRMouseDouble
the mouse, or right-mouse button is double-clicked in a field or window

• evMouseDown and evRMouseDown
evMouseUp and evRMouseUp
the mouse, or right-mouse button is held down in a field or window, or the mouse button is released: for the mouse-down
events you can detect the position of the mouse, se below

• evMouseEnter and evMouseLeave
the mouse pointer enters, or leaves a field

• evDrag
the mouse is held down in a field and a drag operation is about to start: the parameters report the type and value of the
data

• evCanDrop
whether the field or window containing themouse can accept a drop: the parameters reference the object being dropped,
the type and value of the data

• evWillDrop
the mouse is released at the end of a drag operation. The parameters reference the object being dropped, the type and
value of the data

• evDrop
the mouse is released over the destination field or window at the end of a drag operation. The parameters reference the
object being dropped, the type and value of the data

For the evMouseDown, evMouseUp, evRMouseDown and evRMouseUp events you can return the position of the mouse as the
X-Y coordinates relative to the window background or field.

• pMouseX
Mouse x coordinate

144



• pMouseY
Mouse y coordinate

• pMouseHwnd
window identifier of the hwnd receiving the mouse event: the mouse coordinate parameters are relative to this hwnd

The coordinate origin is the top-left of the hwnd.

Move Behind Events

From Studio 10, the $movebehind property allows you to control whether or not to allowmouse move events on fields in window
classes, other than the top window. By default $movebehind is set to kTrue and will allowmousemove events to be processed in
other windows when the window is the top window, e.g. evMouseEnter and evMouseLeave. Set the property to kFalse to turn off
this behavior for the window.

In previous versions, only evMouseEnter and evMouseLeave in a complex grid in a window that was not top were allowed. To
revert to the legacy behavior, add an entry called “oldMouseMoveBehindBehaviour” to the “defaults” group in the config.json file
and set it to true.

Discarding Events

In certain circumstances you might want to detect particular events and discard them in order to stop the default action from
occurring. You can discard or throw away events using the Quit event handler command with the Discard event option enabled.
Note however, you cannot discard some events or stop the default action from taking place since the event has already occurred
by the time it is detected by an event handling method. In this case, a Quit event handler (Discard event) has no effect for some
events.

Being able to discard an event is useful when you want to validate what the user has entered in a field and stop the cursor leaving
the field if the data is invalid. The following method displays an appropriate message and stays in the field if the user does not
enter the data in the correct format.

On evAfter ## as user leaves the field
If len(CustCode <> 6) ## check a value has been entered

If len(CustCode = 0) ## field left blank
OK message {You must enter a customer code}

Else
## wrong length code entered
OK message {The customer code must have 6 digits}

End If
Quit event handler (Discard event) ## stay in the field

End If

You can also handle or discard events using the Quit method command with a return value of kHandleEvent or kDiscardEvent,
as appropriate.

The Quit event handler Command

If you want to discard or pass an event you can use the Quit event handler command to terminate an On construct. A field event
handling method might have the following structure.

# general code for all events
On evBefore
# code for evBefore events

On evAfter
# code for evAfter events

On evClick,evDoubleClick
# code for click events
Quit event handler (pass event)

On default

# code for any other events

145



The Quit event handler command has two options

• Discard event
for some events you can discard the event and stop the default action taking place

• Pass to other handlers
passes the event to the next handler in the chain

Window Events

Note the following section refers to events in window classes only, so to do not apply to remote forms or JavaScript components.

So far the discussion has focused on field events, which you would normally handle in the field using an event handling method.
However you can enter methods to handle events that occur in your window as well. Like fields, the event handling method for a
window class is called $event, and you enter this method in the Class Methods for the window class.

Window classes do not contain an $event method by default, but you can insert a method with this name. You enter the code for
a window $event method in exactly the same as for fields using the On command to detect events in your window.

Window events affect the window only and not individual fields. They include clicks on the window background, bringing the
window to the front or sending it to the back, moving it, sizing it, minimizing ormaximizing thewindow, or closing it. For example,
when you click on awindow’s close box, the evCloseBox and evClose events are generated in the window indicating that the close
box has been clicked and the window has been closed. You could enter an $event method for the window to detect these events
and act accordingly.

The following window $event method detects a click on a window behind the current window, and discards the click if the user
is inserting or editing data.

On evWindowClick ## user has clicked on a window behind
If cInserting | cEditing ## vars to detect current mode

OK message {You cannot switch windows while entering data}
Quit event handler (Discard event) ## keep window on top

End If

Quit event handler

The following window $event method checks for events occurring in the window and runs the appropriate methods elsewhere
in the class.

On evToTop
Do method Activate

Quit event handler
On evWindowClick
Do method Deactivate

Quit event handler
On evClose
Do method Close

Quit event handler
On evResized
Do $cwind.$width.$assign($cclass.$width)
Do $cwind.$height.$assign($cclass.$height)

Quit event handler (Discard event)

When awindowwith the $edgefloat property set to floating edges is resized the evResized event is reported; this can occur either
when the window itself is resized, or due to the main Omnis application window being resized (the latter only applies on the
Windows platform, since on macOS the Omnis application occupies the whole screen).

Note you cannot trap an evResized and discard it since the resizing has already occurred, but you can reverse the resizing by
setting the size of the open window back to the size stored in the class.

146



Window Event Handling (macOS)

UndermacOS, whenever the end-user clicks on a window title bar (or a button on the window title bar) the evWindowClick event
is generated. The event parameter pStayingBehind is true if the window receiving the click will not come to the front as a result
of the click (this event can only ever be true on macOS). For example, when the user clicks on the zoom box of a window that is
not on top, the window will zoom or restore, but will not come to the top.

Key events

You can detect which key or key combination is pressed by trapping the evKey event. The $keyevents library preference must be
set to kTrue to enable the evKey event to be called for all window class foreground objects, including entry fields. The evKey event
is sent to the target field when a key is pressed, and has three parameters as follows:

• pEventCode
The event code

• pKey
The key pressed

• pSystemKey
The system key pressed represented by a code, as follows:

10% Code 40% Key 10% Code 40% Key

0 Letter/Number 27 Tab
1…12 F1…F12 28 Return
17 Up Arrow 29 Enter
18 Down Arrow 30 Backspace
19 Left Arrow 32 Esc
20 Right Arrow 34 Delete
21 Page Up 35 Insert
22 Page Down 53 Context Menu
25 Home 100 Pause *
26 End

*ThepSystemKey event parameter has a value of 100 to signal thePausebutton (WindowsVK_PAUSE virtual key) has beenpressed.

Control Methods and Passing Events

As already described, you handle events for fields using an event handling method contained in the field, but you can add a
further level of control over field events by adding a method called $control to your window. This method is called a window
control method. To allow this method to handle events youmust pass events to it from the field event handlingmethods. You do
this by including in your field event handler the Quit event handler command with the Pass to next handler option enabled.

As a further level of control, you can add a method called $control to your tasks. This method is called a task control method.
Events are passed to the task control method from the window control method contained in the window belonging to the task.
Therefore, an event may be generated in the field, passed to the window control method, and then passed to the task control
method.

Window events that are handled in the $event method for a window can be passed to the task $control method as well.

At each level an event handlingmethod can discard the event or pass it on to the next event handler. At the task level, the highest
level of control, the event can be processed and the default action takes place, or the event can be discarded and no further action
occurs.

The Omnis event processing mechanism gives you absolute control over what is going on in your application, but it also means
you need to design your event handling methods with care. It is important not to pass on an event to higher levels unnecessarily
and to keep control methods short, to limit the time spent processing each event.

In the following example, the $control method is contained in an Omnis data entry window. It sets the main file for the window
when it is opened or comes to the top, and does not let the user close the window if Omnis is in data entry mode.

On evToTop
# window comes to the top or is opened
Set main file {FCUSTOMERS}

147



Quit event handler
On evClose
If cInserting | cEditing ## vars to detect current mode

# User closes window when in enter data mode
OK message {You can't close in enter data mode}
Quit event handler (Discard event)

End If

Event Processing and Enter Data Mode

Normally, the default processing for an event takes placewhen all the event handlermethods dealingwith the event have finished
executing. It is not possible to have active unprocessed events whenwaiting for user input so the default processing is carried out
for any active events after an Enter data command has been executed or at a debugger break. Therefore if required, you can use
the Process event and continue command to override the default behavior and force events to be processed allowing an event
handling method to continue.

The Process event and continue (Discard event) option lets you discard the active event. For example, in an event handler for
evOK the following code would cause the OK event to be thrown away before the subsequent enter data starts.

On evOK
Process event and continue (Discard event)
Open window instance {window2}

Enter data

Container Fields and Events

Container fields are fields that contain other fields: examples of container fields include subwindows, tab panes, page panes, scroll
boxes, and complex grid fields. The logic for handling and passing events within a container field is the same as for simple fields,
it just has more levels of control.

For the purposes of event handling, you can regard the container field as both a field on the parent window, and a window since
it contains other fields. In this respect, a container field can have an $event method that handles events for the container field
itself, and a $control method that handles events passed to it from the individual fields inside the container field. Each field in
the container field has a $event method to handle its own events. If the control method for your container field allows it, events
are passed to the parent window control method, which in turn can be passed onto the task control method or discarded as
appropriate.

You can nest container fields such as subwindows and tab panes, but nested container fields do not pass events.

Queuing Events

Some user actions generate a single event which is handled as it occurs by your event handlingmethods. The eventmay be dealt
with completely in the field or it may be passed up the event chain as required. However some user actions generate a whole
series of events, one after another. These events are placed in an event queue. Each event is handled by your event handling
methods strictly in turn on a first-in, first-out basis. For example, when the user tabs from one field to another the current field
is sent an evAfter and then an evTab event, then the new field is sent an evBefore event: all these events are placed in the event
queue in response to a single user action, the tab. Similarly when you close a window, the current field is sent an evAfter, the
window is sent an evCloseBox event, then it is sent an evClose event. Each one of these events is sent to the appropriate object
and is handled by your event handling methods before the next event in the queue is handled.

In addition to events generated by user actions, you can append an event to the event queue using theQueue commands in the
Events… group.

Queue bring to top
Queue close
Queue cancel
Queue set current field
Queue click
Queue double-click
Queue keyboard event
Queue OK

148



Queue scroll (Left|Right|Up|Down)
Queue tab

Queue quit

These commands let you simulate user actions such as key presses and clicks on buttons or windows. For example, the Queue
bring to top {Windowname} command brings the specified window instance to the top and simulates a user clicking behind the
current window. Events generated by these commands are handled after those that are currently queued. You can queue several
events in succession.

User Constants

You can define your own User constants in a User Constants class for use in your methods and expressions. A user constant is a
named value, where the value cannot be changed during execution. Generally speaking, user constants can be used anywhere
in Omnis code and expressions, although there are exceptions, because they cannot be used anywhere that would attempt to
modify them, for example:

• As the result of a Calculate command

• As the Returns component of commands such as Do

• As the dataname of a variable

To define user constants, you add their names and values to a User Constants class. The types and therefore values are restricted
to Character, Integer, Number and Boolean. You can havemultiple user constants classes, each of which defines a number of user
constants and their values.

Internally, user constants are handled as a special type of file class, meaning that the same naming rules as those for file classes
apply, i.e. $clib.$prefs.$uniquefieldnames, $clib. $prefs.$sensitivefieldnames and $clib.$prefs.$sensitivefilenames all apply. For
naming and tokenisation purposes, user constant names are essentially file class variable names.

Also, user constant classes are always treated asmemory only, and file class commands such as Clear all files, and Setmemory-only
files have no affect on user constant class CRBs.

When exporting a library using the JSON export, user constants classes are included, using a similar syntax to that used for file
classes.

Creating User Constants

You can create a User Constants class this using the New Class hyperlink in the Studio Browser, or by Right-clicking in the Studio
Browser and selecting theNew Class>>User Constants contextmenu option. There is also a class filter that controls whether user
constant classes are visible.

The User Constants class editor allows you to define the name, type, subtype, value and description of user constants. User con-
stants can be named however you like, including the prefixes “k” and “ev” which are used for built-in constants and events.

If you try to delete a user constant, the editor will check the current library to see if the constant is in use, and warn you about this.

The Catalog lists the user constants under the User Constants tab. This has similar behaviour to the Variables tab.

Method Editor and Code Assistant

User constants have a syntax colour and style defined in the “IDEmethodSyntax” group of appearance.json: userconstantcolor
and userconstantstyle.

The code assistant default sort order includes user constants at the start of the list, sorted with instance variables, etc.

Also, the option clickmenu, opened when you right click on a user constant, is a subset of that which applies when you right click
on a file class variable.

The Method Editor and other editors in the IDE have validations to prevent user constants from being used where their value
could be changed. Similarly, debugger variable windows do not allow user constants to bemodified. However, it is impossible for
the IDE to detect every such situation, e.g. due to expressions generated at runtime using square bracket notation, so in addition,
as a fallback, the low-level code managing the CRB also checks for attempts to modify a user constant, and generates a runtime
error if something attempts to do this.

149



Notation

There is a notation group in $clib, named $userconstants, supporting similar notation to $files. However, user constants classes
do not have $conns, $datahead or $indexes members, and user constant objects only have the properties $desc, $ident, $name,
$objinitval, $objtype, $objsubtype, $objsublen and $userinfo. $objinitval contains the value of the constant.

Using the class notation for a user constants class is the only way you can programmatically modify the value of a user constant.

The $classtype value for a user constants class is kUserConstants.

Using Tasks

Omnis contains two environments, a designmode and a runtimemode. In designmode, you can create and store classes in your
library. In runtime mode, various objects or instances are created as you run your application. You can group and control the
runtime objects in your application by opening or instantiating them in a task. You canmanipulate whole groups of instances by
manipulating their task, rather than having to deal with each separate instance. You define a task in your library as a task class, or
for web and mobile applications as a remote task.

Task classes can contain variables andmethods, and you can define customproperties andmethods for a task class as well. When
you open a task you create an instance of that task class. The task instance is unique inOmnis in that it can contain other instances
including remote form instances or report instances (plus window, toolbar, andmenu instances for desktop apps). Task instances
cannot contain other tasks. When you open an instance from within a task it belongs to or is owned by that task.

By opening and closing different tasks, or by switching fromone task instance to another, you can control whole groups of objects.
Omnis provides certain default actions which happen as the task context switches. You define exactly what happens in the task
by creating methods in the task class. For example, in the task in a desktop app you can specify which windows are opened and
which menus are installed using commands or the notation.

Each library contains groups of task classes called $tasks or $remotetasks (inside $root.$libs.LIBRARYNAME), and Omnis has a
group containing all open task instances and remote task instances, called $root.$itasks or $root.$iremotetasks, listed in the order
that they were opened.

Default and Startup Tasks

When you create a new library, it contains a task class called Startup_Task by default. For web ormobile apps using Remote forms,
you need to create a Remote_Task to handle client connections and remote form instances in web andmobile apps: see Remote
Tasks. When you start to create your library, and especially if you are prototyping your application quickly, you will not need to
create any new tasks, since a lot of the behavior provided by tasks is handled automatically.

When Omnis opens, it creates a task instance for the IDE to run in. This task is called the default task, and is represented in the
notation as $root.$defaulttask. This task instance contains all the IDE objects such as the Browser, Catalog, Property Manager,
and so on.

When you open a library, an instance of the startup task is created automatically. From there on all instances opened in the library
are owned by the startup task. You can delete the startup task, or you can create other tasks for your application components to
run in.

It is not essential to add tasks to your library, your library will safely execute in the startup task, or the default task along with the
IDE objects.

The startup task instance has the same name as your library. For a simple application, the startup task will probably be all you
need, with all the other class instances belonging to it. The startup task remains open for as long as the library is open, but you can
close it at any time using a command or the notation. You can change the name of the task to be opened on startup by setting
the library preference $startuptaskname: for all new libraries this is set to Startup_Task by default.

If you have an application that spansmultiple libraries, often only the library used to start the applicationwill have a startup task. If
a library is opened using theOpen library commandwith the optionDo not open startup task, the startup task is not instantiated.
In design mode, you can stop a library’s startup task from running if you hold down the Alt/Option key as you open your library.

Handling Application Focus Events

You can control application focus events generated by the Operating System using the taskmethods $omnistofront and $omnis-
toback. These methods can be added to the Startup task in your library.

• $omnistofront
called when Omnis is brought to the front by the Operating System as a result of a user action such as a mouse click or
alt-tab key combination. On macOS, an extra boolean parameter is passed to $omnistofront. If the value of this parameter

150

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#remote-tasks
/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#remote-tasks


Figure 76:

is kTrue, the user has clicked on the Omnis Icon in the Dock. If a user clicks on the Omnis Dock Icon, $omnistofront will be
called twice. The first call will be generated as a result of an OS AppActivated event and the parameter value will be kFalse.
The second call will be generated as a result of the Dock click and the parameter value will be kTrue.

• $omnistoback
called when Omnis is sent to the back by the Operating System as a result of a user action such as a mouse click or alt-tab
key combination. For $omnistoback you should only use Omnis code which produces a non-visual result. Attempting to
open windows, and so on, while Omnis is losing the application focus may have undesirable affects and is not supported.

Main Window Resize Message (Windows only)

The task message $mainresized is called when the main Omnis application window has been resized on the Windows platform
(it does not apply on macOS). $mainresized has two parameters, pWidth and pHeight, which are the dimensions of the available
area of themain window (excluding any docking areas if present). When themain window is minimized the parameters are both
zero. You could use the Width and Height dimensions to readjust the layout of end user windows based on the available area of
the application window.

In addition, the sys functions sys(251) and sys(252) return the width and height of the available area of the main window, respec-
tively.

Creating Task Classes

This section describes how you create a task class from the Browser.

To create a task class

• Open your library and select it in the Browser

• Click on New Class and then the Task option

• Name the new task

• Double-click on the task class to modify it

You modify a task class in the method editor. You can place in the $construct method any code that you want to run when the
task is opened. For the Startup_Task, the $construct method is executed when you open your library. You can add any other
custom properties and methods to the task, as well as any type of variable.

151



Opening Tasks

Apart from the startup task instance, which is opened automatically when you open your library, you can open a task using the
Open task instance command or the $open() method. Any parameters you supply with the command are sent to the task’s
$construct method.

Open task instance MyTask/TaskInstance2 (p1,p2,...)

# opens the task, assigns an instance name, and sends parameters

Alternatively you can open a task instance using the $open() method.

Do MyTask.$open('TaskInstance2',p1,p2,...) Returns iTaskRef

# does the same as above & returns a reference to the task instance

Current and Active Tasks

Omnis keeps references to twodifferent tasks, theactive task and the current task, to keep track of the tasks that own the topmost
instance or GUI object and the currently executing method. The active task is the task that owns the topmost open window,
installed menu, or toolbar currently in use. The current task is the task that owns the currently executing method.

A task context switch occurs when Omnis changes the current or active tasks. As Omnis runs your library, the current and active
tasks may point to different task instances depending on the user’s actions.

The Active Task

The active task is affected by the user, and is typically the task containing the topmost openwindow. When an instance belonging
to another task is selected, Omnis performs a task context switch. As part of the context switch, messages are sent to both tasks.
The active task gets sent a $deactivate() message, and the new active task is sent an $activate() message.

When the active task changes, you can use the $activate() and $deactivate() messages to perform other relevant actions such as
hiding other windows, installing menus, and any other requirements your application has.

In order for Omnis to perform an automatic task context switch when the user selects an instance belonging to another task, the
task’s $autoactivate property must be set to kTrue.

Omnis can install and removemenus and toolbars automatically during task context switches. Menu and toolbar instances each
have a $local property that you can set. When set to true, the menu or toolbar instance is made local to the task that owns it.
When a task context switch occurs, local menus for the previously active task will be removed from the menu bar, and any local
menus instances owned by the new active task will be installed. Toolbars behave similarly. If the tasks use different docking areas,
Omnis will not hide the docking areas, only the toolbars.

You can change the active task using the notation, rather than waiting for the user to initiate a task context switch. To do this, you
can set the property $root.$activetask to a different task instance name to switch tasks.

The Current Task

The current task is under the control of Omnis itself, and is the task instance which contains the currently executing method.
When a custom attribute or event is sent to an instance, the current task is switched to the task which owns the instance, and
when control returns from that attribute or event, the previous task is restored.

When the current task changes, messages are sent to both tasks. The current task is sent a $suspend() message, and the new
current taskgets a $resume()message. If thenewcurrent task is being instantiated for thefirst time, it gets a $construct()message
rather than the $resume().

In order to avoid endless recursion a task does not get suspend or resumemessages during the execution of a suspend or resume
method.

Since $suspend() and $resume() are likely to be called frequently, it is important that the code for them should be kept as short
and efficient as possible and should not:

• alter the user interface

• open or close an instance

• switch tasks

You can find out the name of the current task using the notation $ctask().$name, and the task that owns the instance by using
InstanceName.$task().$name.

152



Closing Tasks

You can close a task instance using the Close task command or the $close()method. When you close a library all its task instances
are closed, and when you quit Omnis the default task is closed and all instances belonging to the default task are closed.

When you close a task, all instances belonging to that task are closed or destructed providing they can be closed. When instances
are closed, a message is sent to the instance asking it to confirm whether or not it can be closed. If the instance returns a false
message, Omnis will not close that instance. For tasks, each instance belonging to the task is sent the message, and then the
task itself is sent the message. If any of the instances belonging to the task cannot be closed, none of the instances nor the task
instance are closed.

Task Variables

Task classes can contain both class and instance variables of any standard Omnis data type. Tasks can also contain task variables,
which are accessible to any instance owned by the task. As with other variables, you create task variables in the variable pane of
the method editor.

When two or more types of variable use the same variable name (this is not recommeded), a reference to that variable may
be ambiguous. In this situation, Omnis uses the variable with the smallest scope automatically. All other variable scopes have
precedence over task variables.

When a method in a code class is called from another class or instance using the Do code method command, the current task
continues to point to the callingmethod. This allowsmethods in a code class to have access to the task variables from the calling
method.

The Design Task

In order for task variables to be available to you for use in design mode, youmust establish a connection between a class and the
task whose variables you want to access. You do this by setting the design task ($designtaskname property) for the class. The
design task determines which task variables are available to the class: if no design task has been set, the method editor does not
let you declare or see any task variables.

Setting the design task for a class doesn’t guarantee that the task will be available in runtime when you open your class, nor will
Omnis automatically create an instance of the task. The design task is simply a way to give you access to a set of task variables
while you create the classes in your library.

You can also access task variables without setting a design task by referring to the variable as $ctask.variablename. This assumes
that the variable will always belong to a task and can therefore default to the current task.

If you attempt to access a task variable in an instance, and that variable is not available in the task, a runtime error of ‘Unrecognized
task variable’ will be generated, and the variable will have a NULL value.

If you rename a task variable, any references to it are not renamed. Also if one with that name ceases to exist, references to it
which were entered as VariableName are shown in design mode as $ctask.VariableName. Similarly, if some code containing a
task variable is pasted into a different class, any task variables used by that code are not copied into the destination class.

Private Instances

Normally an instance is visible to other tasks and you can reference it using the notation from anywhere in your library. However
you can override this default behavior by making an instance private to the task that owns it. You can do this by setting the
instance’s $isprivate property to kTrue.

When you make an instance private, you cannot destruct it, make references to it, or even see it unless you are within the task
that owns it. A task can even be private to itself, so it can be closed only when it is the current task. If access to a private instance
is required from outside of the task, an item reference can be set to the instance, and the item reference can be passed outside
of the task. Once this has occurred, the item reference can be used to manipulate the instance.

The $root object has a series of object groups, one for each instance type, that are represented in the notation as $iwindows,
$imenus, $itoolbars, $ireports, $itasks. Each of these object groups displays all public instances, as well as instances which are
private to the current task. As the current task changes, the contents of these groupsmay change to reflect the private instances
present in your library.

Private Libraries

Libraries can be private to a task, and both the library and its classes are visible only to that task.

153



The group of open libraries, $libs, contains a private library only when the task which owns that library is the active task. The
Browser does not display classes from a private library. Standard entry points to the debugger such as shift-click on a menu line
do not enter the debugger if the menu belongs to a private library.

As with private instances, if an item reference to any object within a private library is passed to an object outside the library, it is
able to access the library using notation.

You canmake a library private by setting its $isprivate property to true. This is normally done immediately after opening the library,
but can be done at any time as long as the task which owns the library is the active task. Libraries also have the $alwaysprivate
property, which, if set, means they are always and immediately private to their startup task.

Private libraries have an additional property, $nodebug, which keeps the debugger from being entered for any reason when code
from that library is executing, including errors, breakpoints, and the stop key. Code from a private library with $nodebug set does
not appear in the stack menu or the trace log.

When a task is closed, it closes all its private libraries unless they cannot be closed. This can occur if, for example, the library has
instances belonging to other tasks. If a private library cannot be closed, it will become non-private.

Multiple Tasks

Whendesigninganapplication, youmightwant topartition your libraryby creatingmodules containingall of thewindows, reports
and methods of like functionality. Each module can have its own menus and toolbars. An example containing such modules
might be an accounting package, with General Ledger, Accounts Payable and Accounts Receivable modules.

In a totallymodal application, where the user switches betweenmodules, it is easy to ensure that the user sees the correctmenus
and tools for the current module. In a modeless, multi-window environment, controlling this can sometimes be difficult. Tasks
automate the process of creating modular applications by providing all the management of menus and tools for you.

Consider the following example in which a single library is running three tasks: the Startup_Task and two user tasks Task1 and
Task2. The startup task, which opens automatically when the library opens, contains an About window. The other two tasks each
contain a window, a menu, and a toolbar. When the user selects a window from either Task1 or Task2, you may want Omnis to
display the correct tools and menus for that window automatically.

Figure 77:

When the library opens, the startup task opens and displays the About window and then opens the other tasks, each of which
opens its window and installs its menu and toolbar. The startup task can close itself once the About window is closed if it’s no
longer needed.

To open the two tasks, you should execute the following in the $construct method of the startup task

Open window instance AboutWindow
Open task instance MyTaskClass1/Task1
Open task instance MyTaskClass2/Task2

Close task instance LibraryName ## close Startup_Task instance

Every task has a property $autoactivate, that allows the task to take control whenever the user tries to bring a window it owns
to the front. If the property is set to false, the window won’t come to the front. To activate each task automatically, you need to
execute the following in the $construct of each task

Do $ctask.$autoactivate.$assign(kTrue)

To ensure that your menus and toolbars show and hide appropriately as the tasks change, you need to set the $local property for
each class. By making each menu and toolbar local to the task that owns it, Omnis hides and shows them automatically as the
task context changes.

In the $construct for a task, you can install your menu and toolbar, and set their $local property. For example

154



# $construct for task1...
Do $menus.MyMenuClass1.$open('Menu1') Returns iMenuRef
Do iMenuRef.$local.$assign(kTrue)
Do $toolbars.MyToolbarClass1.$open('Toolbar1') Returns iToolRef
Do iToolRef.$local.$assign(kTrue)

Do $windows.MyWindowClass1.$open('Window1') Returns iWinRef

You can do the same for the other task.

# $construct for task2...
Do $menus.MyMenuClass2.$open('Menu1') Returns iMenuRef
Do iMenuRef.$local.$assign(kTrue)
Do $toolbars.MyToolbarClass2.$open('Toolbar1') Returns iToolRef
Do iToolRef.$local.$assign(kTrue)

Do $windows.MyWindowClass2.$open('Window1') Returns iWinRef

This functionality will change menus and toolbars as you switch from one window to the other.

Preferences on macOS

ThemacOS applicationmenu has a Preferences item. You can arrange for Omnis to call a method in a task, when the user selects
this menu item. To do this, define a method called $prefs in your task. When the user selects Preferences from the application
menu, Omnis calls the $prefs method.

If more than one task defines $prefs, Omnis installs a hierarchical menu on the Preferences menu item. Each task has an item in
the hierarchical menu. In this case, each task must also contain a method called $prefsmenutext. This method must return the
text to display for the task’s item in the hierarchical menu, for example

Quit Method “My Library”

External Component Notation

The $components group under $root contains all the installed external components available in your XCOMP folder. You can view
the contents of the $components group using the Notation Inspector.

Note that youmanipulate anexternal component via its customfieldproperties, as shownbelow, not via the$root.$components…$compprops
or $compmethods groups for the control. The groups under $root.$components is simply a convenient way of viewing the con-
tents and functions of any external library or control.

The $components group has the standard group properties and methods, including $add() and $remove(), and you can list the
components using the $makelist() method.

# declare variable cCompList of type List
Do $root.$components.$makelist($ref.$name) Returns cCompList

You can drag a reference to any of the components from the Notation Inspector to your code, in the same way as other built-in
objects. You can click on a component library in the Notation Inspector and view its properties in the Property Manager. Each
component library has the following properties

• $name
the name of the component which must be unique

• $pathname
the name and path of the external library file: this will vary across different platforms

• $functionname
the name of the external function

• $controlhandler
Boolean that indicates whether the external is a control handler, for example, an ActiveX is a control handler

155



• $constprefix
String used as a prefix for all constants within the external

• $flags
indicates the external flags, for example, whether it is loaded

• $usage
Current number of controls that are using this external

• $version
the version information

You can view the contents of an external library in the Notation Inspector. Each component library has a group called $controls
containing all the controls in the library. Some libraries may contain only one control, for example, the Slider Component Library
contains the Slider Control only. A control contains its own events, functions (or methods), and properties in their own respective
groups, as follows

• $compevents
group of events for the control

• $comprops
group of properties for the control

• $compmethods
group of methods for the control

In the notation you treat an external component property or function as you would a standard built-in property or method, that
is, you can use property and method names in the notation to manipulate and send messages to an external component field.
Note that property and method names should include a dollar sign when you use them in the notation.

Do $cwind.$objs.ClockField.$facecolor.$assign(kBlue)
# assigns a color to the face of a clock component
# using the $facecolor property
Do $cwind.$objs.QTfield.$Play()
# executes the $Play() function for a QuickTime component

In general, the properties of an external component are unique to the object and their names will not clash with standard Omnis
field properties. However when an external component property has the same name as an Omnis property, you must access the
external property using a double colon (::) before its name. For example, the Icon Field control has the property $backcolor which
you must refer to using

Do $cinst.$objs.iconfield.$::backcolor.$assign(kRed)
# would not work without the ::

At runtimeyoucanaddanexternal component to anopenwindowusing the$add()method. Youneed to specify the kComponent
object type, external library name, external control name, and the position of the field. For example, the following method adds
the Marquee Control to the current window instance, positions the new object, and sets some of its properties

# declare local variable Objref of type item reference
Do $cinst.$objs.$add(kComponent,'Marquee Library','Marquee Control',0,0,15,100) Returns Objref
Do Objref.$edgefloat.$assign(kEFposnStatusBar)
# repositions the object at the bottom of your window
Do Objref.$message.$assign('I hope you can read quickly!')
Do Objref.$steps.$assign(20) ## number of pixels to step
Do Objref.$speed.$assign(20) ## lower number is faster
Do Objref.$::textcolor.$assign(kBlue) ## note :: notation
Do Objref.$::backcolor.$assign(kRed)

Version Notation

All external components have the $version property. To get the version of an external component you must access it via the
$root.$components group, not the external component field on a window or report. For example

Do $root.$components.Marquee Library.$version Returns lvXversion
# returns "1.2" for example

If you have created any external components of your own to run under Omnis Studio version 1.x, you must recompile them for
Omnis Studio 2.0.

156



Java Beans

Note the Java Bean ext comp is not longer installed in Studio 10 or above, but it can be obtained by contacting support.

The Java Bean external component has commands that let you control it in a Runtime Omnis. Note the Java Beans external is
available under Windows only.

You request a command using the $cmd() method as follows:

$root.$components.JavaBean.$cmd(parameter list)

The parameters can be:

Parameter list Command

“GetPaths”, List Populates the specified single column list with the Java Bean search paths: no return
value

“AddPath”, NewPath Adds the specified path to the Java Bean search paths: returns true for success, or if the
path is already present in the search paths

“DeletePath”, DelPath Deletes the specified path from the Java Bean search paths: returns true for success
“EnumBeans” Enumerates Java Beans: returns the number of Beans found
“StartVM” Starts the Java virtual machine (to test if Java is installed): returns a string containing an

error, or an empty string to indicate success
“SetupDialog”. Opens the Java Bean component setup dialog
“RequestPath” Opens the “Prompt for Java Bean Path” dialog: returns a string containing the new path:

empty if none selected

Chapter 4—Debugging Methods

You add variables andmethods to the classes and objects in your library using theMethod Editorwhich includes a free-type Code
Editor to allow you to write Omnis code faster and more easily.

You can debug the methods and step through the code in your library using the Omnis Debugger, which is an integral part of
the method editor, plus you can debug your Omnis code remotely over a network using the Remote Debugger.

The Omnis debugger provides several tools to help you monitor the execution of a method, including the ability to create watch
variables, interrogate and edit the contents of variables during execution, andplace a variety of breakpoint conditions, whichwhen
met will interrupt execution.

The debugger operations are controlled from the Debug and Options menus on the method editor menubar. The debug op-
tions are also on the toolbar, which you can show using the View>>Toolbar menu option. The hierarchy of methods calling other
methods is saved in themethod stack and shown on the Stack menu.

You can also check your code using the Method Checker, available under the Tools menu and described in this chapter.

Note that most of the example code in this chapter is generic and can be applied to all programming tasks; however, some of
the example code may relate to window classes only, but the code may be easily adapted to work with remote forms.

Method Editor

TheMethod Editor is themain tool you use for programming or coding in Omnis Studio. Using the Method Editor and Debugger,
you can:

• Insert and Edit methods using the Code Editor and Code Assistant

• Run and step through methods using the Debugger

• Set Go points and Breakpoints

• Trace the execution of method lines and field values

• View and alter fields and variables

• Inspect the method stack

157



• Debug your live code, sending commands to the Trace log

• Debug your code remotely on your live app server: see Remote Debugger

The Method Editor has several different areas, each doing a different job, as described below.

Figure 78:

1. Toolbar
the main toolbar gives you access to the View, Modify, Debug, Stack and Breakpoints menus; many of the options in these
menus have keyboard equivalents to give you hands-free coding. The Back and Forward options let you jump back to or from
called methods as you step through code.
OnmacOS the toolbar appears in the window title bar on the right (as above), but onWindows it appears under the window title
on the left (see below); this is the only visual difference, but in all other cases the appearance and functionality is the same on
macOS andWindows

Figure 79:

2. Variables pane
lets you add variables to the class or method, including task, class, instance, local, or parameter variables; you can hover over a
variable to see its value (if available), or you can Right-click on a variable to set other option. You have to Right-click on blank space
in the list or in the left margin to insert a New Variable

3. Method list or Method name list
lists existing methods for the class or object, or lets you add methods to the object,: the method tree list shows the methods for
the class under Class Methods, or for UI classes it also shows the methods for the individual controls or fields in the class, listed
after the class methods. You can Right-click on the method tree list to insert a new method, delete or rename a method, Cut

158



Figure 80:

or Copy a method, or Expand/Collapse the entire method tree. When the focus is on a method name in the method editor tree,
pressing Return or Enter lets you edit the method name

Figure 81:

4. Debug toolbar
appears at the top of the Code Editor panel allowing you to Set the Go point, Go (execute the method), Step in, Step over, Step
out, Step To Line, and Clear the method stack

Figure 82:

5. Code Editor
lets you add the code for a method, or view and edit the code for an existing method: there is a Help panel, at the bottom of the
code editor pane, showing the syntax for the current selectedOmnis command: see below for a complete description of the Code
Editor and Code Assistant

6. Debugging and Breakpoint panels
this area displays the Method stack and list of Breakpoints currently set, which are redrawn dynamically as you debug and step
through your code and jump from one method to another

7. Variable panel
The Variable panel (on the right, see above) allows you to view andmodify variableswhile you debug and step through your code;
as execution pauses, it displays the current values of all the variables, as well as theWatched variables, and you can drill down into
the hierarchy of objects and variables

159



Figure 83:

Figure 84:

Opening the Method Editor

You can open the method editor in a number of ways, depending on the type of object you’re working on and where you are in
Omnis.

To open the method editor for a class

• Open your library and view its classes in the Studio Browser

• Right-click on the class in the Studio Browser list

• Select the Class Methods option from the context menu

To open the method editor for a Remote Form

• Open the Remote Form from the Studio Browser

• Click on theMethods button in the Design bar at the top of the remote form editor

Or you can

• Right-click on the background of the Remote Form

• Select the Class Methods option from the context menu

Or you can

• Double-click on the background of the Remote Form to open the Method Editor for the class

To open the method editor for a Report

For a Report class (or window, menu, and toolbar classes) you can:

• Open the report editor for the class (or window, menu, or toolbar editor) from the Studio Browser

• Right-click on the background of the class design screen

• Select the Class Methods option from the context menu

160



• To open the method editor for a field or object

• Open the remote form class (or window) from the Studio Browser

• Double-click on the field or object to open the Method Editor

Or

• Right-click on the field or object, e.g. a button

• Select the Field Methods option from the context menu

Task, remote task, table, remote object, object and code classes can only contain methods, so when you modify (double-click)
these classes you go straight into the method editor.

Inserting and Editing Methods

You can insert, edit and debug the methods in your library using theMethod Editor.

Inserting a Method

To insert a method

• Right-click on the method list and select Insert Method, Insert Method Before, or Insert Method After

Figure 85:

or

• With the focus on a method in the Method list, click on the Modify menu in the method editor toolbar and select Insert
New Method

or

• Press Ctrl/Cmnd-I while the focus is on the method list: this option inserts a method above the current one

When you have entered the new method name, you can begin to add the code for the method in the Code Editor on the right-
hand side of the method editor.

161



Figure 86:

Maximum Number of Methods

The maximum number of methods allowed per class is 4096 (the limit was 501 in versions prior to Studio 10.2).

Line Numbers

You can display a line number for each method line in the Code Editor. You can enable line numbers using the Viewmenu.

Showing Inherited Methods First

The Show Inherited Methods First option in the Viewmenu allows you to display inheritedmethods at the top of themethods list
in the Code Editor; the option defaults to off whichmeans inheritedmethods will be shown after all other methods at the bottom
of the list.

In addition, the remote debug server configuration has a newoption (Show inheritedmethods first inmethod lists) which controls
the information returned by the server to the client, and therefore the display in the remote debug window. The remote debug
server dialog has been updated to allow this option to be edited.

The F8 shortcut works for inheritedmethods. So if you press F8 on the code line Do $inherited.$test() it will load the $test method
in the inherited class.

Showing Built-in Methods

The Show Built-in Methods option allows you to hide or show the built-in class methods. When enabled (the default), the class
methods node in the method name list includes the Built-in methods for instances of the class type being edited, including
$control, $construct, and $destruct, as well as any Control methods that can be overridden, including $event. This applies to
Remote forms and Remote tasks (plus other classes that can be instantiated including window classes). In addition, $canclose
will be shown for the relevant instance types, while $select and $fetch are shown for table classes. Many other methods could
be shown depending on the class type, including $filereadcomplete, $init, $term, $sfsorder, $sfscanclose, $pushed, $sqldone,
$suspended, $resumed, $loadfinished, $previewurlclicked, $pdfcomplete.

The Built-in and Controlmethods behave in a similar way to inheritedmethods, that is, you can override them, or set themback to
using the default, by using “Built-inMethod…” option from themenus (this is analogous to using InheritMethod… for an overridden
inherited method). When you override a Built-in or Control method, Omnis pre-defines the parameters of the new method to
match those required by the method.

The names of the Built-in or Control methods are shown in the tree using the no set property color (this is consistent with how
built-in method names are drawn in the Interface Manager).

The “overriddenbuiltinmethodstyle” color thememember can be used to give the name of an overriddenmethod a different text
style when it is shown in the tree. This thememember is in the IDEmethodEditor group of the appearance.json file, and can have
the same possible values as “overriddenmethodstyle”; it defaults to 2 (italic).

162



Overriding or Inheriting multiple methods

You canmulti-select themethods from theMethods list or a single object and then override or inherit themethods, as appropriate,
from the context menu or theModifymenu. If all selectedmethods are built-in or inherited, they can be overridden with a single
override method command on the context menu, or the Modify menu.

If all selectedmethods override inheritedmethods, they can be deleted and re-inherited using a single inherit method command
on the context menu, or the Modify menu.

If all selected methods override built-in methods, they can be deleted and set back to built-in using a single built-in method
command on the context menu, or the Modify menu.

In addition, the options Inherit variables… andOverride variables… have been added to the Variable panel context menu to allow
multiple variables to be inherited or overridden in a single operation. These commands are only present for subclasses, for task,
instance and class variables.

Find Possible Calls

The Find Possible Calls… option in the Context menu on the Method list attempts to locate all possible calls to the method,
from methods in the current library, or a selected set of open libraries. If there is only one open library, it performs the search
immediately, displaying a progress bar. If there is more than one open library, the option opens a popup dialog that allows you to
select the libraries to be searched, and then performs the search, displaying a progress bar.

The option writes results to the Find and Replace log, and then opens the Find and Replace window when it has completed the
search. Note that the option does not search calculations stored with objects, it only searches method lines.

Calls located may not be actual calls to the method, since for example calls like item.$method cannot be resolved, so if the call
occurs in the correct class (or in the inheritance hierarchy), the call will be treated as found.

Method Search

There is a Search or filter option above the method name list that allows you to find specific named methods, or methods that
start with or contain specific characters. As you type in the search box, the method list updates automatically to highlight the
method names thatmatch or contain the search (in currently expanded nodes only). These lines draw in the color treelinesmatch-
ingsearchcolor in the IDEMethodEditor section of appearance.json. The first matching method for the search is selected and its
contents is shown in the Code Editor. The “Show Method Tree Search Box” option on the View menu allows you to toggle the
method search box (the default is enabled). The state is saved with the window setup.

The search also includesObject names (as well asmethod names) to allow you to locate controls and other objects in themethod
tree list, such as containers or text labels, in order to display and edit their methods. The setting for this search behavior is stored
in a new item ‘includeObjectNodesInTreeSearch’ in the ‘methodEditorAndRemoteDebugger’ group in the config.json file (true by
default).

While the search box has the focus, you can use the find and replacemenu of themethod editor (or its find next and find previous
shortcuts) to select the next or previous matching method. There is also a context menu item for the method list called “Select
FoundMethods”, which selects allmatchingmethods. There is amenuoption ‘SearchMethodTree’ on theFindandReplacemenu
that puts the cursor in the method search box, which also has a keyboard shortcut named “searchMethodTree” that appears in
keys.json - note that the default disable all breakpoints shortcut has changed as a result of this change.

The saveSearchDelay item (previously savePropertySearchDelay) in the ide section of the config.json file allows you to set the delay
between typing and the search being executed.

Adding Blank Method Lines

When the focus is on amethod line, the Append blank linesmenu option adds blank lines to the end of the current method and
sets the current line to the first added blank line: you can also use the shortcut Ctrl/Cmnd-Bwhen the focus is on the code editing
area in the current method. This option behaves in the same way as clicking on the dead space at the end of a method in the
method editor (shown in gray), but gives you the option to do this from theModifymenu, or from the keyboard using the shortcut
key. Note that when you click away from the method, any blank lines at the end of the method are omitted automatically.

Configuring Blank Method Lines

Omnis adds space for 64method lines, but you can change this to any value from 1 to 128 inclusive by editing the “methodEditor”
section in the Omnis configuration file (config.json): the following entry is at the same level as the “server” entry.

163



"methodEditor": {
"stripTrailingEmptyCommands": true,
"blankLinesToAdd": 64

}

When the method editor saves a method back to the class, that is, as it is being navigated away from, Omnis strips empty
method commands from the end of the method. You can disable this behavior by editing config.json using the stripTrailingEmp-
tyCommands option.

Adding Method Lines

You can use the $addbefore() and $addafter() methods with the $methodlines property of a method to add lines to an existing
method.

• $addbefore(rItem,cText)
adds a new line with content cText before the line specified by rItem (rItem can be either a 1-based integer line number, or
an item reference to a line in the method)

• $addafter(rItem,cText)
adds a new line with content cText after the line specified by rItem (rItem can be either a 1-based integer line number, or an
item reference to a line in the method)

For example:

Do $cclass.$methods.$remove($cclass.$methods.Test)
Do $cclass.$methods.$add("Test")
Do $cclass.$methods.Test.$methodlines.$add("# aaa")
Do $cclass.$methods.Test.$methodlines.$add("# ccc")
Do $cclass.$methods.Test.$methodlines.$add("# eee")
Do $cclass.$methods.Test.$methodlines.$addbefore(2,"# bbb")
Do $cclass.$methods.Test.$methodlines.$addafter(3,"# ddd")
Do $cclass.$methods.Test.$methodlines.$addbefore($cclass.$methods.Test.$methodlines.1,"# New line 1")
Do $cclass.$methods.Test.$methodlines.$addafter($cclass.$methods.Test.$methodlines.2,"# New line 3")

Method Notes

You can add notes to a method to allow you to document each method in a class. The notes are stored in the $notes property
for the method. The notes can be edited on the Documentation tab, the last tab in the Variable definition pane. (Existing users
should note that the $notes property is the $httpnotes property renamed to $notes, which is available for all methods in a class.)

You can change the width of the fields on the documentation tab in Code Editor by dragging their borders. The positions are not
saved, and will revert to equal distribution when resizing the Code Editor or changing method.

Method Notes for Subclasses

TheMethod Editor shows the inherited or built-inmethod notes for amethod that is either inherited, built-in, or overridden, when
the description/notes in the current class is empty. To indicate that these are inherited, they are drawn in the inherited color or
built-in color, as appropriate. If you want to change the value for an overridden method, you can right-click on description/notes,
and select “Make Editable”, and edit the value. You can revert to the inherited value by editing and deleting the description/notes;
when the focus leaves the edit field, it shows the inherited value.

Code Editor

The Code Editor allows you to enter Omnis code directly into each command line in a method, and when combined with the
Code Assistant, and the keyboard shortcuts, allow you to write Omnis code quicker and more easily. (The “free-type Code” Editor
replaces the “point-and-click” code entry panel, available in versions prior to Studio 10, which has been removed from this version,
that is, you cannot revert back to the old code entry panel.)

To enter a command, you click into or tab to an empty command line and type the first letter or the first few letters of a command
name and select it from the Code Assistant that pops up: in some cases, you will only need to type the first letter of a command
to select it, such as “d” to find the Do command.

164



As you complete or select a commandnameor aparameter, the insertionpointwillmove to the appropriatepoint in the command
line, and the Code Assistant will providemore help as you type, including help with command syntax, variable names, parameters,
command options, as well as property and method names. For example, in the following screen, after typing “$sel” all possible
methods are shown in the Code Assistant popup list, in this case $select() and so on (see Code Assistant for specific information
about the Code Assistant).

Figure 87:

To enter a line of code in the Method Editor:

• Click or tab into an empty method line: the insertion point should be at the start of the empty method line. You can press
Ctrl-N to create a new line under the current line

• Type the first few letters of the command youwant to enter: formost commands youwill only need to type 2 or 3 characters
(you can ignore case and leave out any spaces in the command name)

• As soon as you start to type, the Code Assistant will drop down automatically showing a list of commands that match the
characters you have typed: you can press Tab to select the first/selected command in the list, or use the Arrow keys to
navigate up or down the list, and press Return/Enter to select a command

• Having selected the command, you can start to fill out its parameters: again, you can type the first few characters of a
variable name or parameter and select it from the Code Assistant help list

165



For example, to enter a calculation using the Calculate command, you can type “ca” (note lower case) and press the Tab key to
select the Calculate command from the help list, which should be the first command in the list. The insertion point should now
be between ‘Calculate’ and ‘as’. Type the first few characters of the variable name or notation youwant to enter, select the variable
or notation from the help list (you can press Tab to select the first item in the list):

Figure 88:

Once you have selected the variable name for your calculation, you can press Tab to go to the end of the command line, in this
case, after the ‘as’, and then enter the calculation, including any functions or notation.

In all other respects the Method Editor behaves the same as in previous versions, including the Chroma coding which has been
greatly enhancedwith an updated theme. The following sections providemore detail about entering commands in the enhanced
Method Editor.

Tokenization

Omnis is a tokenized language, which means that all method text has a single canonical representation generated from the
tokenized representation of the code. As you enter text into the Code Editor, Omnis tokenizes the code and then updates the
editor with the canonical representation. For example, this means that extra whitespace will be deleted, and attempts to indent
the code using a non-default indent will have no effect. In addition, each command must occupy a single line, and command
lines do not wrap. Each level of indent corresponds to two spaces.

To make the editor more efficient, it requires a fixed width font. The Method Editor Fonts… dialog restricts the list of fonts it offers
via the Code combo box to fixed width fonts.

Bad name detection

Bad notation names are detected while entering code rather than handling this through automatic retokenization using double
slashes. The ‘badNotationNameIsSyntaxError’ item in the ‘ide’ section of config.json controls this behavior; the default is True. Set
this to false to restore the previous behavior.

Fonts

The Code Editor supports variable-width fonts. The various elements of the Code Editor, including the code area andmethod list,
use the default fonts provided by your current operating system: e.g. on Windows Segoe UI and Consolas are used as the default
fonts. You can change the fonts used under the View>>Fonts option, while the Reset option lets you return to the default fonts
for your OS.

Ctrl-space

The Code Assistant drops down automatically when you type a command name, function or some notation, but you can force the
Code Assistant to open at other times. To open the Code Assistant manually, position the caret in the code text, press Ctrl-Space,
and the text immediately before the caret is used to determine the contents of the Code Assistant help list.

One situation in which this is useful is if you cannot remember the syntax of a command or function: position the caret immedi-
ately after the command or function name, press Ctrl-Space and then down arrow, and you will see the syntax for the command
or function in the Code Assistant help list. See Code Assistant.

Multi Undo and Redo

The Method Editor supports multiple levels of Undo, and Redo. (The multi-level Undo/Redo also applies to all Edit fields in the fat
client and IDE.)

166



Read-only Mode

When the Modify menu is enabled in the Code Editor, you can toggle the editor between read-only and write mode using the
keyboard shortcut Alt+M / Cmnd+Opt+M (stored in $keys). The method editor stores the state of “Read-only mode” with the
Window Setup.

Copying Methods or Code Lines

You can copy a selectedmethod in theMethod name list (on the left) using the standard Editmenu Copy option (or Ctrl/Cmnd-C),
or the Method Editor context menu Copy option.

While working in the Code Editor (on the right), you can copy a line or selected lines of code (text) using the standard Edit menu
Copy option, but only the selected characters will be copied. Alternatively, you can use the Copy Lines option in the Code Editor
context menu to copy the complete code in the current line (the line containing the caret), or all complete lines in the current
selection.

You can select all the lines in a method using the Select All option in the Edit menu or the Ctrl/Cmnd-A keyboard shortcut. For
long methods that extend down beyond the visible area in the Code Editor, all lines are selected but the editor window does not
scroll. However, in this case, if you want the editor window to scroll, you can set the “selectAllCanScrollCodeEntryField” setting in
the “methodEditor” section of the config.json file to true (false by default); this allows you to select the whole method and see the
end of the method.

When you copy amethod or lines of code, Omnis copies the syntax coloring and other formatting, therefore, this would allow you
to paste the code into a word processor or an email and retain the colors and formatting (the code is copied in HTML format on
macOS andWindows).

Printing Methods

You can print a method using the Print option in the File menu; the print output will be sent to the current destination. Omnis
uses the syntax colors from the default design theme (which is designed for awhite background), i.e. if you are using a dark theme
in the Code Editor, this will be ignored. You can turn off this behavior (and print everything using black text) by setting the entry
“printMethodsWithSyntaxColors” in the “methodEditor” section of config.json to false.

Entering Commands

To enter an Omnis command the cursor must be on an empty line, and you can start to type the name of the command you
need. As soon as you type the first letter, the Code Assistant will open automatically, displaying a list of commands starting with
that letter: note that the command filters may limit which commands are shown, see below about the filters. As you type further
letters of the command name, the Code Assistant refines the list of available commands. In most cases you will only need to type
the first 2 or 3 letters to locate a command. The text immediately before (to the left of) the caret is used to determine the content
of the Code Assistant help list.

To select a command from the Code Assistant help list, you can press the Tab key to select the first command displayed in the
list, or you can use the arrow keys to navigate up and down the help list and use Return to choose the selected command.

Assuming the cursor is at the end of the selected command name, you can start to enter its parameters, and the Code Assistant
should pop up automatically at the insertion point whenever a variable name or parameter is needed.

Command Filters

The commands in Omnis performmany different functions, includingmany legacy features that are no longer required for creat-
ing web andmobile apps using the JavaScript Client. There is a filter mechanism in the Code Editor to filter the list of commands
that are displayed in the Code Assistant help list, primarily to remove any old commands, including those that allow you to man-
age Omnis datafiles.

Note you can still use the excluded commands in your code, and methods in converted libraries using these commands will
continue to work – the filters just hide the commands from the Code Assistant help list.

The command filter is set under the Filter Commands submenu in the Modify menu: note this is only visible when the cursor is
in the code entry area in the Code Editor. The Exclude Old Commands filter is enabled by default, which excludes over 100 old
commands, plus there are other filters available that exclude smaller subsets of commands. You can disable the current filter
using the No Filter option, in which case all the commands available in Omnis will be shown in the Code Assistant help list.

The current filter option is saved with the Window Setup for the Method Editor: if the saved value is no longer present, the editor
reverts to no filter and all commands will be shown in the Code Assistant.

The Reload Command Filters option reloads the filters from the commandfilters folder, without having to quit Omnis, which is
useful if you have changed or added any filters.

167



Figure 89:

Further Command Filtering

Normally, all commands matching the first typed character appear in the Code Assistant list, but you can limit or change which
commands are shown depending on the number of characters typed – this may be useful if you want specific commands to
always appear, instead of the default ones that appear first in the alphabetical list of commands.

You can control this type of filtering using theUseMinimum Lengths option on theModify>>Filter Commands submenu, and this
option is enabled by default. For example, with this enabled, theDo commandwill be selected by default when you type ‘d’ (rather
than the Default command), and Quit method will be selected by default when you type ‘q’ (rather than the Queue commands);
in the latter case, you can type ‘qu’ to show all the Quit commands in the Code Assistant list (note the Queue commands only
apply to wndow classes in desktop apps).

The filtering enabled by the Use Minimum Lengths option is controlled in the file min_command_characters.json (located in the
‘studio’ folder) which specifies the minimum number of characters to be typed for a specified command.

The JSON file contains an object, where each member name is either a command name, or a regular expression matching a set
of command names. The value of each member is the minimum number of characters to type (default 1 if there is no match for
a command). In the following example, Quit method appears as soon as you type ‘q’, whereas the other Quit commands require
you to type ‘qu’, and the Queue commands require you to type ‘que’:

"^Queue.*": 3,
"Quick check": 4,
"Quit method": 1,
"^Quit.*": 2

Regular expressions must start with ^, otherwise the entry is treated as a full command name.

If the file is not present in the studio folder, or if it cannot be loaded for some reason (e.g. invalid JSON syntax), the Use Minimum
Lengths menu item is hidden.

Omnis loads the file min_command_characters.json at startup, and when you execute the Reload Command Filters command
on the Filter Commands menu.

168



Editing the Command Filters

You can create your own filters, or change the ones provided, to change the commands that are shown in the Code Assistant help
list. If you wish to adapt the default filter, you are advised to make a copy of it, rename the copy, then edit and save the new file.

The command filters are located in a folder called ‘commandfilters’ in the Studio folder: the default filter is called ‘Ex-
clude_Old_Commands.json’. Each file in this folder is loaded in the Filter Commands submenu, and the name of the JSON
file is used as the menu option name. (You can examine the contents of each filter file to see which commands they exclude
from the Code Assistant help list.)

The content of each JSON file is an object with a single member named “exclude”, listing any commands that are to be excluded
from the Code Assistant help list. The exclude member is an array, and each array entry is the exact command name (case insen-
sitive).

You can exclude groups of commands using a regular expression to match command names: in this case, you need to anchor
the regular expression to the start, using ^. For example, to exclude all old MSM… commands, you can create a filter file with the
following contents (name the file ‘Exclude_MSM_Commands.json’):

{
"exclude": [

"^MSM.*"
]

}

As well as creating an exclude filter, you can create a filter to only include certain commands, although in practice this might only
be useful if you want to use a very small subset of commands in the Method Editor (since all commands that are not included
are excluded). To create an include file, create a new filter file containing an “include” object, and add any command names to be
included, e.g. to only include Do and Calculate (and exclude all other commands!), the filter should contain:

{
"include": [

"do",
"calculate"

]
}

The default or initial filter is set in the ‘currentCommandFilter’ option in the ‘codeAssistant’ section of the config.json file: if this is
empty, or the command filter files or folder are removed, then “no filter” is selected.

You need to select the Reload Command Filters option in the Modify menu to load any new or edited filters into the Filter Com-
mands submenu.

Case and Omitting Spaces

You can ignore the case of all command names, so you can always start to type a command name in lower case. Furthermore, if
the command name includes spaces, you can omit the space(s),which will speed up command selection in the Method Editor.

Whether or not you include the space can, however, determine which command is selected by the Code Assistant: this is impor-
tant for the Do… commands, for example. Typing do<space> will immediately enter a Do command (and the insertion marker
will be ready to accept the calculation) and close the Code Assistant. Whereas, to select the Domethod command, you can type
dom<tab> (note you can omit the space), or to select the Do async method command, you can type doa<tab>. This is quicker
than typing just ‘do’ and then selecting the command you want from the droplist in the Code Assistant.

Another example would be in the case of the If… commands. Typing if<tab> will immediately close the Code Assistant and enter
an If calculation command, whereas, to select the If canceled command, you can type ifc<tab> (note no space). Similarly, typing
on<space> will select the On event command, while typing ond<tab> will enter the On default command.

Tab key

You can use the Tab key to tab between the parameters of all of the commands in the method. This is an easy way to navigate
through the commands, skipping command names and keywords and moving the insertion point to the next available position.
You can also use the Tab key to select the first or selected line in the Code Assistant: in this case, if you select amethod, such as Do
List.$define, the opening and closing parenthesis () will be added automatically and the cursor is placed between the parenthesis.

169



Construct Commands

If you enter a construct command using the Code Assistant, such as If, it will add the end construct command automatically, in
this case, End If. You can use Undo to remove the end construct command added automatically if it is not required.

The Method Editor checks for missing associated commands as you edit, e.g. If with no End If, or For with no End For.

Command Options or Keywords

For commands that have options or keywords, usually enclosed in parenthesis, you can enter the options from the keyboard
automatically. To show the options or keywords for a command, press Tab directly after typing the command name. For example,
after typing Do, For and Enter data, press Tab and the Code Assistant appends the optional keyword(s) to the command, ready
for you to enter its parameter(s). If you do not want the keyword added by tab, the Undo command will remove the option(s).

This occurs when the cursor is somewhere in the command, the command does not have themissing keyword, and no characters
are selected. For example, pressing tab after entering Do $cinst.$test() will add the Returns keyword. In the case of the For and
For each line in list commands, tab will cause the keywords from, to and step to be added in turn.

There is an option on the Linemenu, Tab Adds Missing Optional Keyword,which controls this behaviour (it is enabled by default);
the state of this option is saved with the Code Editor window setup.

Construct Parameters

Where possible, the Code Assistant help window expands “params…” for $add, $open, etc to show the constructor parameters of
the class referenced. Omnis identifies the class name that precedes the method name in your code (e.g. classname.$open), and
will show the construct parameters for the class.

Class Names

To enter a quoted class name, you can press Ctrl-Space when the caret is positioned after a double quote (or some text following
a double quote) and select the name from a quoted list of non-system class names in the current library.

File Class Field & Library Names

When unique field names is true, the Code Editor does not enter a file class name prefix when you enter a file class field/variable
name into theCalculate command, for example, for file classes in the same library as the class beingedited. There is a configuration
item called ‘checkFileClassPrefixBasedOnUniqueFieldNames’ to control this behaviour (true by default).

When unique field names is false, checkFileClassPrefixBasedOnUniqueFieldNames requires that you enter a file class nameprefix,
for file classes in the same library as the class being edited.

In addition, the Code Assistant only shows file class field names at the top level when unique field names is on; so if unique field
names is off, the list just includes the file class names.

The Code Assistant includes library names at the top level, to allow references like lib.file.field to be entered, or lib.<library notation>
to be entered.

Method Name Matching

You can search for a method name where the name of a method is required in a line of code. To do this press Shift-space after
entering a string in the Code Assistant and any possible matchingmethod names are added to the help list. For example, you
could enter: Do code method test and then press Shift-space, and the Code Assistant displays all strings containing “test” that
can be used as a method name parameter of Do code method.

For notation, if you enter $test and then Shift-space, the Code Assistant only showsmatching strings that are notation (start with
$) and contain “test”.

Side by Side Editors

You can open two instances of themethod editor to show twomethods from the same class, for example. You can open a second
copy of the method editor as follows:

• Press the Shift key while performing an action that opens the method editor, such as double-clicking on a remote task.

• Use the Two Editors Side By Side option on the method editor Viewmenu.

170



Omnis opens a second editor, next to the current editor window, so that each editor uses half of the available screen space. On
Windows, this means the available space in the main Omnis application window, and onmacOS, it means the available space on
the current monitor less the menu bar or toolbars.

When two editors are open, the samemethod in each class can be selected in both editors, but the editor in the background does
not display the method: it displays the text “This method is being edited in another method editor”.

The editor in the background keeps up to date with changes in the foreground editor, e.g. when you add or delete a method, the
method list in the other editor updates.

There is a keyboard shortcut for the Two Editors Side By Side command, which defaults to Alt+S onWindows and Cmd+Opt+S on
macOS.

Debug Panel

TheMethod Editor has two panels below the code entry window: theDebug panel and the Editor panel. You can show theDebug
panel (or hide it) using the buttons under themethod name list in the lower left corner of theMethod Editor window (the X option
will hide both panels).

Figure 90:

The equivalent options are on the Bottom Panel hierarchical menu on the Viewmenu in the Code Editor.

Editor Panel and Errors

As you enter code, Omnis tokenizes the entered code and provides real-time feedback that indicates if the method code is valid.
Valid method code is syntax-colored, whereas invalid method code is partially syntax-colored, and the invalid component(s) in
the method line underlined using a colored wavy line (the color is taken from the current theme or set in the “badsyntaxcolor”
$appearance preference).

Figure 91:

The editor panel at the foot of the Method Editor window displays the number of method errors, and when the caret is positioned
within text causing an error, it displays the error text.

The editor panel has three buttons that allow you to handle errors. The Next and Previous error buttons (forward and back arrows)
navigate through the errors in the method. The Fix error button (check mark) allows you to fix certain errors and will only be
enabled when the caret is positioned in some text for an error. The Fix button is enabled to allow the following errors to be fixed:

• “Unrecognized variable name, item name or attribute” and “Unrecognized variable name”: Pressing the Fix button opens
the Create Variable dialog.

171



• “) missing”: Pressing the button adds the )

• “Partly entered keyword”: Pressing the button completes the keyword

In addition, the editor draws a red marker in the vertical scrollbar for each method line containing an error. The marker in the
scrollbar is positioned so that when the method line containing the error is scrolled to be the first displayed line, the top of the
scrollbar thumb lines up with the top of the marker. (Note that this is why the vertical scrollbar always allows scrolling even if all
method lines fit within the editor window.)

Editor Helper dialog

In addition to the error reporting, there is a button to open the Helper Dialog, which is context specific. This button is disabled
when the context means there is no helper dialog. If a helper dialog is available, the button is enabled, and its tooltip changes
appropriately: pressing Alt+H will open the Helper Dialog.

Figure 92:

The editor Helper Dialog is enabled in the following cases:

• When the caret is positioned in the parameter field of the Queue keyboard event command. In this case, the helper dialog
allows you to record keys.

• When the caret is positioned in the title parameter of theWorking message command. The helper dialog is the working
message configuration dialog.

• When the selection includes only JavaScript: commands (in a client executedmethod). The helper dialog button will open
the JavaScript editor. All JavaScript: command lines in the same contiguous block are selected, and their JavaScript is then
editable using the popup editor. When the popup editor closes, Omnis replaces the selected JavaScript: commands with
JavaScript: commands containing the contents of the popup JavaScript editor.

• When the selection includes only Sta: commands (for entering a SQL statement onmultiple lines). The helper dialog opens
the same external editor for JavaScript but in SQL mode allowing you to enter a SQL statement over multiple lines.

Command Syntax Help

You can view the full syntax for a command, including all its parameters and options, in the Help panel at the bottom of the editor
window. This type of help is displayed once you have selected a command from the Code Assistant list, or you have typed the
command name in full – as you reach the last character of the command the syntax help is shown. For example, if you type the
Domethod command, its syntax is show in the Help panel at the bottom of the editor window.

Figure 93:

You can hide the command syntax by unchecking the “Show Syntax Strings” option on the Viewmenu.

172



Method Tips

Method Tips or tooltips are displayed when you hover the pointer or I-beam over a method name in the Method Editor, including
methods listed in the Method tree list on the left of the editor window:

Figure 94:

or method names that are being called in your code (assuming Omnis can identify the method being called).

Figure 95:

The method name and its code are displayed in the popup tip window and you can scroll longer methods using the mouse or
trackpad. You can hold down the Shift key to keep the tooltip window openwhen youmove the pointer, which allows you to scroll
the windowmore easily.

The Method tips provide a useful preview of a method, without having to switch away from the current/selected method you’re
working on. You can dismiss the method tip by moving the mouse away from the method name and tooltip, or by pressing
Escape.

There are three entries in config.json that control the size of the Method tips:

• “maxWidthOfMethodTooltip”: 500 (value in pixels)

• “maxHeightOfMethodTooltipGeneralInformation”: 100 (value in pixels)

• “maxVisibleMethodLinesInMethodTooltip”: 20 (number of lines)

When used with the method tree list, the maximum width used is the width of the code edit text field if it is wider than the
maxWidthOfMethodTooltip config item.

Code Folding

The Code Editor allows you to fold and unfold (collapse and expand) blocks of code in order to assist with readability and code
manipulation in general. If a code block can be folded, a ‘-‘ icon appears in the margin at the start of the block: when a block
has been folded a ‘+’ icon is shown next to the first line of the block, and directly under this is shown a “badge” (an ellipsis icon)
representing the hidden code content.

The Code Editor shows a fold icon ( ) in the left margin which shows that a code block can be folded: you can click on the icon

to fold the block, and the icon will toggle to show an unfold icon ( ) to show that the block can be unfolded. For example, this
is a code line before code folding:

173



Figure 96:

Figure 97:

When the mouse is over the fold icon, Omnis highlights the block that will be folded, for example:

After you have clicked the fold icon, and the code has been folded, the content is shown as a badge (ellipsis) representing the
content of the folded block:

Figure 98:

When the mouse is over the badge icon, Omnis displays a tooltip to show its content (this is like the method content tooltips
already in Studio 10.1), but note that this tooltip is always displayed, irrespective of the Show Method Content Tips option. For
example:

Just like method content tips, pressing the Shift key while the tooltip is displayed locks it in place until you remove the Shift key
and move the mouse away. You can select the text in the tooltip and copy it to the clipboard.

You can also press the Control (Windows) or Command (macOS) key while the mouse is over a fold or unfold icon. In this case, if
the command has multiple blocks that can be folded or unfolded, Omnis highlights all the affected blocks, and pressing the fold
or unfold icon while all blocks are highlighted opens or closes all the highlighted blocks. For example:

Code folding is only available in a block when there are at least twomethod lines: for a block that has a single line only, folding is
not enabled for the block, so the folding icons are not shown, and the options in the folding menu are disabled.

Which Commands can be folded?

The following Omnis commands can be folded:

• All If commands, folded until the next Else, Else If or End If command in the same block.

• Else, folded until the next End If command in the same block.

• All Else If commands, folded until the next Else, Else If or End If command in the same block.

• All While commands, folded until the terminating EndWhile command of the block.

• Both For commands, folded until the terminating End For command of the block.

• Repeat, folded until the terminating Until… command of the block.

• Switch, folded until the terminating End Switch command of the block.

• Case, folded until the next Case, Default or End Switch command in the same block.

• Default, folded until the next Case, Default or End Switch command in the same block.

• Begin reversible block, folded until the terminating End reversible block command of the block.

• Begin critical block, folded until the terminating End critical block command of the block.

• On andOn default, folded until the next On or On default command, or the end of themethod if there is no such command.

174



Figure 99:

Figure 100:

Code folding menu

In addition to using the fold or unfold icons in the left margin, you can use the fold/unfold options on a new Code folding menu,
that can be usedwhen the code editor has the focus. In this case, most of themenu items apply to the block containing the single
line of code that is currently selected.

The Code folding menu is present on the Modify menu of the Method Editor and the Remote Debugger window for a remote
debugger edit session. For a remote debugger debug session, there is a new Code menu on the toolbar, containing the Code
folding menu commands.

The menu commands are:

Menu command Description

Fold Block Equivalent to pressing the Fold icon to fold the block.
Fold Block And Related Blocks Equivalent to pressing the Fold icon while holding the

Control (Windows) or Command (macOS) key to fold
the block and other related blocks that can be folded.

Unfold Block Equivalent to pressing the Unfold icon to unfold the
block.

Unfold Block And Related Blocks Equivalent to pressing the Unfold icon while holding
the Control (Windows) or Command (macOS) key to
unfold the block and other related blocks that can be
unfolded.

Unfold All Blocks Unfolds all folded blocks in the method.

The menu items also have shortcuts:

175



Windows macOS

You can configure the keys for these shortcuts using the keys preference item, in the methodEditorAndRemoteDebugger group
(in the keys.json file):

Preference item Key(s)

codeFold Opt + Up Arrow
codeFoldRelated Cmnd + Opt + Up Arrow
codeUnfold Opt + Down Arrow
codeUnfoldAll Cmnd + Opt + O
codeUnfoldRelated Cmnd + Opt + Down Arrow

Selecting Code using the pointer

You can select the badge representing a code folded block, either using the keyboard or using the mouse. When the badge is
selected, the content of the block it represents is selected. In addition, double clicking on the badge selects its content.

When Omnis needs to select a line in a folded block, e.g. when hitting a breakpoint, or clicking on a stack list entry, the editor
automatically unfolds the block (and any containing blocks) in order to display the line correctly.

Entry Behavior

As soon as an edit would affect a folded block, Omnis automatically unfolds the block (and any containing blocks) before applying
the edit.

Saving the Code Folding State

Omnis stores the code folding state with the method.

When using the method editor, the state is saved back to the class with the method, provided that the editor is not operating in
read-only mode. In the latter case, you can still fold or unfold methods in a read-only class, but changes to the code folding state
are not saved to the class.

When using the remote debugger, changes to the code folding state are saved locally to the cache of methods loaded from the
server. However, once you re-open the debug session, these changes are lost; the one exception to this is any code folding that
has been applied while editing a method in a remote debug edit session.

Therefore, you should consider code folding a semi-permanent state, since as soon as Omnis needs to display the contents of a
folded block for some reason, it will open the block.

Removing Code Folding

You can remove code folding from all the methods in a class or all classes in a library. All classes that can contain methods have
themethod $removecodefolding which removes code folding from all methods in the class, and returns the number of methods
from which code folding was removed. For example, to remove code folding from all methods in all classes in a library, execute:
Do $libs.library.$classes.$sendall($ref.$removecodefolding())

JSON Export

The option ‘exportcodefoldingstate’ in the $exportimportjsonoptions Omnis Preference ($root.$prefs) controls whether or not the
code-folding state in the methods in your library is exported; the option is set to false by default so the code folding state is not
exported.

If the code folding state is exported, Omnis appends the string $… to the inline comment of commands that correspond to a code
folded block. This allows Omnis to regenerate the code folding state of the method when it imports the class JSON.

176



Word Wrapping

Long lines of code displayed in the Code Editor will wrap onto the next line automatically, and the text that wraps is drawn with
an indent tomake it clear that it belongs to the wrapped line (you can disable this behavior, so code lines are not wrapped, which
corresponds to behavior in versions prior to Studio 10.2).

TheWord Wrap option on the Viewmenu of the method editor and remote debugger windows allows you to toggle Word wrap-
ping; the option is turned on by default, and the state is saved with the window setup. When Word Wrap is enabled there is no
horizontal scrollbar in the code editor window and long code lines wrap to the next line at suitable break characters, or they wrap
if there is no break character.

For method content tooltips, word wrapping is always on, irrespective of the setting in the window for which the tooltip is being
generated.

Inline comment wrapping & color

When word wrap is turned on and the Code editor encounters an inline comment, it tries to shrink the gap between the end of
the code line and the inline comment to avoid wrapping the code line if possible: if the inline comment is still too long to fit onto
the line it will wrap onto the next line, under the code line and is displayed indented.

Setting Breakpoints

You can set a Breakpoint, a One-time breakpoint or the Go Point using the pointer (to click on the codemargin) and the keyboard:

• You can set a Breakpoint using a single click in the left margin of the code editor, next to any line of code where you want
the breakpoint.

• You can set a One-time breakpoint using Ctrl/Cmnd+click next to the line of code

• You can set the Go point using Shift+click next to the line of code

(Existing users should note that you can no longer set the Go point by double-clicking in the left-hand margin.)

Alternatively, you can use the Breakpoint context menu by right-clicking in the left margin of the code editor, next to any line of
code, and selecting the option.

Figure 101:

In addition, the Breakpoint context menu shows Delete and Disable/Enable breakpoint commands when there is a breakpoint
already set for the line. It also shows the commands to Clear/Disable/Enable all breakpoints. And if there is an active stack, as well
as set Go point, there is a command to Clear the stack.

Conditional Breakpoints

The Set Condition… option in the Breakpoint context menu (and the Breakpoints toolbar menu or Breakpoint list context menu)
allows you to add conditions or a hit count to Breakpoints. You can enter a calculation that must evaluate to true (non-zero) for

177



the breakpoint to be hit, and/or a number of hits that are to be ignored before the breakpoint is hit. The calculation and/or ignore
count is displayed in parentheses in the breakpoint list.

The remote debugger displays the remote debug breakpoint, although it does not include a hit count.

The #DEBUGGER system table stores the current local debugger code breakpoint locations, whichmeans code breakpoints (and
their conditions) are restored when a library is reopened. #DEBUGGER does not appear in the Studio Browser class list, but it is
included in $clib.$classes.

Menus and Keyboard Shortcuts

The Method Editor menus have been re-worked and improved for Studio 10 and include several new commands or options. The
keyboard shortcut keys for some options have changed and these are listed below where they occur – there is a summary of the
keyboard shortcuts at the end of this section. Where there are significant changes, an image of the menu from Studio 8 and
Studio 10 is shown, so you can compare them.

View Menu

The View menu in the Method Editor has several changes or additions: some of the new options are discussed elsewhere. The
Show Debug Palette and Show Chroma Coding options have been removed: the latter option has been replaced by a more
comprehensive set of color options stored in the default theme in the IDE (you can change the theme in the Studio Browser Hub
under Options, including a dark theme which may be more suited to working in the code editor).

Goto Panel

The Goto Panel option on the View menu lets you select a different pane in the Variables list (with keyboard shortcuts Ctrl+0 to
5). It also lets you switch the insertion point to the Code text entry area (Ctrl+7) ready to enter some code, or back to the Method
Tree list from the code entry area (Ctrl+8).

Debug Menu

The Debugmenu lets you run the current method via the Execute Method option, or test the current Remote form (or window)
using the Test Form option.

Next are the debug options for Go, Step, Step Over, and Trace, plus you can Set Go Point from the Debugmenu (or press Shift+F2),
or use the From Line, To Line or Step Out options. The same options are available in the debug toolbar at the top of the code
editing area.

As your codeexecutes thedebuggerwill scroll automatically to the center of the codeentry areawhen the current line is positioned
at around 75% of the visible lines.

TheBreak On <event> option allows you to select which events will stop the debugger while debugging remote form andwindow
instances. (note IDE windows do not cause a break).

Modify Menu

TheModifymenu contains new submenus for Errors and Find And Replace. The Execute Method option has beenmoved to the
Debug menu, while the Goto panel and Fonts options have been moved to the View menu. The various Line options have been
moved to the Line submenu.

The Comment & Uncomment options have been merged and moved to the Selection submenu. For classes which have an
associated editor, the Modify This Class option opens the class editor, such as a JavaScript remote form: the shortcut key is
Shift+F8.

There are additional entries that depend on the focus, as follows.

• If the focus is on the Method Tree (on the left, containing a list of methods for the class), the Modify menu contains a
submenu called Method, which allows you to Insert Method (at the end of the method list, or Before or After the current
method), or Delete Selected Methods

• If the focus is on the Code text entry area (on the right), the Modify menu contains submenus called Line and Selection:
see later in this section for info.

Errors Menu

The Modify>>Errors submenu is new and contains Next error, Previous error and Fix error commands, that can be used instead
of the buttons on the editor panel. These also have keyboard shortcuts.

Note that when the focus is on the method tree, this menu is only present when only one method is selected.

178



Figure 102:

Figure 103:

179



Find And Replace Menu

TheModify>>Find andReplace submenuallows you toperforma local find and replace on themethod text for the current selected
method in the Code Editor. Note that when the focus is on the method tree, this menu is only present when only one method is
selected. This menu also allows you to toggle options such as match case.

Figure 104:

Themenu commands also have keyboard shortcuts, that is, Ctrl+F opens the Find panel, Ctrl+H opens Find and Replace, or Ctrl+G
finds next. When you first select the Find or Replace command, the editor opens a panel immediately above the code entry field,
where you can enter the find (and replace) text.

Figure 105:

Search Panel buttons

The panel also contains Search buttons that perform the same operations as the menu items, as follows:

Operation keypress

Match case Alt+C
Match whole words Alt+W
Use regular expressions Alt+E
Find Next or Previous Ctrl+G or Ctrl+Shift+G(to Find Previous, you can shift click the button)

180



Operation keypress

Replace next Alt+R
Replace all Alt+A

As you type characters into the find text field, the code text area dynamically updates to reflect the found text. It highlights the
found text, and it also adds a green marker to the vertical scrollbar, in a similar way to the error marker, drawn to the right of the
error marker, e.g. the text ‘lresponsedetails’ is searched and highlighted in the above image.

After closing the Find (or Find and Replace) panel, you can still use Find Next and Find Previous, although the editor no longer
highlights all matches.

Jump to Search or Error Item

OnWindows, you can Ctrl-click in the scrollbar to jump to that position in the code text, i.e. Ctrl-clicking on a find or error marker
goes to the search item or error in the code text. OnmacOS, the general system preference for scrolling can be set to Jump to the
position that has been clicked, or you can Alt+click to achieve the same thing.

Line Menu

The options in the Line submenu replace several options in theModifymenu in previous versions, including Insert Line After, Insert
Line Before, and Toggle Comment. Note that you can Right-click on the current or selected lines of code to open a context menu
with similar options.

The Comment and Uncomment line options available in previous versions have been merged into a single Toggle Comment
command, which has the single keyboard shortcut Ctrl+/ for commenting or uncommenting lines.

The LineMenu contains the newoption Select Linewhich selects all the text in the current line (triple-clicking on a line also selects
the line), and the Delete Current Line option which deletes the current line (containing the cursor or word selection), or all lines
where multiple lines are selected.

The Duplicate option duplicates the current line (if no text is selected) or all selected lines, and places the duplicate line(s) imme-
diately below the original line(s). The command also selects the duplicate text, which then allows you to use repeated Duplicate
commands to generate multiple copies.

The Goto Line Number option opens a box to allow you to enter a line number to go to. You can show line numbers in the code
area using the Show Line Numbers option in the Viewmenu.

Selection Menu

The Modify>>Selection submenu contains new commands Upper Case and Lower Case: note that these options only change
case for text that does not have a single canonical form, e.g. text in strings.

In addition, the Selection submenu contains the option Select Word which selects the word containing the insertion point, or
where the insertion point is at the beginning or end of a word: in the latter case the word to the right or left of the insertion point
is selected.

Method Editor Context Menu

The Method Editor context menu (opened when you right-click on the Code text area) has a new hierarchical menu called Paste
as. You can use this to paste multiple lines of text from the clipboard into Sta:, Text: or JavaScript: commands. The Paste as
hierarchical menu items are enabled when the caret is positioned on an empty line.

Keyboard Shortcuts

There are many keyboard shortcuts to allow you write Omnis code from the keyboard alone, without having to use the pointer.
The most significant menu options in the Method Editor have keyboard shortcuts, including most of the options in the Modify
and Debugmenus, as well as the Find and Replace options.

The following keyboard shortcuts are available, but you should be aware that several of them are context specific so will only work
if the focus is on a certain area in the Method Editor.

Windows shortcut macOS shortcut Description Keys.json item

Alt+A Cmnd+Opt+A Replace all in method replaceAllInMethod
Alt+B Cmnd+Opt+B Disable breakpoint disableBreakpoint

181



Windows shortcut macOS shortcut Description Keys.json item

Alt+C Cmnd+Opt+C Match case matchCase
Alt+E Cmnd+Opt+E Enable breakpoint enableBreakpoint
Alt+F Cmnd+Opt+F Disable all breakpoints disableAllBreakpoints
Alt+G Cmnd+Opt+G Enable all breakpoints enableAllBreakpoints
Alt+H Cmnd+Opt+H Open Edit helper dialog openEditHelperDialog
Alt+I Cmnd+Opt+I Debugger interrupt debuggerInterrupt
Alt+J Cmnd+Opt+J Set list selection setListSelection
Alt+K Cmnd+Opt+K Clear method stack clearMethodStack
Alt+L Cmnd+Opt+L Set list current line setListCurrentLine
Alt+M Cmnd+Opt+M Toggle read-only mode toggleReadOnlyMode
Alt+N Cmnd+Opt+N Toggle null and empty toggleNullAndEmpty
Alt+R Cmnd+Opt+R Replace next in method replaceNextInMethod
Alt+S Cmnd+Opt+S Save modified variable saveModifiedVariable
Alt+T Cmnd+Opt+T Set breakpoint condition setBreakpointCondition
Alt+U Cmnd+Opt+U Duplicate line duplicateLine
Alt+V Cmnd+Opt+V Go to debugger variables gotoDebuggerVariables
Alt+W Cmnd+Opt+W Whole words wholeWords
Alt+X Cmnd+Opt+X Regular expression regularExpression
Alt+Y Cmnd+Opt+Y Side by side sideBySide
Alt+Z Cmnd+Opt+Z Binary edit operations binaryEditOperations
Ctrl+/ Cmnd+/ Toggle comment toggleComment
Ctrl+[ Cmnd+[ Move up stack moveUpStack
Ctrl+] Cmnd+] Move down stack moveDownStack
Ctrl+0 Cmnd+Opt+0 Go to task variables gotoTaskVariables
Ctrl+1 Cmnd+Opt+1 Go to class variables gotoClassVariables
Ctrl+2 Cmnd+Opt+2 Go to instance variables gotoInstanceVariables
Ctrl+3 Cmnd+Opt+3 Go to local variables gotoLocalVariables
Ctrl+4 Cmnd+Opt+4 Go to parameters gotoParameters
Ctrl+5 Cmnd+Opt+5 Go to documentation gotoDocumentation
Ctrl+6 Cmnd+Opt+6 Go to RESTful panel gotoRESTfulPanel
Ctrl+7 Cmnd+Opt+7 Go to code gotoCode
Ctrl+8 Cmnd+Opt+8 Go to method tree gotoMethodTree
Ctrl+D Cmnd+D Select word selectWord
Ctrl+E Cmnd+E Execute method executeMethod
Ctrl+F Cmnd+F Find in method findInMethod
Ctrl+G Cmnd+G Find next in method findNextInMethod
Ctrl+H Cmnd+H Replace in method replaceInMethod
Ctrl+I Cmnd+I Insert before insertBefore
Ctrl+L Cmnd+L Go to line number gotoLineNumber
Ctrl+M Cmnd+M Insert method at end insertMethodAtEnd
Ctrl+N Cmnd+N Insert after insertAfter
Ctrl+R Cmnd+R Next error nextError
Ctrl+U Cmnd+U Lower case selection lowerCaseSelection
Ctrl+Shift+B Cmnd+Shift+B Toggle breakpoint toggleBreakpoint
Ctrl+Shift+C Cmnd+Shift+C Clear code breakpoints clearCodeBreakpoints
Ctrl+Shift+D Cmnd+Shift+D Delete selected methods deleteSelectedMethods
Ctrl+Shift+E Cmnd+Shift+E Trace trace
Ctrl+Shift+G Cmnd+Shift+G Find previous in method findPreviousInMethod
Ctrl+Shift+I Cmnd+Shift+I Inherit and override method inheritAndOverrideMethod
Ctrl+Shift+J Cmnd+Shift+J Clear variable breakpoints clearVariableBreakpoints
Ctrl+Shift+K Cmnd+Shift+K Delete current line deleteCurrentLine
Ctrl+Shift+L Cmnd+Shift+L Select line selectLine
Ctrl+Shift+M Cmnd+Shift+M Superclass methods superclassMethods
Ctrl+Shift+N Cmnd+Shift+N Showmethod tree showMethodTree
Ctrl+Shift+O Cmnd+Shift+O Toggle one-time breakpoint toggleOneTimeBreakpoint
Ctrl+Shift+R Cmnd+Shift+R Previous error previousError
Ctrl+Shift+S Cmnd+Shift+S Step step
Ctrl+Shift+T Cmnd+Shift+T Step out stepOut
Ctrl+Shift+U Cmnd+Shift+U Upper case selection upperCaseSelection
Ctrl+Shift+V Cmnd+Shift+V Step over stepOver
F1 F1 Opens the Omnis Help using the syntax item under the pointer (Not configurable)
F3 F3 Modify this class modifyThisClass

182



Windows shortcut macOS shortcut Description Keys.json item

F5 F5 Go point go
F7 F7 Fix error fixError
F8 F8 Modify specified class modifySpecifiedClass
F10 F10 Method history backwards methodHistoryBackwards
Shift+F1 Shift+F1 Opens the Omnis Help using the syntax item under the pointer (Not configurable)
Shift+F2 Shift+F2 Set Go point setGoPoint
Shift+F4 Shift+F4 Pin bottom panel pinBottomPanel
Shift+F5 Shift+F5 Hide bottom panel hideBottomPanel
Shift+F6 Shift+F6 Show editor panel showEditorPanel
Shift+F7 Shift+F7 Show debug panel showDebugPanel
Shift+F9 Shift+F9 Show Variable panel showVariablePanel
Shift+F10 Shift+F10 Method history forwards methodHistoryForwards

Keyboard Shortcut Configuration

The keyboard shortcuts are stored in the $keys property in the Omnis Preferences ($prefs), which you can edit in the Property
Manager to change the keyboard shortcuts. Note this feature replaces the Edit Keys option on the Debug menu in previous
versions, and it also contains the keyboard shortcuts for Edit fields and the Edit menu.

The first time you edit $keys and press OK, Omnis generates a file called keys.json in the Studio folder, that records the configu-
ration of the keyboard shortcuts (as listed above): if you don’t make any changes in $keys the default keyboard shortcuts will be
stored in keys.json.

You can edit the Shortcut Keys options by selecting $keys in the Property Manager (find it under the Omnis Preferences in the
Studio Browser), then select ‘methodEditorAndRemoteDebugger’.

To edit a value, you can use the Delete or Backspace key to clear the current shortcut, and then type the desired shortcut key
combination. You can use all the standard Key modifiers (Ctrl, Cmnd, Alt, Option, Shift, etc) as well as all the letter and number
keys, plus the numbered Function keys. In addition, you can use the Enter and Return keys in conjunction with Ctrl/Cmnd, and
optionally Shift or Alt/Option, for method editor menu shortcuts.

The $keys preference also contains the shortcut keys for Edit fields (editFields), which are documented under the JavaScript Edit
Control, and the Edit menu (editMenu) which has the following shortcut keys:

Shortcut Key Description keys.json item

Ctrl+Y Redo last operation Redo
Ctrl+Shift+F Find and Replace findAndReplace
Ctrl+Shift+G Find Next findNext

Word Selection

You can double-click on a word to select it, or double-click and drag the pointer to select multiple words. If you double-click on
a single word that is enclosed in quotes (e.g. like the foo in Calculate lcVar as “foo”), the quotes will not be selected. In previous
versions the quotes would have been selected, but if want to enable the old behavior you can set a new option “entryFieldsInclud-
eQuotesWhenSelectingWords” in the “defaults” section of config.json to true: the option defaults to false which enables the new
behaviour.

Commenting / Uncommenting Lines

You can comment or uncomment a single method line by clicking anywhere in the line (or you can select the whole line) and
selecting the Toggle Comment option, or press the Ctrl+/ shortcut. To comment or uncommentmultiple lines, you need to select
all the lines and then use the Toggle Comment option: in this case, all the affected lines will remain selected after toggling their
comment state. Commenting a single empty line does not select the commented line: in this case (and when “Move to next line
after toggle comment” is off, see below), the caret is positioned after the comment character and the space, ready for you to type
the comment.

You can force the cursor tomove down to the line after the commented/uncommented line or block of selected lines by enabling
the Move To Next Line After Toggle Comment option in the Line menu (the option is off by default): the state of this option is
saved with the Window Setup.

Empty method lines are not commented out when using the Toggle comment command or Shortcut key: this applies when
multiple selected lines may include empty lines.

183



Figure 106:

Figure 107:

Figure 108:

184



Figure 109:

Language Syntax

There are a number of changes to the Omnis language syntax that facilitate direct text entry of commands, and which enable the
new Omnis Studio 10.0 language parser to function properly.

Language Keywords

The following language keywords cannot be used as variable names:

as at flag
for from into
on returns sec
step to until

During library conversion (to Studio 10 or above), any variable names using these keywords are appendedwith an integer starting
at 1.

Options

Omnis stores the order in which “checkbox” and “radio button” command options are specified as part of the method command
(remember that the Omnis language is tokenized, and does not store raw text as entered by the developer). This allows you to
enter the options as text in any order.

The “Select matches (OR)” and “Deselect non-matches (AND)” options of the Search list command have been renamed to “Se-
lect matches OR” and “Deselect non-matches AND”. This prevents the parentheses in these option names from interfering with
language parsing.

Braces

Braces have been removed from all commands, except for commands like OKmessage, which require three components (a field
name or square bracket calculation, options and a calculation). For these commands, when they use square bracket calculations,
you must escape ( ) { } characters in the calculation outside square brackets if there is no text after the parentheses. In this case,
these characters need to be escaped using square bracket notation, e.g. [‘(‘] escapes (.

Entering Quotes, Braces, and Square Brackets

Whenyouhaveused anopeningquote, or an openbrace {, and then typed someparameters, theCodeEditor adds the appropriate
closing character.

However, when entering an open square bracket in the Sta: command, the close square bracket (]) is not added automatically.

When you split a text block command parameter using Return (carriage return) the “Sta:” command prefix is inserted into the
text block automatically.

185



Text: and parenthesis

If Omnis encounters an open bracket ( at the end of a command line, it prompts for options (Carriage return etc). If there is another
character after the (, without a trailing comma, Omnis stops looking for options, and treats the characters as text. This leaves the
special case of ( on its own at the end of the text. You can enter this using square bracket notation with a constant [kOpenParen].
There is also a kCloseParen constant.

Unicode Characters

The Code Editor selects a smaller font size, if necessary, for all Unicode characters >= 0x250 contained in a string. On retina displays
(on Win and macOS), the Code Editor uses the default font. On non-retina displays, it may be necessary to increase the font size
to get a reasonable display of Unicode characters.

Character Constants

You can insert the # character, as well as left and right square bracket into a string/text using the constants kHash, kLeftSB and
kRightSB. If you wish to create a constant for double hash, you can initialise a variable with the value con(kHash,kHash).

Comments

To enter a new comment on an empty line, you can type # and then the comment text, with or without a space after the #. (For
backwards compatibility, you can also type ; to create a new comment, but the comment is marked with #).

To enter an inline comment, press the space key followed by ## at the end of a code line, and then enter the comment text. Inline
comments are positioned over on the right of the code entry area: they are left-tab aligned according to a tab which is indicated
by a small marker at the top of the code entry area: you can drag this marker to reset the tab position.

The Sta:, Text: and JavaScript: commands (that generate a text block) no longer allow inline comments (see note in Library Con-
version section about inline comments for the Sta: command). This allows all text after a colon to be treated as significant text,
and to be added to the text block, with the exception of the options string specifying the line delimiter for the Text: command.

If you want to include “space##” in a string you need to enter <space>## in the string and it will not be interpreted as an inline
comment.

Commenting and Uncommenting code

You can “comment” or “uncomment” the current method line (containing the cursor) or any selected method line or lines using
the Toggle Comment option in the Modify menu, or using the keyboard shortcut Ctrl-/ (forward slash) – note the same menu
option or keypress can be used to both comment or uncommentmethod lines or comments as appropriate. Commented lines
must have valid syntax to be uncommented, otherwise they will remain commented out.

Errors

As the newMethod Editor allows any text to be entered, it is possible to enter and store commands that contain errors. Internally,
these are stored in the method with a new command type, and will cause an error to be reported if you try to export the method
to JSON, or if you try to execute them.

The Find and replace dialoghas a newoption (Only searchmethod lines containing an error), which you canuse to find commands
with an error. When you check this option, the dialog also checks the regular expression option, and sets the find string to the
regular expression “.*”.

In general, there should not be much need to leave erroneous commands stored in a method for very long - the editor gives
immediate feedback about errors, so in practice it makes sense to fix them as you code. The Find and replace dialog option
provides a means to double check that all is well with a library. Omnis Studio 10.0 takes this approach (rather than for example
marking all classeswith an error count) since errors should be verymuch an exceptional case once coding of amethod is complete.

Modified Commands

The step interval for the For command is assumed to be 1, so when entering a For loop and you want the step interval to be 1, you
no longer need to enter this. If you need a step interval other than 1 you need to enter this into your code.

186



Obsolete Commands

Any commands that weremarked as ‘Obsolete Commands’ in previous versions (listed in the ‘Obsolete Commands…’ group) have
been removed from the Omnis language and are shown commented out in your Omnis code. The Translate input/output com-
mand is also obsolete and will be commented out.

The Call method OBSOLETE COMMAND will be replaced by the Do code method command and the method name.

There is a complete list of obsolete commands that have been deleted in this version in Appendix A in this manual.

Library Conversion

The changes in language syntax mean that Omnis performs a class-by-class conversion of a library created using Omnis Studio
8.1.x or earlier. The following items are converted:

• Any obsolete commands are commented out. In previous versions these commands were marked with the “OBSOLETE
COMMAND” suffix and listed in the ‘Obsolete commands’ group, and some of these commands have been removed from
Omnis, so cannot be used in your code. The Appendix in this manual lists all of the obsolete commands that have been
removed in Studio 10.x or above and will be commented out.

• The prefix for comments is now #, converted from ;
A space is inserted after the # at the start of comments, therefore comments are # abc rather than #abc after conversion.

• Inline comments for JavaScript:, Text:, and Sta: commands are no longer allowed, since all the text after the : is treated as
part of the statement or text. Therefore, on conversion, all inline comments are moved to the next line and inserted as a
standard comment (see below).

• Square bracket calculations (ctySquare, ctyParmlist4 etc) are converted so that any text outside square brackets does not
contain unescaped characters () {}.

• Any instances of ” ##” are detected in method lines and reported as a warning (they are probably not editable as the parser
will treat the text after this sequence as the inline comment).

• Any variables which are named using a language keyword (see earlier for a list) are renamed, by appending an integer to
them (starting with 1 until a new unique name in its context is created).

Inline Comments for JavaScript:, Text: and Sta: commands

By default, the conversion process will move all inline comments from JavaScript:, Text: and Sta: commands to the next line in the
method, after the original line containing the inline comment. There are three new options in the “ide” section of config.json to
allow you to control how inline comments are treated.

• “libConverterAppendsDiscardedInlineComments”
When true (the default), if the inline commentwould otherwise be discarded, the converter appends a comment command
after the JavaScript:, Text: or Sta: command, containing the inline comment.

• “libConverterAddsInlineCommentToStaCommandParameter”
Note that if you use “libConverterAddsInlineCommentToStaCommandParameter” to convert inline comments for Sta: com-
mands, then this option will not affect Sta: commands: see below.

• “libConverterInsertsDiscardedInlineComments”
moves and inserts the inline comment before the original line containing the inline comment (however, if libConverterAp-
pendsDiscardedInlineComments is set to true, libConverterInsertsDiscardedInlineComments is ignored).

Inline Comments Sta: commands

If youwant to keep inline comments as part of the SQL text for Sta: commands, you can set the item “libConverterAddsInlineCom-
mentToStaCommandParameter” in the ‘ide’ section of config.json to a formatting string, e.g. ” – %” or ” /* % */“. Omnis replaces the
first % place-holder in the formatting string with the inline comment, and appends the resulting string to the parameter of the
Sta: command. Note that if the resulting text does not tokenize, e.g. if the inline comment contains text like [#S333] which does
not tokenize, then the comment will be discarded.

If you leave “libConverterAddsInlineCommentToStaCommandParameter” empty (or supply a string that does not include the %
character), then Omnis will discard the inline comment when converting Sta: commands.

SQL comments for the Sta: command are colored, including /* */ and – comments. The “syntaxColorProbableSQLComments”
option in the ‘ide’ section of config.json is enabled by default, but can be set to kFalse to disable coloring.

187



Call Method OBSOLETE COMMAND

The Call method OBSOLETE COMMAND is converted to the Do code method command during conversion.

Set return value OBSOLETE COMMAND

During conversion, consecutive Set return value OBSOLETE COMMAND value and Quit method commands (the latter with an
empty parameter) are combined into a single command Quit method value. Note that when checking for consecutive com-
mands, Omnis skips comments and empty lines.

Library Conversion Logs

The converter adds an entry to the Find andReplace log that allows you to quickly navigate to each changemade by the converter
by double-clicking on a line in the log. In addition, the converter writes a log file to the ‘conversion’ folder in the logs folder in the
data part of the Studio tree. The log file provides a more permanent record of the changes applied to the converted library. Note
that Omnis does not write log entries to record where spaces were inserted at the start of comments.

JSON generated libraries

When Studio 10 imports JSON generated with Studio 8.1, it parses methods using the old Studio 8.1 parser, and then applies the
same conversion steps as above to the imported classes. Changes applied by this conversion are written to the Find and Replace
log only.

Method Editor Coloring

The colors used in theMethod Editor window can be changed by changing the theme in the Hub>>Options in the Studio Browser,
or configuredby editing the $appearancepreference in thePropertyManager (these are stored in appearance.json and the various
theme files): the method editor colors are stored in the IDEmethodEditor group in the appearance.json file. The following theme
colors (and settings) are available:

Color option Description

methodcurrentlinebackgroundcolor The background color used to display the line containing the caret in the Method Editor
methodeditorcodebackgroundcolor The background color for the method editor code area
methodeditorcodereadonlybackgroundcolor The background color for the method editor code area in read-only mode
methodeditorcodeleftmarginbackgroundcolor The background color for the left margin in the Code Editor (where the Go point and breakpoints are shown)
methodhighlightcolor The color of selected method text in the Method Editor when the control displaying the method text has the

focus
methodhighlightnofocuscolor The color of selected method text in the Method Editor when the control displaying the method text does not

have the focus
methodeditorfadealpha Value 0-255; the fade level of the method editor when editing a variable value in the debugger variable panel
overriddenmethodstyle Overridden method style
overriddenbuiltinmethodstyle Overridden built-in method style
syntaxwordhighlightcolor Color used to highlight syntax elements, e.g. click on a variable name in the code editor to highlight all mentions

of the variable
codeassistantpopupcolor Background color of Code assistant popup
treelinesmatchingsearchcolor Background color of unselected method editor tree lines that match the current method search
executionpositioncolor A line is drawn above and below the Go point line and Call stack return point using this color

Syntax Coloring

The colors used in the Chroma Coding or code syntax in the Method Editor can be changed by changing the theme in the
Hub>>Options in the Studio Browser, or configured by editing the $appearance preference in the Property Manager (these are
stored in appearance.json and the various theme files): themethod syntax colors are stored in the IDEmethodSyntax group in the
appearance.json file. The following theme colors (and settings) are available:

Color option Description

badsyntaxcolor bad method syntax indicators
bracketbackcolorbracketcolor Brackets color and background color
classvariablecolorclassvairablestyle Class variables
commentcolorcommentstyle Comments
constantcolorconstantstyle Constants (e.g. kTrue)

188



Color option Description

ctrlkeywordcolorctrlkeywordstyle Ctrl keyword
currentblockcolorcurrentblockstyle Current block
eventparametercoloreventparameterstyle Event parameter variables
functioncolorfunctionstyle Built-in and external functions
hashvariablecolorhashvariablestyle Hash variables
instancevariablecolorinstancevariablestyle Instance variables
keywordcolorkeywordstyle Keywords
localvariablecolorlocalvariablestyle Local variables
methodothertextcolor Color for all other text with no specific syntax color, e.g. separators, dots, etc.
notationcolornotationstyle Built-in notation attributes
optioncoloroptionstyle Command options (e.g. Sound bell for OK message; corresponding to check boxes or radio buttons in the pre-Studio

10 editor)
parametervariablecolorparametervariablestyle Method parameter variables
resolvednamecolorresolvednamestyleunesolvednamecolorunresolvednamestyleuseresolvednamecolorsandstylesField names and parameters that are “resolved” or “unresolved”; see below

stringcolorstringstyle Strings
taskvariablecolortaskvariablestyle Task variables
variablecolorvariablestyle Color for other variables, including file class variables (field names), and other components of a variable string, e.g. a

list column name

Syntax Highlighting

When you click in a syntax element (variable, notation name, command name (not block commands) or function name), the code
editor performs a find and highlights instances of the element in the current method (note the find highlighting will override the
syntax highlighting if the Find or Find and Replace panel is displayed).

Figure 110:

The view menu contains the option “Highlight Syntax Words” which is checked by default. There is a new color op-
tion“syntaxwordhighlightcolor” in the “IDEmethodEditor” group in the $appearance Omnis preference, and stored in the
appearance.json file.

Resolved Name Colors

There are colors and styles to highlight field names and parameters that are “resolved” or “unresolved” for certain commands
that reference field names and notation group members. The Code Editor can (defaults to on) display names it has resolved us-
ing resolvednamecolor and resolvednamestyle, and names it has failed to resolve using unresolvednamecolor and unresolved-
namestyle; all members are in the IDEmethodSyntax section of appearance.json.

If useresolvednamecolorsandstyles is true, the Code Editor tries to resolve certain names, and if successful draws them using the
resolvedname color and style; if unsuccessful it draws them using the unresolvedname color and style.

Examples ofwhere this applies are theparameters of theRedraw command,Queue set current field command, names in notation
such as $cinst.$objs.name, and method names in calls such as $cinst.$mymethod().

If a name is displayed using the unresolvedname color and style it does not necessarily mean there is an issue, e.g. it could be a
notation reference such as $cinst.$objs.name, where the object is dynamically added and named at runtime.

189



JavaScript: Editor

In addition to themain interface changes in theMethod Editor, a JavaScript editor has been added to theMethod Editor in Studio
10 to allow you to enter a whole block of JavaScript code directly into the JavaScript: command, rather than line by line as in
previous versions. The new JavaScript editor will popupwhenever you edit a command line containing the JavaScript: command.
The editor also allows you to enter a SQL statement if the Sta: command is selected: in this case, the editor will switch to SQL
mode.

To edit or enter some JavaScript, click into or tab to a JavaScript: command line in the text entry panel, or select awhole JavaScript:
command line or multiple lines, and either

• Press Alt+H to open the JavaScript editor, which in this case is the same as clicking on the Helper dialog button at the
bottom of the Method Editor window

• Or select Open JavaScript Editor from theModify>>Selection submenu

Figure 111:

The content of the JavaScript editor is formed by concatenating the contiguous JavaScript: command(s) that are selected in the
list. This allows you to edit or insert a contiguous sequence of these commands as a block. Omnis selects unselected lines in this
contiguous block when it opens the window, so all the lines are selected when viewed behind the editor window. When you have
finished editing the JavaScript: text, you can close the editor window and Omnis replaces the selected JavaScript: commands
with the new content, creating a JavaScript: command line for each line of JavaScript.

Figure 112:

The editor window allows you to change the theme of the displayed text, and to revert to the original text.

Spaces & End of Line Characters

There are two new options in theMethod EditorViewmenu to allow you to show Trailing Spaces and EndOf Line characters when
editing text in the new popup JavaScript or SQL text editor:

• Show Significant Trailing Spaces
If true, the editor displays trailing spaces for the JavaScript:, Sta: and Text: commands as the Unicode sp symbol.

• Show Selected End of Line As Symbol
If true, the editor displays the end of line character as Unicode symbol cr when the end of line character is selected. This
allows you to see if an end of line character will be added to the clipboard by a cut or copy, for example.

Both of the new options default to true and are saved with the window setup.

190



Trace Log

The Send to trace log command includes the name of the method that issued the command in column -Double clicking on the
trace log line takes you to the code line that issued the command.

In addition, the Send to trace log command has the “Always log” option. If specified, the command will always log the message
even if $nodebug is true for the library or the local debugger is disabled (this option is ignored for a diagnostic message).

Error Processing

There is a library preference $clib.$prefs.$errorprocessing that allows you to control how Omnis behaves when it encounters an
error: Omnis either enters the debugger (if available) or reports the error with an OKmessage.

• $errorprocessing
A kEP… constant that indicates how unhandled errors in methods belonging to this library are processed. Values of the
kEP… constant are:
kEPreport: Report the error by opening the debugger if available or by displaying a message box (the default value after
converting a library to Studio 10.x)
kEPlogStackAndReport: Log the call stack to the trace log and then report the error by opening the debugger if available
or by displaying a message box
kEPlogStackAndContinue: Log the call stack to the trace log and then continue executionwith the nextmethod command

The call stack written to the trace log is drawn using the “bad syntax” color from the appearance settings. Each line contains the
error code and error text, and then the call that invoked the error (shown in one line in Studio 10.x). You can double-click on a
line to open themethod at the relevant method line, provided that the library is not marked as always private and the class is not
protected. The call stack excludes entries frommethods running in tasks marked as IDE tasks which have their code in an always
private library.

Dynamic Methods & Objects

The handling of dynamically added or modified methods, and dynamically added and removed objects has been improved.

• The stack list has a new menu item, to detach the debugger from an instance. Previously this was only possible by force-
closing the current debug instance.

• The debugger tree lazily updates to show new or deleted objects in the current debug instance: typically, this means it
updates either when the debugger window comes to the front, or while you are stepping through code.

• When an instance closes, or an object is removed, Omnis deletes any breakpoints set in a method in a freed temporary
instance field method, and removes all of its methods (if any) from the method editor history stack used by the back and
forward navigation buttons.

• Omnis marks each temporarymethod (i.e. instancemethod), using a new icon so you can recognise these easily in the tree.
If you edit such a method, the edits are saved with the instance, and will be lost when the instance destructs.

• You cannot rename a temporary instance object shown in the method editor tree.

Code Assistant

The Code Assistant is an integral part of the Code Editor, but it is described separately here since it has somany useful features to
help you write better code and faster. The Code Assistant opens automatically at the insertion point when you type a command
name, a command parameter, a variable name, or some notation in the Code Editor or you can open it at any appropriate point in
your code using Ctrl-Space. The Code Assistant will usually drop down below the insertion point, but may pop up if space below
the cursor is limited.

The Code Assistant only openswhen the caret is visible in themethod editor, i.e. it can only open when no text is selected in a line
of code. Specifically, it will pop up when the caret is positioned at the end of some textwhich is either at the end of the entry field
content in the method editor, or prior to some type of delimiter in the expression syntax, e.g. a function separator character. The
automatic popup is delayed by a timer which is specified in an Omnis preference called $codeassistanttimer (in Omnis.$prefs).

Further highlights of the Code Assistant include:

• In addition to Ctrl-Space, you can use various special keys to navigate the popped list and request further help.

191



• It provides assistance entering notation relative to an item reference and functions.

• It displays method descriptions, method definitions and parameter descriptions.

• Assistance entering notation relative to a group method, as well as notation relative to $ref in the parameters of a group
method.

• Intelligent generation of the list of possible values to assign to a property.

• Property and method tips in the method list.

• Assistance for initial values and when using expand entry-box in the method editor.

• An improved expand entry-box interface.

• Replaces existing data when selecting an item in the Code Assistant popup.

• Assistance entering certain commands such as Domethod.

• Parameter highlighting, including parameters for commands such as SMTPSend.

• Parenthesis and square bracket matching.

• Assistance entering methods with overloaded definitions.

When the Code Assistant is opened, items in the help list are listed in the following order:

• Variables or names,

• Functions,

• Notation (properties & methods),

• Constants,

• Events

These are sorted alphabetically within each set. This ordering was introduced in Studio 11, so if you want to use the old sorting you
can set the ‘oldSortOrder’ item in the ‘codeAssistant’ section of config.json to true (the default is false).

Shortcut Keys and Help

You can manually request the Code Assistant popup to open by typing Ctrl-Space: this will work on Windows and macOS. The
Ctrl-Space shortcut key will only work if some code assistance is available for the syntax item to the left of the current insertion
point. This short cut key is a de-facto standard used to request code assistance in many other development tools so should be
familiar to developers.

The Code Assistant supports the Page up, Page down, Home and End keys, to navigate the popped up list. When you use these
keys, or Up Arrow or Down Arrow, the Code Assistant displays help information about the currently selected line in a help panel
above the popped list, for example, the following image shows the help text for $pathname which is a property of the current
library ($clib).

Short Cut Key Summary

Key Action

Ctrl-Space Opens the Code Assistant
Page up, Page down Displays next or previous ‘page’ in the popup list or Help pane
Home and End keys Moves to the beginning or end of the popup list
Up or Down Arrow Moves up or down the popup list
Return or Enter Select the current line in the popup list
Shift-Space Initiates a ‘fuzzy’ search at the insertion point

192



Figure 113:

Fuzzy Search

You can initiate a ‘fuzzy’ search at the insertion point by entering a search string and pressing Shift-Space. The Code Assistant
will look for methods, properties, etc, that ‘contain’ your search string, rather than the default ‘starts with’. For example, when
searching for the color properties for a Description label in your code:

Do $cinst.$objs.Description.$col

you could type “.$col” then press Shift-Space, and the Code Assistant will popup containing the properties $backcolor and $text-
color. In this case, the Code Assistant will search for properties of a Label containing “col”: without the fuzzy search shortcut key
there would be no search results.

Tabbing Behavior

There is an item ‘tabAlsoLeavesFieldAfterClosingAssistant’ in the ‘codeAssistant’ entry in the Omnis congfi.json file that affects the
tabbing behaviour in the Code Assistant. It is set to false by default, but if set to true (and ‘oldTabReturnBehaviour’ is false) then a
tab will close the Code Assistant and the cursor will move to the next field in the tabbing order when tabbing out of the variable
name or calculation box in the method editor.

Code Assistant Configuration

There are a number of settings in the “codeAssistant” section of theOmnis configuration file (congfig.json) that allow you to control
the behavior and appearance of the Code Assistant or specifically the parameter help panel.

• parameterHelpEnabled
boolean property, default is true. Enables or disables the Code Assistant.

• maxParameterHelpWidth
specifies the maximumwidth of the parameter help popup (it defaults to half the screen width)

• parameterHelpExclusions
specifies which functions or methods you wish to exclude from parameter help (the default is empty, that is, no items are
excluded). For example, you might want to exclude the function “con” or the notation “$assign”.

• width
specifies thewidth of the CodeAssistantwindow (the default is 768 pixels); the valuemust be between 512 and 1536 inclusive

• openParameterHelpWithCodeAssistantPopup
If true (the default), the code assistant and parameter help window both open on the same side (above or below the text
being entered). If false, they open on opposite sides.

193



• parameterHelpSpace
Defaults to 40 (pixels). Space for parameter help on the same side of the text as the code assistant popup; applies when
openParameterHelpWithCodeAssistantPopup is true

• listShowsNamesFirst
If true (the default), method names occur in the Code Assistant list before attributes etc that start with $. When false, $
entries typically occur before names

What Help does the Code Assistant Provide?

In most cases the Code Assistant will popup automatically at the cursor if it can provide help for the current item in your code
or context, however the following sections detail the behavior and function of the assistant with regards to different items or
contexts in which Omnis provides you with help.

Item References and Notation

In order to provide code assistance, Omnis needs to be able to look up a notation string and map it to the table of methods and
properties that apply to the current addressed item. In order to do this for notation paths that start with an item reference, Omnis
needs a new piece of information that identifies the notation you intend to use with the item reference – this item is called the
item reference class and the method editor allows you to select an item reference class as the subtype of an item reference. The
class works in the same way as the subtype of an object reference, meaning that the item reference class is solely used to provide
code assistance – no check is ever made to see if the item reference is being used at runtime to address items that correspond to
its class.

Item reference classes use a similar hierarchical scheme to notation paths. Example classes are $iwindows.window, and $iwin-
dows.window.$objs. There are some special classes that include * in their path. For example,

$iwindows.window.$objs.*

accumulates all possible properties and methods for the possible children of $objs (there is a child for each object type), and is
used when the Code Assistant cannot isolate the class of the member of $objs to a single object type.

$iwindows.window.$objs.*.$objs accumulates all $add, $addafter and $addbefore methods for all containers, and is used when
the Code Assistant cannot determine the type of a container.

Code assistance for notation works as follows:

• The Code Assistant takes the notation path (and the item reference class if necessary and available) and looks up thematch-
ing item reference class.

• If it cannot determine a class, then the Code Assistant provides no assistance.

• If the Code Assistant can determine a class, then it pops up the methods and properties that match the currently entered
prefix.

Functions

Code assistance is available for functions, including the staticmethods implemented by external components such as the FileOps
external object. The latter is provided by a two-step process, where you first select the component fromapopup, such as FileOps.$,
and you then select the method from an automatically popped up list of static methods.

The Code Assistant will show a full help page for the function, or a short text description if a help page does not exist for the
function. If you do not want the full help pages to display for functions you can set the useOmnisHelpPagesForFunctionHelp
entry in the codeAssistant section of config.json to false.

Do command

The Code assistant addsmatching commands when entering what could be command parameters, e.g. when entering probable
parameters for Do, the Code Assistant will also add Do method, etc, commands to the list.

Note that when typing command names, you can omit spaces and the command will be found more easily, for example, to find
Do inherited, you can type doi.

194



Figure 114:

195



Method Information

The Code Assistant displays method descriptions and parameter information in the help panel when a method is selected in the
popup. This information is available for all types of method, including functions, external component methods, built-in Omnis
notation methods, and your own custommethods.

If you highlight the method name using the up and down arrow keys, a full description is shown in the help pane in the Code
assistant popup: for example, the following shows the help for the $writefile FileOps method:

Figure 115:

Group Methods

Methods such as $add and $findname for a notation group return an item reference to a member of the group (assuming they
work). The Code Assistant assumes that the call will work, and provides assistance for notation entered after the group method,
e.g. if you enter $cinst.$objs.$add(kEntry,0,0,100,100), then as soon as you enter a dot (.) after this expression, you get assistance
for all objects that could be in the group (Omnis does not parse the $add call and attempt to provide help for the specific object
type added).

$obj and $field

Code assistance is provided for $cinst.$field to allow code assistance to be provided without making $cinst.$objs harder to enter;
$cinst.$field is equivalent to $cinst.$obj, but $field only works for subform and subwindow instances.

The notation $field behaves the same as $obj when used with a subform or subwindow instance, for remote forms and windows
only. This allows code assistance to be better targeted, and also prevents $obj from taking over as the first property in the code
assistant list after typing “$cinst.$o”.

196



$ref

When you use group methods such as $sendall or $makelist, you use $ref in the parameters of the group method to refer to a
member of the group. The Code Assistant provides help for $ref, by using the relevant item reference class for the groupmember
(provided it can identify the item reference class of the group).

$assign

When you enter . after a property name, the Code Assistant provides $assign and $canassign as possible options. If you select
$assign, you will be prompted with a popup that provides either all initial items you can enter, or the list of constants or strings
whichmake sense to assign to the property. The latter always applies when the Code Assistant can determine the list of constants
or strings which make sense.

In addition, when you are coding a Calculate statement, if you enter a path to a property in the field name field in the method
editor, then when you move to the calculation field, provided that the calculate field is empty, the Code Assistant will pop up the
list of constants or strings which make sense to assign to the property.

For example, enter $cwind.$objs.test.$backcolor as thefieldname, andmove to theempty calculationfield. Thepopupwill contain
a list of color constants.

If you wish to assign something else, start typing that, and assistance will revert to normal. The only restriction here is that if you
type k (when the values that make sense are a list of constants), you will only see the constants that make sense, rather than all
constants.

Tooltips

Themethod editor displays a tooltip when you position the pointer over a property of amethod name in the listing of themethod.
This shows you the property description, or the method interface and description. The tooltip for a constant also shows you the
constant description.

Figure 116:

Initial Values

You can use the Code Assistant in the initial value column of the variable pane of the method editor.

Expanded Entry

The Code Assistant is available in the expanded entry box in the method editor – it opens as an overlay over the method editor
command palette. You can close it by clicking on another window, pressing return (or pressing escape to discard changes).

Replacing Data

When you select some notation from the Code Assistant popup, it replaces the entire word (if any) in which the caret is located.

Method Commands

The commands Do method, Do async method, Do code method, Load error handler, Unload error handler, Set ‘About’ method,
Set timer method, Start server, Install menu, Install toolbar, Open window, and Set report name use a Code Assistant popup to
select their method or class.

197



Figure 117:

Parameter Highlighting

When you position the caret somewhere in the parameters of a function or method that the Code Assistant recognizes, or in a
method command that has parenthesized parameters e.g. SMTPSend, Omnis displays a popup (in the opposite direction to the
Code Assistant popup) that displays the method parameters and the method description. In addition, the parameter in which
the caret is currently located is highlighted in bold.

Figure 118:

You can press Escape to temporarily dismiss this popup (unless “parameterHelpEnabled” in config.json is set to false).

Parenthesis Matching

When you position the caret immediately after an open or close parenthesis in an expression, or immediately after an open or
close square bracket, Omnis draws the matching parentheses or brackets using a different color.

There are two properties which control this, in the method editor chroma coding options: $bracketbackcolor and $brackettext-
color. To disable this, you can set both of these options to kColorDefault.

Overloads

Certain methods are overloaded. In simple cases, the Code Assistant shows this by using a vertical bar to separate different
possibilities e.g.

$remove(rLine|iLineNumber|kListDeleteSelected|kListKeepSelected)

198



Figure 119:

However, there are other cases where this is not possible, for example:

$createobject for a JavaObjs\System\java\lang\String object has 15 overloads

$add for an unknown window object could be adding a complex grid or paged pane or scroll box, and the object being added
may or may not be an external component.

In these cases the description shown for themethod shows all overloads, and the parameter highlighting popup has arrow icons,
indicating that you can use the up and down arrow keys to select the overload you are using, thereby resulting in sensible param-
eter highlighting. Omnis does not attempt to figure out the matching overload by analysing the parameters.

Figure 120:

Custom Properties

The Code Assistant recognises custom properties, i.e. properties of an instance or an instance object, implemented using two
methods, $propnameand$propname.$assign. TheCodeAssistant combines these into a single property in the list of completions
rather than showing the two methods, and provided that the Code Assistant can resolve the parent notation, it will also show
$assign and $canassign as possible completions for notation relative to a custom property.

Omnis Help

While using the new Code Editor you can open the inline Omnis Help system by pressing F1 or using the Omnis Help Topics
option in the main Helpmenu. The Omnis Help provides comprehensive help for all commands, functions, notation, and so on:
the content in the Omnis Help is the same as that provided in the Code Assistant.

What is displayed in the Omnis Help is context sensitive and will depend on what is currently selected in the Code Editor, as
follows:

• If no text is selected in the Code Editor, it tries to obtain the text from the syntax itemcontaining the caret - if there is nothing
useful, no help will be displayed, otherwise it will pass the text for the syntax item to the help system, e.g. ‘Calculate’ for a
Calculate command when the caret is in the command name.

• If some text is selected, and all selected text is on a single line, the editor passes the selected text to the Help system. If the
selected text spans lines, no help will be displayed.

After performing 1 or 2, the Help system opens. If the text passed to the Help system uniquely identifies a single help page, that
help page is displayed. Otherwise, the help window opens at the search tab, searching for the text passed to the Help system.

199



Debugging Methods

You can open most class and field methods and run them from the debugger menu bar or toolbar. Note that event handling
methods will not run from the On command without the event, but you can try out most types of methods while you are in
design mode. You cannot execute methods that contain instance or task variables at design time since these variables are only
available when the objects are instantiated.

To run or execute a method

• Select Debug>>Go from the debugger menu bar

or

• Click on the Go button on the debugger toolbar

Execution will begin from the selected line. When you first open the method editor the first line of the first method is selected.
You can halt execution by pressing the stop key combination Ctrl-Break/Cmnd-period/Ctrl-C. When you break into a method the
debugger completes the current command and halts execution.

Along with the Execute and Test options, the basic debugging operations on the Debug menu are:

• Go (F5) executes from the Go point

• Step (Ctrl+Shift+S) executes from the Go point to the next method line, stepping into recipient methods

• Step Over (Ctrl+Shift+V) runs from theGo point to the nextmethod line, executingmethod calls, but not stepping into them

• Trace (Ctrl+Shift+E) steps automatically through the method

• Set Go Point (Shift+F2) sets the current method line as the Go point

• Go Point Not Set indicates the method with the Go point when one is set

• From Line and To Line runs, steps or traces from the current line or to the current line

You can Alt-click in the left margin of the Code Editor to execute the “To line” command provided that code is executing.

The Go Point

Amethod normally runs from the start, but you can start execution from any method line by setting it as the Go Point.

To set the Go point

• Select the method line and choose the Debug>> Go menu option

or

• Select the method line and click the Set Go Point button on the toolbar

Thedebugger highlights this line andputs a yellowarrow in the leftmarginpointing to themethod linewhere executionwill begin.
You can move around the program, changing the code, without changing the go point, which is independent of the current line.
The name of the method containing the Go point is shown in the Debugmenu and choosing this option from anywhere returns
you to the Go point. You can clear the Go point using Stack>>Clear Method Stack.

Execution Errors

When an error occurs in a running method, Omnis takes you into the debugger. The offending method is displayed with the go
point at themethod line that encountered the error, and an errormessage is shown in the status area. Errormessages include the
error number and text, for example “E108139: Set main file command with no valid file name.” You can use the various inspection
tools to find out why the error occurred, fix it, and continue.

You can use the Debug>>From Line submenu to run the method from the currently selected line rather than the go point. The
submenu items let you Go, Step, Step Over, or Trace from the current line instead of from the go point. The To Line submenu lets
you Go or Trace from the go point to the current line, which becomes a one-time breakpoint.

200



Stepping through a Method

Normally when debugging youwill want to step through the code rather than just run it. This givesmuchmore control over when
to start and stopmethods and lets you examine fields, variables, and themethod stack at specific points in the program. You use
stepping in conjunction with breakpoints to control the debugging of your code.

To step through a method

• Choose Debug>>Step from the debugger menubar, or click on the Step In button

Every time you click on the Step In button, Omnis executes the line at the go point and sets the go point to the next line. If a
command at go point calls another method, the debugger loads the recipient method on the method stack and sets the go
point to the first line in that method.

The Step In option steps into a recipient method. You can avoid this with Step Over where the debugger executes the recipient
method without stepping into it. This speeds up debugging if you have a lot of method calls.

Tracing a Method

As well as stepping through your code, you can record or trace method execution.

To trace a method

• Choose Debug>>Trace from the debugger menubar, or click on the Trace button

The debugger steps through your code automatically, including stepping into recipientmethods, and adds eachmethod line and
its parameters to a trace log. You can open the Trace Log from the Tools menu, or by clicking on the Trace Log node in the Studio
Browser.

The first column in the trace log shows the name of the currently executing method, and the class it belongs to. The second
column shows the method line and parameters of the currently executing command. When you double-click on a line in the
trace log, the debugger goes to and highlights that method line.

You can open the trace log fromwithin amethod using theOpen trace log command. For example, you can place theOpen trace
log command in the startup task of your library to trace method execution immediately after your library opens.

You can specify the maximum number of lines in the log in the Max lines entry field (this is not available in the Studio Browser
view of the trace log); the maximum is 100000. When the log contains the specified max limit, it discards the earliest lines when
new ones are added.

Copying code from the Trace Log

You can copy selected lines from the Trace log to the clipboard using the Edit menu Copy command or Ctrl/Cmnd-C shortcut key.

Showing the trace log in the Studio Browser

There is a node in the Studio browser which opens an alternative view of the Trace Log; the current number of lines in the log is
shown. There is an option in the HUB options to select whether or not the Trace Log node is displayed in the Studio Browser: the
default is on. You can use the search box at the top of the Studio Browser to search the contents of the trace log.

Contents of the trace log

The sys(193) function returns the contents of the trace log. It works in both the development and runtime version of Omnis.

Server socket bind failures

The “runtimeOpensTraceLogOnSocketBindError” option in the ‘server’ section of config.json controls whether or not the Trace
Log opens in the runtime when a server socket bind fails: the default value is true, so set this to false to suppress the trace log. In
the developer version, the Trace Log window never opens when this occurs as you can view the trace log in the browser.

Private Methods

When you step or trace through the methods in your library the debugger will normally enter each method that is called, even if
a method is in a private library. However if you set the library property $nodebug to true, the debugger will not display methods
contained in private libraries. You need to set this property each time you open the library.

201



Method History

Omnis stores a list of visited methods which allows you to quickly move back to a recently visited method. The toolbar in the
Method Editor contains a Back and Forward button allowing you to traverse the history of visited methods. Note that inherited
methods and the object nodes in the method editor do not form part of the history which can hold up to 256 items. You can also
use F10/Shift-F10 to move back and forward respectively. In addition, a long press on either of the buttons opens a menu which
shows the available history items in the direction of the button, up to a limit of 20 menu items.

Omnis removes affected entries from the history when a library is closed, a class or method is deleted, or when various other
actions occur that would affect an entry in the history list, such as when fields are renumbered.

Inspecting Variable Values

You can inspect the value of a variable or field using the Variable menu (or Variable context menu). You can display the Variable
menu for any variable or field by Right-clicking on its name in the method editor or the Catalog.

Variable Menu

The Variable context menu gives you full information about the variable or field (or the class it belongs to, if any).

To display the Variable Menu

• Right-click on the variable or field

You cannot inspect the value of instance or task variables in designmode (in a class editor) since the variables do not exist: in this
case, the Variable contextmenu is grayed out. To examine an instance variable in a remote form, set a breakpoint in the $construct
method (or somewhere else in your code), then test the form, and switch back to Omnis when the form opens in your browser –
at this point you can right-click on an instance variable to examine its values etc.

The Variable context menu contains the variable name, its value, parent group and data type, and a series of debugging options
you can apply to the variable; you can also Copy the value for a simple variable or Export a list or row variable from this menu, as
well as Insert New and Delete Variable. The other options at the bottom of the context menu are discussed under Breakpoints.

Variable Value window

The first option Variable opens the Variable Value window, except that for Item References with a value, it opens the Notation
Inspector.

This window shows the variable name and type at the bottom and displays the value, which you can edit. Omnis updates the
value in thewindowwhenever you bring thewindow containing themethod to the top, but you cannot observe the value change
dynamically through this window. Note you cannot edit a binary variable.

On the Variable Value window’s Viewmenu

• Redraw Values redraws the variable on any window

• Single Window Mode shows subsequent variable values in the same window

The value window for a variable is valid only for as long as the variable is current.

You can rename a variable in your code directly (rather than having to go to the Variable pane) using the Variable context menu;
the option applies to class, instance, local and parameter variables.

List Variables

You can show and edit a List variable in a value window using the Variable context menu option. There is a Search panel in the
List variable window to allow you to search the contents of a large list variable while debugging. To search a list variable, click into
the List variable window, press Return, and then press the Search button, or select a previously saved search in the droplist. There
is also a button to navigate to the current line, which sounds the bell if pressed when there is no current line.

Search results appear in a separate panel that allows you to quickly navigate to results. The Line number and Column name for
each search result is shown. If the Column name is empty, the Column number is shown.

202



Exporting List or Row Variables

The “Export Tab Separated…” option in the Variablemenu (in the same location as the “Copy Value” option that appears for various
simple data types) allows you to export the values from a List or Row variable. When selected, it prompts for the path name of a
file that receives a tab-separated value representation of the list or row.

The output file is UTF-8 with a UTF-8 byte-order-marker. The first export row comprises tab-separated column names. Simple
types in the list are exported as their actual value, whereas types such as lists are output as an information string, e.g. (5 Lines). If
the characters tab, carriage return, linefeed or backslash occur in the data, they are exported as escapes: \t, \r, \n and \\ respectively.
If a column has a #NULL value, it is exported as the text NULL.

Jump to Variable Definition

You can jump to a variable definition in the Variables pane in the method editor using the Variable context menu; this is useful if
a method contains many variables and saves you visually scanning the variable list to find the variable.

To show the definition for a variable, Right-click on the variable name in your code and select the Variable Definition option. The
focus will jump to the appropriate tab in the Variables panel, highlighting the variable. Alternatively, you can select the <Variable-
Type> variables option to pop up a separate Variables panel highlighting the variable.

Variable and Event Tips

You can hover the pointer over a variable name anywhere in the Code Editor to display a Variable tip, showing the variable name
and its value, if available.

Precedence is given to variables over functions when generating variable tips in the Code Editor, for example, when a variable
name is the same as a function name (although this is generally not recommended).

You can also hover the pointer over an event name, e.g. evOpenContextMenu, to display its definition including all its parameters
and their descriptions.

Variable Panel

The Variable panel allows you to view and modify variables while debugging or stepping through your code. It is only populated
when execution pauses, as with a breakpoint. After you resume execution, it remains populated (but disabled) for a short time,
until either execution pauses again (meaning it updates) or execution does not pause soon enough (meaning it clears). This
means that the Variable panel does not flicker while stepping through code.

When execution pauses, the focus moves to the Variable panel. For example, while stepping through code the Variable panel will
show $cinst, the task and instance variable values, and the values of any watched variables: see the Variable panel highlighted in
red below.

Viewing Variable Data

The Variable panel displays a hierarchy of controls that allow you to drill down into the data. Each time the debugger pauses
execution, it refreshes each level of the hierarchy until it reaches a level which is no longer valid, e.g. you might drill down into a
local list variable, and execution pauses in a differentmethod, so the local list is no longer valid, so in this case the panel will display
the local variables of the newmethod.

In many cases, the panel displays variables in a grid using either the row or list representation of the grid as appropriate. The grid
display for a variable or list cell shows a text representation of the value. This may be either its value, or it may be some other
representation, e.g. the number of lines in a list, or an object instance name. The grid is read-only, allowing you to use the arrow
keys or tab/shift-tab to move around the grid.

As you move around the grid, the current cell is highlighted, and the data type of the current cell is displayed in the status bar
below the grid.

Sometimes a cell represents data such as a list or an object – in this case, you can drill down to view the contents of the cell by
either clicking on the cell, or by pressing the Return key. After drilling down, a back button appears in the area above the grid,
that you can use to navigate to the previous level, or alternatively you can press Backspace.

You can Ctrl/Cmd+click on a cell that would normally drill down, in order to give that cell the focus.

Buttons to the right of the grid enable, disable or check depending on what you can do with the current cell.

When enabled, you can click on the Modify button, or press the Return key, to edit the variable value. While in edit mode, the
remainder of the window disables, apart from Cancel and Save buttons. You can use the Escape key to cancel, and the Return key
to save the value (i.e. the key specified as saveModifiedVariable in keys.json): note that the Return key does not allow you to save
the variable if it makes sense to add returns to the data being edited.

There is also a button to toggle the current value between NULL and empty.

203



Figure 121:

Top Level Variable panel

When you first pause execution, the debug window displays the top-level Variable panel. This allows you to view Auto, Task, Class,
Instance, Local, Parameter, Event Parameter, File and Hash variables. Auto comprises variables identified from the line before the
current line (if any), the current line, and up to 2 lines after the current line.

The top of the top-level Variable panel allows you to select the currently displayed scope:

Figure 122:

You can either click on a button (heading) or type its first letter when the Variable panel has the focus, to display the scope. Save
Window Setup will save the current scope.

With the exception of the File scope, each scope displays its variables in a grid. The file scope initially displays a list of file classes.
You can then drill down into a file class, in order to view its values.

For task, class and instance variables, the panel shows the values for all levels of the inheritance hierarchy, with the names of
inherited variables shown in the inherited color.

Table Instances

There is an entry “Table instance data” at the start of the Auto tab when debugging code in a table instance. Simple references
like $cinst.name will show in the Auto tab, when name is not a variable in the normal variable scopes, e.g. a column in a row in a
table instance.

Object Variable panel

When you drill down into an object or object reference, the panel displays properties and/or variables. The top of the panel looks
like the following:

In the case of a non-visual object, all the buttons at the right are hidden, and the panel just shows properties. In the case of a sub-
classed non-visual object, all buttons are present and enabled. In the case of an object that is not sub-classed from a non-visual
object, the properties button is disabled.

204



Figure 123:

As for the top-level panel, you can either click on a button, or type its first letter when the Variable panel has the focus, to display
the scope.

List or Row Variable panel

For a row, this is a straightforward grid. When you drill down into a list, the panel initially displays the first 64 lines (or $linecount
if less than 64) of the list. Next and Previous buttons at the top-right of the panel allow you to read more lines:

Figure 124:

If you hold the Shift key while pressing the button, the panel reads all data in the direction specified, in chunks until there is no
more. While doing this, it may display a working message (if it takes long enough), which you can use to stop any further data
being read.

Each time you step, and the variable remains in scope, the panel initially updates with the chunk of data from the start of the
current scroll position.

You canmodify the current line and selection of the list using the buttons on the Variable panel. These prompt for the new current
line, or changes you want to make to the selection.

Item Reference Panel

When you drill down into an item reference that has properties (rather than an item which is a reference to a variable), the panel
displays the property values of the item. You can use this panel tomodify values for which $canassign is kTrue, provided that they
are of a suitable data type for editing.

Integer

Integer variable values are displayed directly in the table. You can click on the H icon to display integers in Hex format. In either
display mode (decimal or hex), when modifying an integer, you can either enter a decimal value or a hex value.

Large Character

Character variables containing more than 128 characters are displayed as their length followed by a preview of the start of the
data. You can drill down into the variable, displaying a character Variable panel. When you first drill down, this displays up to the
first 64k characters. Next and Previous buttons at the top-right of the panel allow to to read more chunks:

Figure 125:

If you hold the Shift key while pressing the button, the panel reads all data in the direction specified, in chunks until there is no
more. While doing this, it may display a working message (if it takes long enough), which you can use to stop any further data
being read.

Each time you step, and the variable remains in scope, the panel initially updates with the chunk of data from the start of the
current scroll position.

If you edit the data, the edit applies to the entire variable value, i.e. the new value comprises any data on the server before the
loaded data, followed by the edited loaded data, followed by any data on the server after the loaded data.

Binary

To view and edit a binary variable, you always need to drill down. You are then presented with a hex binary editor grid. When you
modify the variable, a button on the right provides various binary editing operations. The binary panel works in a similar way to
the character panel, with next and previous buttons.

205



Picture

You can drill down into a picture variable and view, edit, or save it using the Save picture button (folder icon). The new button is
available when viewing image data, in the modify tool strip to the right of the image.

Figure 126:

The Save picture button is enabledwhen notmodifying the variable value, andwhen the debugger recognizes a JPEG, GIF or PNG
(the latter includes shared pictures stored as PNG, in which case the saved image is a PNG without the shared picture header).
The button uses the binaryEditOperations keyboard shortcut.

Boolean

Boolean variable values can be Empty, False or True. These can be set using the variable grid drop list.

Omnis does not treat Empty and False as two different values of Boolean variables, when displaying them in the debugger. There-
fore, the debugger Variable panel, variable tooltips, variable context menu and variable window all display and treat Empty as
False or NO as appropriate.

The Values List

In addition to the Value window for an individual variable you can show a Values List for whole groups of variables such as task
variables, class variables, and local variables.

To show the Values List for class variables

• Right-click on a class variable name in a method or in the catalog

• Select the Class Variables option from the variable context menu

The Values List for class variables appears with the different variable types on tabbed panes.

On the Viewmenu for the window

• Redraw Value redraws the variable wherever it occurs on a window

• Show Full Value opens a scrolling Value window below for the selected variable

The Variable popup menu for a file or schema class lets you modify the class, and for file classes only the Values List shows the
current values for the file class.

Sorting Variables

There is a Sort Names command on the Viewmenu of the variables list window available in the Method Editor when inspecting
variables. The sort order is always set to an ascending sort, and is not case sensitive. This item is toggled on or off when selected
(the state is saved with the window setup).

206



Displaying Control Characters

You can display control characters in data or content when inspecting a variable in the Field Value window and Values list window,
displayed when you Right-click on a variable: these tools have a menu that allows you to:

• Show characters normally

• Show all control characters (in this case no line breaking occurs on carriage return for multiline entry fields)

• Show all control characters except carriage return (in this case carriage returns break lines as usual)

The menu also allows you to increase and decrease the font size used for all content except the binary data.

The control characters are displayed using the Unicode page 0x2400 which has visual representations of control characters. In
addition to characters 0-0x1f, 0x7f (del) is also treated as a control character.

In addition, the Catalog status bar, Variable value tooltips and Variable context menus always show control characters if present.

The Save Window Setup option for the Values list saves grid column widths, and the height of the value when using show full
value. Save Window Setup for both the Field value window and the Values list window saves the current font size and the option
controlling how or if control characters are visible.

Watching Variable Values

You can monitor or watch the value of a variable by making it aWatched variable. You can add task, class, local, instance and
parameter variables to the Watch variables pane in the method editor. When you run the debugger you can see the value of a
watched variable change in the Watch tab in the Variable panel (bottom right of the Code Editor).

To set a watch variable

• Right-click on the variable name and choose Watch Variable

or

• In the method editor, drag the variable from the variable pane into the watch pane

The Watch Variable item on the context menu is now checked. You can enlarge the watch pane by dragging its borders. The
watch variable value is only updated when stepping, unless the method redraws it.

To remove a watch variable

• Right-click on the variable name and uncheck Watch Variable on the popup menu

Breakpoints

A breakpoint is a marker on a method line. When the debugger reaches that line, it stops execution and makes that line the
go point. When a breakpoint is encountered and you have switched to a different application (such as a browser in the case of
debugging JavaScript Client methods) the Omnis entry in the Windows Task bar will flash and you have to click the button to
return to Omnis to continue debugging.

To set a breakpoint

• Click in the margin of the method line

or

• Click in the method line and click on the Breakpoint button

When you set abreakpoint for a line, a red dot appears in the leftmargin. A one-timebreakpoint is a breakpoint that the debugger
removes immediately after you break on it. It is marked by a blue dot in the margin.

When you close a library, you lose all breakpoints in themethods in that library. You canuse theBreakpoint command in amethod
to set permanent breakpoints, but you must be careful using permanent breakpoints since you may forget to remove them and
they may be encountered in your application when it is deployed to end users!

The Breakpoint menu lets you create and clear breakpoints.

207



• Breakpoint (Ctrl/Cmnd-Shift-B)
sets a full breakpoint at the current line

• One-time Breakpoint (Ctrl/Cmnd-Shift-O)
sets a one-time breakpoint at the current line

• Clear Breakpoints (Ctrl/Cmnd-Shift-C)
clears all the breakpoints

• Clear Field Breakpoints (Ctrl/Cmnd-Shift-F)
clears all the field change breakpoints, calculation breakpoints, and min and max settings (see below)

The rest of the Breakpointmenu is a list of all the current breakpoints. Choosing a breakpoint from this menu displays the line in
the debugger.

You can also set breakpoints and from line to line execution, by right-clicking in the left margin of themethod line or by using the
appropriate tools on the toolbar.

Breaking on Variable Change

In the second half of the variable context menu, there is a group of breakpoint options that let you set breakpoints based on
variable or field values.

The debugger only tests for variable or field breakpoints when methods are running, so a variable change during an enter data
suspension of a method will be immediately reported if there is a control method and delayed otherwise. If there are several
variable breaks at the same command, the debugger only displays one. Setting a variable value breakpoint slows down method
execution considerably.

Themenu option Break on Variable Change tells the debugger to stop themethod when the variable value changes. The debug-
ger puts a checkmark against the line. Reselecting the same line toggles the break off. The status line displays the text ‘Break on
variable change (field)’ when the break occurs.

The One-Time Breakpoint option puts a single-stop variable change breakpoint on the line.

Breaking on Calculation

You can also create a variable value breakpoint with a calculation. For example, to stop a method when a local variable lvLines
becomes equal to the number of lines in list cvList, the calculation is entered as

lvLines = lst(cvList,cvList.$linecount)

The menu option Break On Calculation sets the breakpoint, and the following line Set Calculation prompts for the calculation.
The debugger treats the calculation value as a boolean value where zero corresponds to No and anything else corresponds to Yes.
Execution breaks when the calculation evaluates to Yes, but with a qualification: the break happens only when the calculation
changes from No to Yes. This means that if the calculation is always Yes, the break never happens: it also means that the break
happens only when the change is from No to Yes, not every time the calculation evaluates to Yes.

For example, the calculation break

(lvNumber<10) | (lvNumber>20)

ensures that local variable lvNumber stays within the range 10-20.

Each variable or field can have one calculation breakpoint. There is no requirement that the calculation refers to the variable.

The Store Min And Max option adds the minimum andmaximum variable values to the end of the menu as execution proceeds,
along with the item Clear Min and Max that lets you turn off the feature. If you choose either menu item, Omnis writes a line to
the trace log. Turning on Store Min And Max slows down the debugger a good deal.

208



The Method Stack

A stack is a list of things that you can access in a last-in, first-out manner. When you call a method, Omnis pushes the current
method onto the method stack of executing methods. The debugger adds each newmethod to the Stackmenu in the method
editor. The top-most menu item is the latest method, the one below it called it, and so on. When a method returns, Omnis
removes the top item, also known as popping the stack, and goes to the calling method. You can examine any method on the
stack by selecting it. You can alsomove up and down the stackwith the Stackmenu itemsMove Up Stack andMove Down Stack.

If you select a method in a different class while holding down the Shift key, the debugger opens a newmethod design window.

When you stop in amethod with a breakpoint, an error, a step, or an explicit stop, Omnis sets the go point to the nextmethod line
and saves the stack. It marks the commands in the methods on the stack that will execute when you return to that method with
a gray arrow in the left margin pointing to the method line where execution will resume.

A method can appear more than once in the method stack with a completely different set of local variables.

Debug>>To Return runs or traces the method from the go point or current line until it returns control to the method that called
it. If the only method on the stack is the current method, this option is grayed out.

There are times when you may want to throw away the current stack and start over. For example, if you follow a problem to its
conclusion and everything freezes up, you can restart by clearing the stack. You do this with Stack>>Clear Method Stack, which
also grays out the To Return item and removes the Go point.

Method stack list

The sys(192) function returns a list representing the current method call stack, with a line for each line in the debugger stack
menu. The first line in the list corresponds to the call to sys(192), and subsequent lines correspond to how the method running
the previous line was called.

The list has 6 columns:

Column Description

classitem Item reference to the class containing the
method.

object The name of the object containing the
method in the class: empty if it is a class
method.

method The name of the method.
line The line number in the method, of the

method line resulting in the method on the
previous line running.

linetext The text for the method line.
params The parameters passed to the

method. This is a two column list, with the
column name and value (the value
displayed as a tooltip for the parameter).

The sys(192) function works in both the development and runtime version of Omnis.

The sys(290) function returns the number of methods on the Omnis method stack.

Method stack limit

You can control the number of methods on the Omnismethod stack by setting the stackLimit item in the “default” section of the
Omnis configuration file (config.json); the default value is 30 which is adequate for most applications. Omnis fetches the value of
stackLimit on startup, therefore when a library is opened, the stack limit is already in effect.

Debugger Options

The debugger Optionsmenu appears with the other debugger menus.

• Debug Next Event
stops at the first line of amethod executed for an enter-data event with a control method (a fieldmethod, a window control
method or a timermethod). Note this option is not saved with other debugger options and defaults to off whenever Omnis
is started

209



• Trace All Methods
sets trace mode permanently on.

• Open Trace Log
opens the trace log window or brings it to the top

• Disable Debugger at Errors
stops Omnis from breaking into the debugger on program errors: this is what the end user of your application would see

• Disable Debugger Method Commands
deactivates any debugger commands in the methods

• Save Debugger Options saves all the debugger options, and Revert To Saved Options reverts back to the last saved set of
debugger options

Debugger Commands

You can control the debugger using the Debugger… commands: see the Code Assistant or the Omnis Help for a complete de-
scription of these commands. Note that none of the Debugger commandswill work in client-executedmethods in the JavaScript
Client, however, while developing your app, you can use the Send to trace log command in a client method to write a line to the
JavaScript console.

The Breakpoint command breaks the program when Omnis executes it. If you specify a message, it appears on the status line
when the break happens.

Using the Trace Log

The Trace on command switches trace mode on, optionally clearing the trace log, and Trace off switches trace mode off.

Send to trace log adds a new line to the trace log containing the specified text. The text can contain variable names enclosed in
square brackets. You can then use the log as a notepad for your comments, variable or field values, and bookmarks in the code.
If you enable the Diagnostic message option in the Send to trace log command Omnis will send the message to the trace log
substituting any variable values where appropriate. To enable diagnostic messages in the trace log, you must right-click on the
trace log and select the Log Diagnostic Messages option.

You can double-click on lines in the trace log to open the method editor at the appropriate point in the method.

You can increase and decrease the size of the font in the Trace log using the Ctrl+ and Ctrl- options. The Save Window Setup
option saves the current font size. (Note the font size of the trace log panel in the browser is not saved.)

Styled Text

The Trace log allows text styles to be added to the logged text. The Send to trace log command supports text styles, added using
the style() function inside square brackets, such as kEscColor and kEscStyle. For example, you could apply colors to sections of
the logged text when it is displayed in the trace log panel in the browser or the trace log window; such styles are stripped when
writing the trace log line to the text log file in the logs folder.

The trace log renders the text styles if the entry traceLogUsesStyles in the ‘defaults’ section of config.json is set to true (this replaces
the ide entry traceLogUsesSyntaxColors in versions before Studio 11).

Note that if you use styles other than kEscColor and kEscStyle, these styles are ignored when copying selected trace log lines to
the clipboard as HTML.

For JavaScript client-executedmethods, where the Send to trace log command sends the text to the JavaScript console (provided
it is available), text styles are not supported.

Debugging Variables

The Variable menu command applies a variable context menu option to a list of variables. The list has the same format asDefine
list, and for fields can include file names and so on. This command has several options.

• Set break on field change
sets a field change breakpoint for each field in the list

• Clear break on field change
clears any field change breakpoints for each field in the list or all breakpoints if you don’t specify a field list

210



• Set break on calculation
sets a calculated breakpoint for each field in the list: set the calculation for each field with Set break calculation

• Clear break on calculation
clears any calculated breakpoints for each field in the list or all calculated breakpoints if you don’t specify a list

• Store min and max
stores minimum andmaximum values for each field in the list

• Do not store min and max
clears store min and max mode for each field on the list or all modes set if you don’t specify a list

• Add towatch variables list
adds each specified field to the watch variables pane

• Remove fromwatch variables list
removes each specified variable from the watch variables pane or all variables if you don’t specify a list. Variables with
breakpoints or with store min and max mode set always appear on the watch variables list

• Send value to trace log adds a line to the trace log for each field on the list: if you don’t specify a list, adds a line for all fields

• Sendminimum to trace log adds a line to the trace log with the minimum for each field on the list for which the debugger
is storing minimums: if you don’t specify a list, adds a line for all such fields

• Sendmaximum to trace log adds a line to the trace log with themaximum for each field on the list for which the debugger
is storing maximums: if you don’t specify a list, it adds a line for all such fields

• Send all to trace log adds a value line to the trace log for each field on the list; also adds minimum and maximum lines to
the trace log for each field on the list for which Store min and max is set: with no list, adds a line for all appropriate fields

• Open value window opens a value window for each field on the list: with no list, opens a window for all fields with whatever
limit the operating system puts on the number of window instances

• Open values list opens a values list containing the value for each field on the list: with no list, opens a values list for all fields,
subject to the operating system limit on the number of window instances. There is one values list for each file class so if
more than one field name from a particular file class appears in the list, Omnis displays only one values list for that file class

• Set break calculation sets up the calculation for the field breakpoint

Checking Methods

You can check themethods in your library using theMethod Checker. Themethod checker is available under the Tools>>Add-ons
menu on the main Omnis menu bar. It checks your code for syntax errors, unused variables, methods without code, and so on.
It provides various levels of checking and reports errors in individual classes or all classes in the current library. Specifically, it is
useful for checking libraries converted from an earlier version of Omnis.

Note that the method checker does not correct the code in your libraries automatically, it simply reports any errors and potential
problems in your code.

When you open the method checker it loads all libraries that are currently open. Alternatively, you can open a particular library
from within the method checker.

To check the methods in your library

• Select the Tools>>Add-ons>>Method Checker menu item from the main Omnis menu bar

• If you need to load a library, click on the Open Library button on the method checker menu bar

• Double-click on the library you want to check

• Shift-click or Ctrl/Cmnd-click to select the classes you want to check, or click on the Select all classes button to select them
all

The following checking levels are available

• Error conditions
this level of checking finds problems that can cause runtime errors or undesired behavior: youmust fix these errors

211



• Include Level 1 warnings
finds problems that you should investigate because theymight result in subtle bugs and strange behavior: you ought to fix
these problems

• Include Level 2 warnings
finds problems that you should be aware of, including emptymethods and/or inefficient code, potential compatibility prob-
lems, and platform-dependent code

The different levels of checking are inclusive, that is, if you select Level 2Warnings (the default) this includes Level 1 and the Errors
categories.

• Select a checking level, and click on the Check button

The method checker works through the classes you selected displaying their statistics in the Method Checker Error Log. You can
cancel checking at any time by pressing Ctrl-Break/Cmnd-period/Ctrl-C.

When checking is complete, you can sort the log by clicking on one of the headers in the list. You can print the log or save it to a
text file.

You can show a summary of the errors for each class by clicking on the Show Summary button.

Interpreting Errors and Warnings

The following sections detail the different levels of errors and the possible action you should take.

Fatal Errors

These are the type of errors that youmust fix.

Encountered a construct End without a construct Begin
An ending construct was found without a matching beginning:

• End if, End switch, End while, End for, Until, End reversible block

Method contains a construct Begin without a construct End
A beginning construct was encountered without the proper ending:

• If , Switch,While, For, Repeat, Begin reversible block

Construct End does not match construct Begin
An ending construct was encountered that did notmatch the beginning construct, e.g. Begin reversible block followed by an End
if.

Encountered a construct element in an invalid context
One of the following was found outside of a proper construct: Else, Case, Default

Encountered a command in an invalid context
One of the following commands was found outside of a proper construct: Break to end of switch outside of a Switch construct, or
Break to end of loop or Jump to start of loop outside of a For, While, or Repeat loop.

Incomplete command
A command with no parameters set, for example, Set referencewith no reference, Set current listwith no list name, Call method
with no method name.

Invalid field reference
An invalid reference to a field or variable (i.e. #???) was encountered: usually a reference to a field or variable that has been deleted.

Invalid method reference
Encountered a command containing a reference to a non-existent method, an unnamed method, or a method in a library that
is not currently open. For example, Call method with name of non-existent method, Enable menu line with reference to non-
existent menu or menu line.

Missing extended command or function
A missing extended command or function was encountered, either not loaded or installed: these show in your code beginning
with the letter “X”.

Bad library name
The library name contains one or more periods.

OK Message or Sound bell
Either OK message or Sound bell command in a server executed method or remote task method; these should be removed or
commented out.

212



Level 1 warnings

These are the type of problems that you ought to fix.

Class variable with the same name as a library variable
Could cause precedence problems at the class level.

Optimize method command not in first line of method
The Optimize method command should be the first line of a method.

Code in an unnamed method
Named method with no code
Check to see if this code/method is required.

Debugging code?
You should remove all breakpoints before deploying your application. One of the following was encountered: Breakpoint, Trace
on/off, Field menu command, Set break calculation, Send to trace log.

Obsolete command
You should not use obsolete commands: remove them fromyour code. For example you can replaceCallmethodwithDomethod
or Do code method.

Command removed by converter
In converted libraries certain commands are commented out: you should use another command or use the equivalent notation.

Level 2 warnings

These are the type of problems that you should investigate that might require fixing.

Unused variable
Variable defined but unused, or referenced and not defined.

Unfriendly code: Code which could affect other libraries if running in a multi-library environment
For example, Clear method stack, Quit all methods, Close all windows, Remove all menus.

Unfriendly code: Code which would cause the current library to be closed
The following commands will close the current library if the “Do not close other libraries” is not set: Open library, Create library,
Prompt for library.

Class name specified in an internal method call
Inefficient code.

Code that modifies a library or class
One of the Classes… group of commands, such as New class, Rename class, Delete class.

Platform-dependent code
Functionswhich return different values depending onwhichplatform they are executed, including sys(6), sys(10) to sys(22), sys(103)
to sys(114).

Comment containing a question mark
Usually indicates code that needs to be tested, completed, or fixed.

Reference to hash variable
Avoid using hash variables: replace with variable of appropriate scope.

Method Performance

Omnis Studio allows you to collect data about the performance of method execution in your application.

Collecting Performance Data

The Omnis root preference $collectperformancedata enables method performance data collection. Its property is a kCPD… con-
stant specifying whether or not and how Omnis will collect data about method execution performance. The data collected is
stored with each method in its class, and can be accessed using the notation. Data is not collected for remote form client meth-
ods. The kCPD… constants are:

• kCPDnone
Omnis does not collect method execution performance data

• kCPDallMethods
Omnis collects method execution performance data for all methods

213



• kCPDmarkedClasses
Omnis collects method execution performance data for methods in classes where the class property $collectperformance-
data is kTrue: see below

Classes that can contain methods also have a new property called $collectperformancedata. This property is applied only when
$root.$prefs.$collectperformancedatahas the value kCPDmarkedClasses. If true,methodexecutionperformancedata is collected
for all methods in the class.

Assuming $root.$prefs.$collectperformancedata allows, the collected data is stored with each method in the class, with the fol-
lowing properties for each method:

• $callcount
The total number of calls to the method. You can only assign zero to $callcount, in which case Omnis also sets $totalexecu-
tiontime, $minexecutiontime and $maxexecutiontime to zero

• $minexecutiontime
The execution time in milliseconds of the shortest call to the method

• $maxexecutiontime
The execution time in milliseconds of the longest call to the method

• $totalexecutiontime
The total execution time in milliseconds of all calls to the method

$minexecutiontime, $maxexecutiontime and $totalexecutiontime are floating point numbers.

Data collection does not update the $…executiontime properties when the method is being called recursively, however it does
update $callcount for recursive calls.

Classes that contain methods, and can therefore collect method performance data, have two newmethods:

• $clearperformancedata()
Clears the performance data for all methods in the class

• $makeperformancedatalist()
Returns a list containing the performance data collected for all methods in the class

There is a very small overhead when data is collected, while there is no impact on performance when performance data is not
being collected.

Sequence Logging

Sequence logging allows you to record allmethod execution in theDevelopment version ofOmnis or on theOmnis Serverwhich is
used for deploying Omnis web andmobile applications. If your Omnis Server is runningmulti-threadedmode, sequence logging
can log method execution on multiple server threads.

Sys(3000) turns on sequence logging, and sys(3001) turns it off. Sequence logging writes every method command executed to a
file in the Omnis directory. The name of the file is reported by an OKmessage when logging starts. Logging is thread-safe.

The log file can be up to 2mb in size, andwhen that limit is reached it discards all but themost recent 256kb and continues logging.
Logged lines can be of any length. The log file name includes the date. The log file is UTF-8 and has a signature tomark it as such.

Each line in the file is prefixed with “N:” where N identifies the thread. Zero is the main thread. 1-N are Omnis Server threads.

When logging starts, Omnis writes amessage to the log file, to allow the developer to identify logging being started and stopped.

Remote Debugger

Remote debugging allows you to debug your Omnis code remotely over the network. You use a development copy of Omnis Stu-
dio, the remote debug client, to connect over the network to another copy of Omnis Studio, the remote debug server. References
to “the debugger” in this section refer to the remote debugger, while any references to the local Omnis Studio debugger use the
term local debugger. Some key points to note:

• The remote debug server runs the code that is to be debugged, and it can be any type of installation: development, fat
client runtime, server or headless server.

214



• Omnis code running in the multi-threaded server, in server stacks other than the main stack, can be debugged.

• The remote debug server and client do not need to be running on the same operating system.

• The version of the client must be the same or later than the version of the server.

• Protected classes and locked libraries can be debugged (any locked classeswith $canremotedebugwhenlocked set to False
will not appear in the remote debugger).

• From Studio 10.2, you can edit methods and code that you are debugging remotely by opening an ‘Edit Session’

Although the term remote debugger is used, the remote debugger client and server can be on the same computer, and in fact
the client and server can be the same Omnis process. In the latter case, the remote debug client runs with some restrictions,
which are discussed later.

Connectivity

The remote debug client and server always connect to each other over aWebSocket. This applies even if the client and server are
running in the same Omnis process. The WebSocket connection is a direct connection from client to server, so it may require a
port in the firewall to be openedon the server. AsWebSocket connections start asHTTP connections, aWebSocket canbe a secure
TLS connection, and it can require a client certificate to authenticate the client. For the Remote Debugger, a TLS connection is
always required, so the WebSocket starts as HTTPS.

An established connection between a remote debug client and server is called a remote debug session, or just session. A copy of
Omnis that is running as a remote debug client or server, or both, can run only one session at a time.

Remote Debug Server

In the developer version of Omnis, you can configure the Remote Debug Server by clicking on the Options button at the bottom
of the Studio Browser window (next to the revision number) and selecting the Remote Debug Server option.

In a runtime version of Omnis (not headless), if the library remotedebug.lbs is in the Startup folder, there is amenunamedRemote
Debug (see Remote Debug Menu below). This contains a single menu item that can be used to open the Remote Debugger
window.

In the headless server you can configure remote debugging via the OS Admin window.

The Remote Debug Server window has two tabs, one to control the server, and the other to configure the server.

The Control Server tab has a single button, used to start or stop the server - the button text changes depending on the current
state of the server. Until the remote debug server is started, it will not accept a connection from a remote debug client.

The Configure Server tab allows you to enter configuration details for the remote debugger server. The Configure Server tab
shows fields that correspond to the entries in the configuration file. These fields are described in the following sections.

Remote Debug Menu

The Omnis preference $showremotedebugmenu ($root.$prefs) controls whether or not the Remote Debugmenu is displayed. It
defaults to kFalse, and is not saved. Therefore, if you want a library to display the Remote Debugmenu, you must assign kTrue to
this property in your Startup code.

Remote Debug Server Configuration file

The remote debug server configuration is stored in the file called remote_debug_server_config.json, located in the folder
clientserver/server/remotedebug in the data folder of the Omnis installed tree.

You can edit this JSON file directly as a text file, or use the Remote Debug Server window, as described above.

You should note that Omnis uses a node.js server running alongside Omnis to provide the WebSocket server; this commu-
nicates with Omnis using a local in-memory socket. As a consequence, some of the configuration information stored in
remote_debug_server_config.json is used by node.js. An example configuration file:

{
"debugPort": 6102,
"serverPfx": "server.pfx",
"pfxPassPhrase": "xxxxxx",
"ca": [ "server_cert.pem" ],
"requestCert": false,

215



"rejectUnauthorized": false,
"userName": "myUser",
"hashedPassword": "AAGGoAAAABBSEkknQUIeHQHu1sIyWxlSAAAAIHw9kvCVF4tE//SMpbSGVD/RKJLekoR7TlTvZVy3MbkJ",
"startRemoteDebugServerAtStartup": true,
"pauseAtStartupUntilDebuggerClientStartsExecution": false,
"logConnectionSetup": false
"excludeFolders": false,
"inheritedMethodsFirst": false

}

The default server port for the remote debugger is 6102.

Debug Port

The TCP/IP port on which the WebSocket server listens for incoming connections from a client.

Server PFX

This is a file containing the server certificate and private key. Itmust be in the same directory as remote_debug_server_config.json.
The default install tree has a self-signed certificate and key generated by the openssl command (available on any system where
openssl is installed). You will need to provide your own private key and certificate. You can generate a new private key and self-
signed certificate using the following openssl commands:

openssl req -x509 -newkey rsa:4096 -keyout server_key.pem -out server_cert.pem -nodes -days 1024 -subj "/CN=localhost/O=Demo" -passin pass:xxxxxx
openssl pkcs12 -export -out server.pfx -inkey server_key.pem -in server_cert.pem

This file is set as the pfx option when calling the node.js method https.createServer(). You can find more documentation about
this in the node.js documentation online:

https://nodejs.org/docs/latest-v8.x/api/https.html#https_class_https_server

[https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options] (https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options)

PFX Pass Phrase

This is the pass phrase used to protect the Server PFX file. In the example in the previous section this is xxxxxx.

CA

See https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options for more details. You would typically only
set the CA when using a self-signed certificate, in which case it has a single entry. In the Server PFX section above, the certificate
was signed using server_cert.pem. The general value of this is a comma-separated list of trusted CA certificate file names. The
files must all be in the same directory as remote_debug_server_config.json.

Request Client Certificate

A Boolean option. If true, the node.js server requests a client certificate to authenticate the client. The client certificates are
discussed later, in the client connectivity section.

Reject Unauthorized

A Boolean option. If true, the server will reject any connection which is not authorized with the list of supplied CAs. This option
only has an effect if Request Client Certificate is true.

User Name

If not empty, the WebSocket connection also uses HTTP basic authentication to authenticate the user, in which case this field
contains the user name used for HTTP basic authentication.

Hashed Password

If the User Name is not empty, this is the PBKDF2 hash of the password required for HTTP basic authentication.

216

https://nodejs.org/docs/latest-v8.x/api/https.html#https_class_https_server
https://nodejs.org/docs/latest-v8.x/api/tls.html#tls_tls_createsecurecontext_options


Start Remote Debug Server

This Boolean option controls whether the remote debug server automatically starts when Omnis starts.

Pause Execution At Startup

If the remote debug server is configured to automatically start whenOmnis starts, you can set this Boolean option to true tomake
Omnis pause execution at startup before it runs the startup tasks of libraries in the startup folder.

When using this option, Omnis displays a working message (Waiting for remote debug client to start execution…), and enters a
loop where it waits for a remote debug client to open a session. Once a session is opened, Omnis remains in the loop, where it
is now waiting for a command from the client to start execution. During this loop, the client can inspect remotely debuggable
code, and set breakpoints for example.

The loop terminates either when the client sends a command to run startup, or when the remote debug session closes, or when a
user clicks the cancel button on theworkingmessage displayed on the server. When the loop terminates, Omnis runs the startup
tasks for the libraries in the startup folder.

You can also Exclude folders from class lists, and Show inherited methods first in the method list in the remote debugger code
editor.

Remote Debug Client

The remote debug client is accessible via a new node in the Studio Browser tree, “Remote Debug Client”. It uses a similar session
model to the Omnis VCS. When you click on the Remote Debug Client node in the tree, hyperlinks appear in the browser panel
for Session Manager, and Open Session.

The sessionmanager allows you to configure remote debug sessions. Each session provides the parameters that allow the remote
debug client to establish a WebSocket connection to a remote debug server. These parameters are described in the following
sections.

Name

A name that identifies the session.

Server

The IP address or DNS name of the remote debug server.

Debug Port

The debug port configured for the remote debug server. When connecting to the server, the client connects to a URL of the form

wss://Server:DebugPort

Client Certificate

If the server requires a client certificate, you specify this here.

You can generate a client certificate using the openssl commands:

openssl req -newkey rsa:4096 -keyout client_key.pem -out client_csr.pem -nodes -days 1024 -subj "/CN=192.168.1.11" -passin pass:xxxxxx
openssl x509 -req -in client_csr.pem -CA server_cert.pem -CAkey server_key.pem -out client_cert.pem -set_serial 01 -days 1024

Note that this uses the server key and server certificate generated in the example for the Server PFX field of the remote debug
server configuration. The client certificate needs to be installed on the client machine.

OnWindows, generate a client.pfx file:

openssl pkcs12 -export -out client.pfx -inkey client_key.pem -in client_cert.pem

Import client.pfx into the windows certificate store: double click on the pfx, add to Personal certificates for the current user.

On macOS, generate a pkcs12 file:

openssl pkcs12 -export -out client.p12 -inkey client_key.pem -in client_cert.pem

217



Double click on the file to add it to the keychain.

You can find more details about this in the CURL documentation at:

https://curl.haxx.se/libcurl/c/CURLOPT_SSLCERT.html

Note the Client Certificate parameter is the value passed to the CURL option CURLOPT_SSLCERT.

OnWindows, the client certificate parameter is a path expression to a certificate store e.g.

CurrentUser\MY\afe2179599460d20da08c12e8c328d84bd300735

where afe2179599460d20da08c12e8c328d84bd300735 is the thumbprint viewed by double clicking on certificate in the MMC
(MMC certificate snap-in view, details tab, thumbprint field).

On macOS, you can specify either the path of the p12 file, or the keychain name of the client certificate.

User Name

If the server uses HTTP basic authentication, the user name required for that.

Password

If the server uses HTTP basic authentication, the password required for that. Alternatively, you can leave this empty, and the client
will prompt for the password when it is required.

Server Connection Logging

You canmonitor the client connection to the Remote debugging server, which allows you to highlight any connection problems.
You can enable logging in the remote debug client window (or in the config file in the logConnectionSetup item).

If enabled, the RemoteDebugClientwrites a log file named <session name>.htm to the logs/remotedebug folder, containing a log
of what occurred when attempting to connect to the remote debug server. Note that the log is not written until the connection
closes.

Preparing Code For Remote Debugging

You have to enable remote debugging in the library, and in the task instance (remote or standard for fat client), by setting the
$remotedebug property.

Library

By default, a library cannot be debugged by the remote debug client, meaning that when the remote debug client connects to
a server, the library will not appear in the client interface. If you wish code in a library to be debugged with the remote debugger,
you need to set a new library property, $clib.$remotedebug: if true, remote debugging of this library is allowed, but it cannot be
set to true in an always private library, which means you must set this property to true before making the library always private.

Task

Setting $clib.$remotedebug allows the library and its classes to appear in the remote debug client interface. This allows you to
browse the code and set breakpoints. However, only tasks and remote tasks marked for remote debugging will react to these
breakpoints. This providesmore control over debugging, and specifically in themulti-threaded server, it prevents one breakpoint
from stopping every client that hits it.

To mark a task or remote task for remote debugging, set the $remotedebug property of the task instance to kTrue.

In addition, you can set this property of a remote task by adding a query string parameter to the URL used to open a JavaScript
client form or execute an ultra-thin request: omnisRemoteDebug=1, for example:

http://127.0.0.1:5981/jschtml/jsDragDrop.htm?omnisRemoteDebug=1

Locked Classes

You can debugmethods in a locked class if the $canremotedebugwhenlocked property in the class is set to true. Locked classes
for which this property is kFalse do not appear in the remote debug client list of classes for the library.

218

https://curl.haxx.se/libcurl/c/CURLOPT_SSLCERT.html


Opening a Session

To use the remote debugger client after configuring a session, click on the Remote Debug Client node in the Studio Browser tree,
click on either Open Debug Session (read-only), or Open Edit Session hyperlink, and then click on the hyperlink for the session
you want to use. This will cause the client to establish a WebSocket connection to the server. While the connection is being
established, progress is displayed in the browser panel, although this is usually very quick. In addition, a Cancel Open Session
hyperlink is displayed while the connection is being established.

Edit Session

An “Edit session” allows you to edit methods via the remote debugger, that is, you can apply edits, and you can create new
variables via the fix error dialog. Note that until you try to save the method back to the server, you will not know for sure if the
method will be accepted, since only part of the library is available when editing - you can use instance, class, local, task and
parameter variables (from the class or a superclass) or any file class variable in a file class used by the method. Using variables
from other file classes, or using notation, functions or commands available on the server (but not the client), will be displayed as
an error if you edit a line containing something only available on the server. However, you can still save the method successfully
in this case.

In editmode, methods default to read-only in the remote debugwindow. You need to explicitly press “editmethod” in the toolbar
to edit the method, after which you cannot do anything else with the window until you press Save or Cancel or close the window.

Debug (read-only) Session

A “Debug session” (read-only) allows you to viewand step throughcode in the remotedebugger, but youcannot edit themethods
or add variables. The remainder of this section describes remote debugging for a debug session, but an edit session has the same
operation except for the above caveats.

Browsing Libraries

After the session opens, libraries marked for remote debugging appear in both the browser tree and the browser panel. The
Remote Debug Client child nodes have similar behavior to the Libraries node child nodes, so they include both libraries and
folders within the libraries. When you select a child node, the browser panel updates to show the content of that node - this
comprises a list of all classes that can contain code.

While any node in the remote debug client sub-tree is selected, a Close Session hyperlink is displayed. In addition, if a single class
is selected in the browser panel, a hyperlink named “Open debug window” is displayed. You can click on this (or double click on
a class in the panel) to open the remote debug window for the class.

If the server is paused, waiting to run startup, the hyperlinks include a link named “Run Startup” that can be used to tell the server
to carry on and run its startup processing.

Save Window Setup for the browser window remembers column positions for the list view of the remote debug client panel.

The status bar of the browser window includes the name of the currently open session.

Excluding Folders

The Remote Debug Server configuration has the ‘Exclude folders’ optionwhich controls whether or not folder names are returned
by the server to the client, and therefore displayed in the browser. The remote debug server dialog allows you to edit this option.

The Remote Debug Window

The remote debug window has a similar layout to the Method Editor. The main difference is that it always shows the debug
panel (there is no editor panel). The window shares both its fonts and keyboard shortcuts with the method editor. So if you open
the Fonts… dialog from either of these windows, you are editing the same configuration information (stored in keys.json under
methodEditorAndRemoteDebugger).

Remote Debugger Toolbar

From left to right, the toolbar controls are as follows. Note that there is no configuration mechanism to change these.

219



Figure 127:

Back

Navigates to the previous method in the history stack for the window. Note that unlike the method editor, there is a separate
history stack for each remote debug window. This allows operations such as open superclass methods and open specified class
to operate within the context of a single window, and also works more appropriately when you have several windows all paused
at a breakpoint.

Forward

Navigates to the next method in the history stack for the window.

View

Open specified class is similar to the Modify Specified Class command in the method editor - when a method line is selected, it
opens the method referred to by the command, if one can be identified.

In addition to a context menu command in the tree, the View menu also has a command to go to the superclass methods if
relevant (also available on the Modify menu for the method editor).

Find

This allows you to perform find operations on the currently selected method.

Instance

The remote debug window can be associated with an instance. This allows you for example to view instance specific methods
or objects that have been added during runtime execution. The instance menu allows you to close the instance, detach the
debugger from the instance, or attach the debugger to an instance. Note that thismenu is disabled as soon as the remote debug
window becomes associated with some executing code (by hitting a breakpoint).

Stack

When execution is paused this allows you to select items on the call stack, or clear the stack.

Go, Step In, Step Over, Step Out

Like the standardmethod editor, these commands allow you to start execution (Go) and step through your debuggable code. The
step commands step until the next debuggable command, so if code which is not debuggable is encountered execution will not
pause there.

220



Go Point

This allow you to set the go point to a different line in the method at the top of the call stack.

Breakpoints

This allows you tomanage breakpoints. Note that themethod editor has also been changed to remove individual Breakpoint and
One-time breakpoint buttons, and use a similar menu to this for consistency.

The Set Condition… command allows you to set a condition on a breakpoint. The condition is a calculation that must evaluate to
true for the breakpoint to pause execution. The condition dialog provides some code assistance, by using variable names (of task,
class, instance, local, parameter and event parameter variables) present in the currently displayed method.

Note that the code panel and the breakpoint panel both provide alternative ways to work with breakpoints, in a similar way to
themethod editor - so the left column of the code panel can be used to set and clear breakpoints, and the breakpoints panel has
a context menu to do this. Set Condition… is not available in the breakpoints panel context menu, because the method affected
may not currently be displayed.

Variable panel

The Variable panel in theMethod Editorwill be populatedwhile debugging your code remotely, and allows you to view andmodify
variables.

Keeping the Client in Step with the Server

You should bear inmind that the set of libraries and instances being debugged can change on the server. Omnis keeps the client
up to date with the server using a combination of notifications sent from the server, and lazily applied updates to the client. For
example, if a library closes on the server, the client is informed, and it updates the interface to reflect this - this means it removes
it from the browser tree, and closes any remote debug windows for classes in the library. However, if a method changes on the
server, the client will not receive the updated method until it requests it again - note that each time the client performs a debug
operation, e.g. step over, the client will request themethodwhen the action completes - if themethod has changed on the server,
the client will receive a new copy as part of the step action.

Execution

Execution Contexts

An execution context is either the main thread or a remote task instance. When execution suspends for an execution context,
the remote debug client looks for the debug window associated with the context, and uses that. If there is no debug window
for that context, the client looks for a suitable open remote debug window for the class, and if one exists that is not associated
with a context it will use it, and associate the window with the context; otherwise the client opens a new window and associates
it with the context. Once a window is associated with an execution context, all debugging for that context occurs in that window.
A window associated with an execution context can only be closed if execution is not currently paused.

This approach means you can be simultaneously debugging several remote task instances for example. Each execution context
uses a single window.

All in one process

As stated earlier, the remote debug client and server can be the same process. In this case:

When execution suspends in the main thread, the remote debug window for the main thread context becomes fully modal.

You cannot debug code running in a critical block in the multi-threaded server.

Errors

If an error occurs duringOmnis code execution, e.g. Openwindow instancewith a badwindowname, and the line of code causing
the error is remotely debuggable, the remote debugger pauses execution at the line causing the error.

Local Debugger

While the remote debugger is attached to a copy of Omnis, the local debugger is disabled in that copy. This also affects the ability
to right click and view variable values.

221



Omnis Language

There is a new sys() function, sys(238) that returns a Boolean which is true if the remote debug server has been started.

Remote Debugger In Control

When the remote debug server and client are not the sameprocess, and execution is suspended for themain thread on the server,
the following window appears on the server (this does not apply to the headless server):

Figure 128:

While this window is displayed, the only action that can be performed on the server is a click on the button to stop the remote
debug server, and run (meaning execution continues from where it was paused).

Note that if you do choose to stop the server, then the session will close on the client, and all remote debug windows open on the
client will close. If you subsequently restart the server (without restarting Omnis), and open a new session from the client, any
breakpoints set for the previous session will still be set.

Chapter 5—Object Oriented Programming

This chapter discusses the object-oriented features used in Omnis Studio, including inheritance, custom properties andmethods,
and creating and using object classes and external objects.

Note that most of the example code in this chapter is generic and can be applied to all programming tasks; however, some of
the example code may relate to window classes only, but the code may be easily adapted to work with remote forms.

Inheritance

When you create a new class, you can derive it from an existing class in your library. The new class is said to be a “subclass” of
the existing class, which is in turn a “superclass” of the new class. You canmake a subclass from all types of class, except schema,
query, remote menu, code classes, file or search classes. The general rule is that if you can open or instantiate a class, such as a
remote form, then you can make a subclass of that type of class. Omnis does not support mixed inheritance, that is, you cannot
make a subclass of one type from another type of class.

Why should I use inheritance?

When you make a subclass, by default, it inherits all the variables, methods, and properties of its superclass. For example, re-
mote form subclasses inherit all the fields and objects, as well as all the methods, from the remote form superclass. Therefore,
inheritance saves you time and effort when you develop your application, since you can reuse the objects, variables, andmethods
from a superclass. When you make a change in a superclass, all its subclasses inherit the change automatically. From a design
point of view, inheritance forces uniformity in your UI by imposing common properties, and you get a common set of methods to
standardize the behavior of the objects in your library.

Making a Subclass

You can make subclasses from the following types of class:

• Remote Form
inherits variables, methods, and properties from its superclass, as well as all fields on the remote form superclass

• Report
inherits variables, methods, and properties from its superclass: note that a report class does not inherit the fields, sections,
and graphics from its superclass

222



• Remote Task
inherits variables and methods from its superclass, but none of its properties

• Task
inherits variables and methods from its superclass, but none of its properties

• Table
inherits variables and methods from its superclass, and only some of its properties

• Remote Object
inherits variables and methods from its superclass, but none of its properties

• Object
inherits variables and methods from its superclass, but none of its properties

You can make subclasses from the following types of class, but they apply to desktop apps only (so are not available in the Com-
munity Edition):

• Window
inherits variables, methods, and properties from its superclass, as well as all fields on the window superclass; you can inherit
the status bar (right-click on the status bar and select Inherit)

• Menu
inherits variables, methods, and properties from its superclass, as well as the menu lines in the menu superclass

• Toolbar
inherits variables, methods, and properties from its superclass, as well as the toolbar controls in the toolbar superclass

To make a subclass

• Open your library in the Browser and show its classes

• Right-click on a class and choose Make Subclass from its context menu (if a class does not support subclasses the option
will not appear)

When you make a subclass Omnis creates a new class derived from the selected class. The new class inherits all the objects,
variables, and methods from its superclass. Omnis supports up to 10 superclass levels, that is, a single class can inherit objects
from up to ten other superclasses that are directly in line with it in the inheritance tree. If you create further levels of subclass they
do not inherit the objects from the superclasses at the top of the tree.

You can view and edit a subclass, as youwould any other class, by double-clicking on it in theBrowser. When you edit themethods
for a subclass in themethod editor, youwill see its inherited variables andmethods shown in a color. When you view theproperties
of a subclass its inherited properties are shown in a color in the Property Manager. You can set the color of inherited objects using
the inheritedcolor Omnis preference. Note that all the Appearance and Action properties for a window are inherited too.

Standard properties for the class, such as the window name and class type, are not inherited, neither are the grid properties. The
properties to do with the general appearance of the window, such as title and hasmenus, are inherited and shown in a color,
which defaults to bright blue. You cannot change inherited properties unless you overload them: their values are grayed out in
the Property Manager. If you change the properties of the superclass, the changes are reflected in the subclass when you next
open it in design mode.

There are some general properties of a class that relate to inheritance, as follows:

Property Description

$superclass the name of the superclass for the current class; the
superclass can be in another library, in which case
the class name is prefixed with the library name

$inheritedorder for window classes only, determines where the
inherited fields appear in the tabbing order: by
default inherited fields appear before non-inherited
fields on your window

$issupercomponent if true the class is shown in the Studio Browser as a
superclass

$componenticon icon for the superclass when it is shown in the
Studio Browser

223



Window Status Bar

A window subclass can inherit window status bar panes from a superclass. In design mode, when you right-click on the status
bar, the Inherit option allows you to inherit the status bar panes from a superclass (the option allows you to toggle the panes on
or off). When inherited, you cannot change any of the pane or bar properties in design mode, and these properties are displayed
in the Property Manager using the inherited colour.

Subclass Editors

Class editors for subclasses update immediately when the superclass has been changed, so you do not have to close and re-open
a subclass to see the changes made to the superclass.

Making a Subclass Manually

You can set the superclass property for a class manually, to make it a subclass of the specified class, either using the notation or
in the Property Manager.

However, when youmake a subclass in thisway itdoes not inherit any of the properties of the superclass: only objects are inherited
from the superclass. You have to open the Property Manager and inherit the properties manually using a context menu.

To inherit a property manually

• View the properties of the subclass in the Property Manager

• Right-click on the property and select Inherit Property from its context menu

If the property cannot be inherited the context menu will display Cannot Inherit and will be grayed out. If the class does not have
a superclass the inheritance context menu does not appear or is grayed out.

To inherit a method manually

• Open the method editor for the subclass

• Right-click on the method and select Inherit Method from its context menu

When you inherit a method in this way, Omnis will delete the current method. Any comments in the inherited method will be
shown on the left-hand side of the ‘Notes’ tab in the Variable pane in the Method Editor.

Inherit or Override method Shortcut

The Inherit method or Override method options are present in the method editor Modify menu when it is appropriate to include
the command. Both have the shortcut Ctrl+Shift+I to inherit or override the current method.

Overloading Properties, Methods, and Variables

Having created a class from another class using inheritance you can override or overload any of its inherited properties, methods,
and variables in the Property Manager or the Method Editor as appropriate. All inherited objects are shown in a color. To overload
an object, you can Right-click on the object and select Overload from the object’s context menu.

(Note that for windows, menus, and toolbars you cannot overload or delete inherited fields, menu lines, or toolbar controls. If you
don’t want certain objects to be displayed in a subclass you can hide them temporarily at runtime using the notation.)

To overload a property

• View the properties of the subclass in the Property Manager

• Right-click on the inherited property and select Overload Property from its context menu

When you overload a property, its inherited value is copied to the class and becomes editable in the Property Manager. You can
overload any number of inherited properties in the class and enter values that are local to the class.

To reverse overloading, you Right-click on a property and select Inherit Property: the local value will be overwritten, and the value
inherited from the superclass will appear in the Property Manager.

To override a method

• View the methods for the subclass in the method editor

224



• Right-click on the inherited method and select Override Method from its context menu

When you override a method it becomes like a non-inherited method in the class, that is, you can select it and add code to it.

To reverse this process and inherit the method with the same name from the superclass, you can right-click on the method
and select Inherit Method: the code in the non-inherited method will be deleted and the inherited method will now be in place.
Alternatively, if you override a method and then delete the local one, the inherited method will reappear when you close and
reopen the class.

To override a variable

• View the methods for the subclass in the method editor and click on the appropriate tab in the variable pane to find your
variable

• Right-click on the inherited variable and select Override Variable from its context menu

When you override a variable it becomes like a non-inherited variable in the class and is only visible in that class.

To reverse this process and inherit the variable with the same name from the superclass, you can Right-click on the variable and
select Inherit Variable.

Inheritance Tree

The Inheritance Tree shows the superclass/subclass structure of the classes in your library. All classes below a particular class in
the hierarchy are subclasses of that class. When you select a class in the Browser and open the Inheritance Tree it opens with that
class selected, showing its superclasses and subclasses above and below it in the tree.

To open the Inheritance Tree for a class

• Select the class in the Browser

• Right-click on the class and select Inheritance Tree from its context menu

Showing Superclasses in the Studio Browser

You can show any class that supports inheritance in the Studio Browser by setting its $issupercomponent property to kTrue. You
can specify the icon for a superclass by setting its $componenticon property. If you create a class from a superclass displayed in
the Studio Browser, the new class will be a subclass of the class in the Studio Browser automatically.

To make a subclass from a supercomponent

• Select the target library in the Studio Browser

• Click Class Wizard option

• Click on the Class Type option

• Click on the Subclasses option

At this stage, all the supercomponents of that type (i.e. classes that have their $issupercomponent set to kTrue) shouldbedisplayed
in the wizard.

• Click the supercomponent (superclass) you want to create a subclass of

• Enter a name for the subclass and click on the Create button

Such supercomponents will only appear in the Studio Browser if the library containing it is open, since the class actually remains
in your library and is only displayed in the Studio Browser.

Note that classes that appear in the Studio Browser in this way cannot be made the default object for that class.

225



Inheritance Notation

You can use the $makesubclass() method to make a subclass from another class. For example

Do $windows.Window1.$makesubclass('Window2') Returns ItemRef
# creates Window2 which is a subclass of Window1 in the
# current library, ItemRef contains a reference to the new class

You can test if the current class can be subclassed by testing the $makesubclass() method with the $cando() method, as follows

If $cclass.$makesubclass().$cando()
Do $cclass.$makesubclass(sClass) Returns ItemRef
# creates a subclass of the current class
...

The $makesubclass() method has a Boolean optional second argument (bAddLibPrefixForClib, default kFalse), which when kTrue,
causes the $superclass property of the new subclass to include the library prefix for the current library.

You can test if a particular class is a superclass of another class using the CLASS.$isa(SUPERCLASS) method as follows

Do $windows.window2.$isa($windows.window1) Returns lresult
# returns true if window1 is a superclass of window2

You can change the superclass of a class by reassigning $superclass

Do $cclass.$superclass.$assign('DiffClassName') Returns lresult

You can test if a property can be inherited using

Do $cclass.$style="font-variant: small-caps;">PropertyName.$isinherited.$canassign() Returns lresult

If a property can be inherited, you can overload or inherit the property by assigning $isinherited. For example, to overload a
property

Do $cclass.$style="font-variant: small-caps;">PropertyName.$isinherited.$assign(kFalse) Returns lresult

A superclass can be in a different library to a subclass. If you open an instance of a subclass when the superclass is not available,
perhaps because the library the superclass belongs to is not open or has been renamed, a kerrSuperclass error is generated.

Libraryname prefix for subclasses

By default, Omnis does not prefix $superclass with the library name (if both classes are in the same library). You can manually
change the $superclass property to include the library name if you wish.

Calling Properties and methods

When a property ormethod name is referenced in a subclass, Omnis looks for it first in the subclass and progressively up the chain
of superclasses in the inheritance tree for the current library. Therefore, if you haven’t overridden the property or method in the
subclass, or at any other level, the property or method at the top of the inheritance tree will be called. For example, the following
command in a subclass

Do $cinst.$MethodName()
# will call $MethodName() in its superclass

However, if you have overridden a property or method in the subclass the method in the subclass is called. You can still access
the inherited property or method using the $inherited property. For example, assuming $MethodName() has been overridden in
the subclass

Do $cinst.$inherited.$MethodName()
# will call the superclass method

Do $windows.MySubWin.$MethodName().$inherited
# will call $MethodName() in the superclass

$inherited is present at the top level, and in $cinst for all types of instance (while $default is available for table instances only).

226



Referencing Variables

When a variable is referenced in a subclass, Omnis looks for its value first in the subclass and progressively up the chain of super-
classes in the inheritance tree for the current library. Therefore, if you haven’t overridden the variable in the subclass, or at any
other level, the value at the top of the inheritance tree is used.

However, if you have overridden a variable in the subclass the value in the subclass is used. You can access the inherited variable
using $inherited.VarName, in which case, the value at the top of the inheritance tree is used.

A superclass cannot use the instance and class variables of its subclasses, although the subclass can pass them as parameters to
superclass methods. References to class and instance variables defined in a superclass are tokenized by name and the Remove
Unused Variables check does not detect if a variable is used by a subclass. If an inherited variable does not exist, its name is
displayed as $cinst.VarName in design mode and will create a runtime error.

Inherited Fields and Objects

All inherited window fields on a window subclass are included in the $objs for an instance. Since some field names may not be
unique, when $objs.name is used Omnis looks first in the class containing the executing method, then in the superclasses and
lastly in the subclasses. The $objs group for report fields, menu lines, and toolbar controls behave in the same way as window
fields.

You should refer to fields at runtime by name, since at runtime Omnis assigns artificial $idents to inherited fields. The $order
property of a field may also change at runtime to accommodate inherited fields into the tabbing order.

Do inherited Command

You can use the Do inherited command to run an inherited method from a method in a subclass. For example, if you have
overridden an inherited $construct() method, you can use theDo inherited command in the $construct() method of the subclass
to execute the $construct() method in its superclass. You could use this command at the end of the $construct() method in the
subclass to, in effect, run the code in the subclass $construct() and then the code in the superclass $construct() method.

Inherited Object Notation

You can access the methods of inherited objects in remote forms, windows, menus, toolbars and reports in your Omnis code.
Inherited objects are exposed as a new groupwithin the notation group called $inheritedobjs. Themembers of this group are the
inherited objects from all of the superclasses of the class.

Each member of the $inheritedobjs group has three properties: $name, $ident and $isorphan (true when the object no longer
belongs to a superclass, but has methods so it cannot be removed without developer approval). In addition, each member has
a child $methods group which are the methods implemented in the class for the inherited object. This is just like any other
methods group, and methods can be manipulated as you would expect. To override a method from the superclass, simply add a
method with the same name as the inherited object method. To inherit a method, delete the method with the same name from
the inherited object methods.

Object Classes

Object classes let you define your own structured data objects containing variables and methods. You can create an object
variable basedon anobject classwhich contains all the variables and custommethodsdefined in the class. When you reference an
object variable an instance of the object class is created containing its own set of values. You can store an object variable instance
and its values on a server database (or Omnis datafile). The structure and data handling capabilities of the object instance is
defined by the types of variables you add to the object class; similarly, the behavior of an object variable is defined by themethods
you add to the object class.

Object classes have the general properties of a class and no other special properties. They can contain class and instance variables,
and your own custom methods. You can make a subclass from an object class, which inherits the methods and variables from
the superclass.

The HTTP Push example app in the Hub in the Studio Browser uses Object classes to create an HTTP Worker object; see this
example app for code using object classes.

To create an object class

• Open your library in the Browser

• Click on New Class and then the Object option

• Name the new object class

227



• Double-click on the object class to modify it

Alternatively, you may want to create an object class using one of the wizards. In this case, you should click on Class Wizard, then
Object, and select one of the wizards.

When youmodify an object class, Omnis opens themethod editor for the class. This lets you add variables, and your own custom
properties and methods to the class.

When you have set up your object class you can create any other type of Omnis variable based on your object class: an object
variable has type Object and its subtype is set to the name of your object class. For example, you can create an instance variable
of Object type that contains the class and instance variables defined in the object class. When you reference a variable based
on an object class you create an instance of that object class that belongs to the current task at the point of their creation (this
provides consistency with object instances created via $new). You can call the methods in the object class with the notation
ObjVarName.$MethodName(), where $MethodName() is any custommethod you have defined in the object class.

You can store object variable instances in a server database that stores binary values (or an Omnis data file). When you store an
instance of an object variable in a database, the value of all its contained instance variables are also stored. When the data is read
back into memory the instance is rebuilt with the same instance variable values. In this respect you can store a complete record
or row of data in an object variable.

You can store object instances in a list. Each line of the list will have its own instance of the object class. Object instances stored
in a task, instance, local, or parameter variable belong to the same task as the instance containing that variable. Similarly object
instances stored in a list or rowbelong to the same task as the instance containing the list or rowvariable. All other object instances
have global scope and are instantiated by the default task and belong to the default task.

You cannot make an object instance a private instance. If you delete the object class an object variable uses, the object instance
will be empty.

An object instance stored as a class variable in a task is destroyed as soon as its original task is destroyed.

To add variables and methods to an object class

• Open your object class in design mode

• Right-click in the variable pane of the method editor and select the Add New Variable option from the context menu

• Name the variable, give it a type and subtype as appropriate

• Right-click in theMethodNames pane of themethod editor and select the AddNewMethod option from the contextmenu

• Name the method, including the dollar prefix

If you right click on an object variable, and use the Variable <name>… entry in the context menu, the variables list window opens,
initially showing instance variable values.

Missing Object Variables

An error is generated when you open a library that tries to construct an Object variable and the Object class it is based on does
not exist or is in a library that is not open. In this scenario, you will get a runtime error and execution blocks with the following
error:

E100101: Class not found when constructing an object variable

The class name is TESTB.oTestB
Either the class does not exist or it has the wrong type e.g. remote object

In versions prior to Studio 10 in this case, you would have received the error “Class not found”, but code execution would have
continued which may have led to further errors in the application.

$cando and Error Handling

Since Studio 10.1. the default behavior when Omnis attempts to construct an object variable when its class does not exist, is to
report a debugger error when code attempts to use the object, e.g. via $cando. From Studio 10.2, you can override this behavior,
for example, $cando will return kFalse for notation like iObject.$message.$cando.

To override this behavior, you can use the $nofatal property of object variables:

Calculate iObject.$nofatal as kTrue

• $nofatal
If true, and the object instance could not be constructed because the object class does not exist, treat this error as awarning
when trying to use this object (meaning Omnis will not enter the debugger or abort execution)

When using $cando after setting $nofatal to kTrue, the $cando will return false.

228



Variable Count

The $usage property reports the current number of object variables that are sharing the underlying external component object.
A NULL value means the object is neither an external component object, nor is it subclassed from an external component object.

Note that copies of the object such as $statementobject and $sessionobject contribute to the count.

Using Object Classes

This section describes an invoices example and uses an object class and simple invoices window; it is intended to show what
you can do with object classes, not how to implement a fully functional invoices application. You can create the data structure
required for an invoice by defining the appropriate variables and custommethods in an object class.

The following example uses an object class called o_Invoice, which contains the variables you might need in an invoice, such as
the invoice ID, quantity, value, and a description of the invoice item. The o_Invoice object class also contains any custommethods
you need to manipulate the invoice data, such as inserting or fetching invoices from your database. The methods in the object
class contain the following code

# $SaveInvoice() method contains
# local var lv_InvoiceRow of type Row and
# local var lv_Bin of type Binary and
# parameter var pv_Object of type Field reference
Do lv_InvoiceRow.$definefromtable(t_Invoices)
Calculate lv_bin as pv_Object
Calculate lv_InvoiceRow.InvoiceObject as lv_bin
Do lv_InvoiceRow.$insert() Returns #F
# $SelectInvoice() method contains
# local var lv_Row of type Row
Do lv_Row.$definefromtable(t_Invoices)
Do lv_Row.$select()
Do lv_Row.$fetch() Returns #S1
Quit method lv_Row.InvoiceObject
# $FetchInvoice() method contains
# local var lv_Row of type Row
Do lv_Row.$definefromtable(t_Invoices)
Do lv_Row.$fetch()
Quit method lv_Row.Inv_Object
# $total() method

Quit method iv_QTY * iv_Value

The invoice window can contain any fields or components you want, but would contain certain fields that reference the instance
variables in your object class, and buttons that call the methods also in your object class.

The invoice window contains no class methods of its own. All its functionality is defined in the object class. The window contains
a single instance variable called iv_Invoice that is based on the o_Invoice object class.

The instance variable would have the type Object and its subtype is the name of your object class, o_Invoice in this case. If the
object class is contained in another library, the object class name is prefixed with the library name.

When you open the invoice window an instance of the object class is created and held in iv_Invoice. Therefore you can access
the instance variables and custom methods defined in the object class via the instance variable in the window; for example,
iv_Invoice.iv_QTY accesses the quantity value, and iv_Invoice.$SaveInvoice() calls the $SaveInvoice() method. Each field on the
invoice window references a variable in the object class; for example, the dataname of the quantity field is iv_Invoice.iv_QTY, the
dataname of the item or description field is iv_Invoice.iv_Item, and so on.

The buttons on the invoice window can call the methods defined in the object class, as follows.

# $event() method for the Select button
On evClick
Do iv_Invoice.$SelectInvoice(iv_Invoice.iv_ID) Returns iv_Invoice
Do $cwind.$redraw()

# $event() method for the Fetch button
On evClick
Do iv_Invoice.$FetchInvoice Returns iv_Invoice

229



Do $cwind.$redraw()

# $event() method for the Save button
On evClick
Do iv_Invoice.$SaveInvoice(iv_Invoice)

When you enter an invoice and click on the Save button, the $SaveInvoice() method in the object class is called and the current
values in iv_Invoice are passed as a parameter. The $SaveInvoice() method receives the object instance variable in the parameter
pv_Object and executes the following code

Do lv_InvoiceRow.$definefromtable(t_Invoices)
Calculate lv_bin as pv_Object
Calculate lv_InvoiceRow.InvoiceObject as lv_bin
Do lv_InvoiceRow.$insert() Returns #F

The row variable lv_InvoiceRow is defined from the table class t_Invoices which is linked to the schema class called s_Invoices
which contains the single column called InvoiceObject. The binary variable lv_bin, which contains the values from your object
instance variable, is assigned to the row variable. The standard $insert() method is executed which inserts the object variable into
your database. The advantage of using an object variable is that all the values for your invoice are stored in one variable and they
can be inserted into a binary column in your database via a single row variable. If you want to store object variables in an Omnis
database you can create a file class that contains a single field, called InvoiceObject for example, that has Object type, rather than
Binary, and use the appropriate methods to insert into an Omnis data file.

Libraryname prefix for object variables

There is an “Include library prefix” check box on the object class selection dialog. This allows you to add the library name to the
object class name for the variable, but when the object class is in the same library you don’t need to add the libraryname prefix.

Dynamic Object Instances

The object class has a $new() method that lets you create an object instance dynamically and store it in an object variable, for
example

Do $clib.$objects.objectclass.$new(parm1,parm2,...) Returns objectvar

where parameters parm1 and parm2 are the $construct() parameters for the object instance. When the instance is assigned, any
existing instance in the object variable is destroyed. It would be normal practice to put no class in the variable pane for object
variables which are to be set up dynamically using $new(), but there is no class checking for instance variables so no error occurs
if the class shown in the variable pane is different from the class of the new instance.

You can do a similar thing with an external function library if it contains instantiable objects, such as Fileops. For example

Do Fileops.$objects.fileops.$new() Returns objectvar
Do objectvar.$openfile(pFilename)

The following example uses an Object variable ivSessionObj which has no subtype defined in themethod editor. When this code
executes ivSessionObj is instantiated based on the object class SessionObj which was created using the SessionWizard in Omnis.
Once the object instance exists the $logon() method is called.

Do $clib.$objects.SessionObj.$new() Returns ivSessionObj
# runs $construct() in the SessionObj object class

Do ivSessionObj.$logon()
# runs the $logon() method in SessionObj

230



Self-contained Object Instances

Object classes have the $selfcontained property. If set to kTrue the class definition is stored in all instances of the object class. An
instance of such an object class is disconnected from its class and instead relies on its own class data for method and instance
variable definitions. When the object instance is stored on disk the class definition is stored with the instance data and is used to
set up a temporary class whenever the instance is read back intomemory. Any changes to the original object class have no effect
on existing instances, whether on disk or in memory.

Once an instance is self-contained it is always self-contained, but you can change its class definition by assigning to $class, for
example

Do file1.objvar1.$class.$assign($clib.$objects.objectclass1)

causes the class definition stored inside objvar1 to be replaced by the currentmethod and variable definitions for objectclass1. The
instance variable values are maintained provided the new instance variable definitions are compatible with the old ones (Omnis
can handle small changes in the type of variables butwon’t carry out substantial conversions). Note that the old instance variables
arematched to thenewonesby $ident andnot byname, so to avoidproblems thenewclass shouldbe adescendant of the original
class with none of the original variables having been deleted.

Only the main class is stored with the object instance, inheritance is allowed but any superclasses must exist in open libraries
whenever the instance is present in memory. Assigning to $class does not change the superclass structure of self-contained
instances.

Object References

The Object reference data type provides non-persistent objects that you can control using notation. Non-persistent means that
objects used in this way cannot be stored on disk, and restored for use later.

You can use the Object reference data type with local, instance, class and task variables. Object references have no subtype. To
create a newObject instance, referenced by anObject reference variable, you use themethods $newref() and $newstatementref().
These are analogous to the $new() and $newstatement() methods used to create object variables, and they can be usedwherever
$new() and $newstatement() can be used. When created, an object reference will belong to the current task, and are no longer
valid after the task closes.

Once you have associated an Object instance with an Object reference variable, you can use it to call methods just like you would
with an Object variable.

The instance associated with an object reference variable will be destroyed in the following circumstances:

• When they are no longer required, object references are deleted automatically in order to free upmemory (when a variable
or list column no longer contains the reference, for example).

• You can use the $deleteref() method to delete the object reference, if you want to release memory sooner than would
otherwise occur under the automatic process.

• The task that created the variable is closed.

• The library is closed.

Until one of these occurs, Object reference variables can be passed as parameters, copied, stored in a list column, and so on. All
copies of the variable address the same single instance of the object. As soon as the object is deleted, other references to the
object become invalid. Prior to deleting the object, Omnis calls the destructor method.

Note that this approach means that you must delete objects when you have finished with them, otherwise significant memory
and resource leaks can occur.

There is also a method $listrefs() which you can call to list the instances of an object class, external object, or in fact all instances
created in this way. This is useful both for leak-checking, and for clean-up.

You can use $newref() in conjunction with session pools. The only differences are that $deleteref() returns the object instance to
the pool, rather than destroying it, and $listrefs() does not include objects from a session pool.

There are two further methods that can be used with object reference variables. $copyref() creates an object instance which is a
copy of the instance referenced by the variable, and $validref() returns a Boolean which is true if and only if the variable references
a valid object instance. Note that if $copyref() takes a copy of a DAM session object, both copies reference the same DAM session.

Themethod $objref() can also be used. If there is an object reference associated with the instance, themethod returns the object
reference, otherwise returns #NULL, that is, the object MUST have been created with a $newref().

231



Constructing new objects

…from an object class

Calculate myObjectReference as $clib.$objects.myObject.$newref("Test")

…from an external object

Calculate myObjectReference as $extobjects.ODBCDAM.$objects.ODBCSESS.$newref()

…from a session object

Calculate myObjectReference as mySessionObjectReference.$newstatementref()

…storing the reference in a list column of type Object reference

Do theList.$add($extobjects.ODBCDAM.$objects.ODBCSESS.$newref())

Listing instances created using an Object reference

…instances of an object class

Calculate myList as $clib.$objects.myObject.$listrefs()

…instances of an external object

Calculate myList as $extobjects.ODBCDAM.$objects.ODBCSESS.$listrefs()

…all instances

Calculate myList as $listrefs()

Destructing objects

…using an object reference variable:

Do myObjectReference.$deleteref() ## Calls the destructor of the object instance

…all instances referenced by a list column of type Object reference:

Do myList.$sendall($ref.1.$deleteref())

…using the $listrefs() method:

Do $extobjects.ODBCDAM.$objects.ODBCSESS.$listrefs().$sendall($ref.1.$deleteref())
Do $libs.DAMTEST.$objects.Doracle8.$listrefs().$sendall($ref.1.$deleteref())

Testing an object reference for validity

…using an object reference variable:

If myObjectReference.$validref()

…using a list column of type Object reference:

If myList.1.myObjRef.$validref()

232



Copying an object reference

…using an object reference variable:

Calculate objectReference as myObjectReference.$copyref()

…using a list column:

Calculate objectReference as myList.1.myObjRef.$copyref()

External Objects

External objects are a type of external component that contain methods that you can use by instantiating an object variable
based on the external object. External objects can also contain static functions that you can call without the need to instantiate
the object. These functions are listed in the Catalog under the Functions pane.

Some external objects are supplied with Omnis Studio; these include equivalents to the FileOps and FontOps externals, a Timer
object, as well as themulti-threaded DAMs. Writing your own external objects is very similar to writing external components. The
FileOps and FontOps functions are documented in the Omnis Help.

External objects are created and stored in component libraries in a similar manner to external components, and in future releases
are intended to replace external functions andcommands, although tomaintainbackward compatibility, theold external interface
is still supported at present.

External object libraries are placed in the XCOMP folder, along with the visual external components. They must be loaded in the
same way as external components using the External Components option, available in the Browser when your library is selected.

Using External Objects

You can add a new object in the method editor by inserting a variable of type Object and using the subtype column to select
the appropriate external object. You can click on the subtype droplist and select an external object from the Select Object dialog.
This dialog also appears when you create an object elsewhere in Omnis. An icon in the variable subtype cell shows whether the
variable is based on an object class or an external object.

When an instance of the external object has been constructed, you can inspect its properties and methods using the Interface
manager.

To use the object’s methods in your code, you can drag the method you require from the Interface Manager into the Code Editor.

For some objects it is important to note that for the Interfacemanager to interrogate an object it will need to be constructed. For
example, if the Interface Manager was used on an Automation object, the Automation server needs to be started.

External objects are contained in the notation group $extobjects, which you can omit from notation.

External Object Events

External objects do not support events in the GUI sense. They can however define notification methods which they call when
certain events occur.

You can subclass an external object and then override the notification method so your code is informed of the event. The Timer
object supplied in Omnis is an example of this. To subclass an object, you can either set the superclass property in the Property
Manager, or use the New Subclass Object wizard available in the Browser (using the Class Wizard>>Object option).

External Object Notation

All the components available to Omnis are listed in the $root.$components group. Individual components have their own meth-
ods, in addition to the $cmd() method which allows you to send a component specific command to the component or object.

The following examples show some commands that you can send to an ActiveX component to manage timeouts:

Do $components.ActiveX.$cmd("RequestPendingTimeout",10000)
# Set timeout in milliseconds

Do $components.ActiveX.$cmd("ServerBusyTimeout",10000)
# Set timeout in milliseconds

233



Do $components.ActiveX.$cmd("ResponseDialog",kFalse)
# Prevent response dialog from appearing

Do $components.ActiveX.$cmd("BusyDialog",kFalse)
# Prevent busy dialog from appearing

Chapter 6—List Programming

Omnis has two structured data types; the list and the row. A list can hold multiple columns and rows of data, with each row
having the same column structure, while a row is effectively a single-row list. You can create lists of strings, lists of records from a
database, or lists of lists. You can define a list from individual variables, or base a list on one of the Omnis SQL data classes, such
as a schema, query, or table class. In this case, the list gets its column definitions from the columns defined in the SQL class.

Each list can hold an unlimited number of lines with up to 32,000 columns, although you should be aware that the limitations on
memory may limit the number of rows in a list with many columns. A row can have up to 32,000 columns.

The list is the single most important data type in Omnis programming. Omnis makes use of lists in many different kinds of
programming tasks, such as generating reports, handling sets of data from a database server, and importing and exporting data.
List variables provide the data (content) and formatting for many of the visual list components available in the JavaScript Client,
including List boxes, and Data grids, as well as Bar and Pie Charts: the different types of visual list controls are described in the
JavaScript Components chapter in the Creating Web & Mobile Appsmanual.

In this chapter, rows are generally treated the same as lists, that is, you can use a row name in any command that takes a list
name as a parameter. In addition, references to SQL lists in this chapter refer to lists based on either schema, query, or table
classes, which are referred to collectively as SQL classes.

Note that most of the example code in this chapter is generic that can be applied to all list handling, including lists containing
SQL data and list variables contained in Remote forms used for creating web and mobile apps; however, some of the example
code may relate to window classes only, but the code may be easily adapted to work with remote forms.

Declaring List or Row Variables

You can create various scopes of list and row variables, including task, class, instance, and local variables. You declare a list or
row variable in the variable pane of the method editor, or in the Create Variable dialog in the Code Editor. The following table
summarizes the variable types and their visibility.

List or row type When created? Where visible? When removed?

Task variable on opening task within the task and all its classes
and instances that belong to the
task

on closing task

Class variable on opening the library within the class and all its instances on clearing class variables or closing
library

Instance variable on opening instance within the instance only on closing instance
Local variable on running method within the method only when method terminates
Parameter variable on calling the method within the recipient method returning to the calling method

To declare a list or row variable in the Variable pane

• Right-click in the variables pane of the method editor

• Select Insert New Variable from the context menu

• Enter the variable name

• Click in the Type box and choose List or Row from the droplist

To declare a list or row variable in your code

You can declare a list or row variable directly in your code, by first naming it in your code and then using theCreate Variable dialog,
as follows:

234

/developers/resources/onlinedocs/WebDev/03jscomps.html#chapter-3javascript-components


• Type the variable name in your code in the Code Editor, e.g. iCustomerList; note it will not be recognized as a variable and
will be underlined to indicate an error

When you type the name of a new variable in your code, you can specify the initial scope and type for the variable using a prede-
fined prefix and suffix, respectively, so in this case you can type iCustomerList to specify an instance variable of List type.

• Click into the variable name, and click on the Fix button at the bottom of the Code Editor window (a blue button with a
check icon)

• In the Create Variable dialog, specify the Scope (e.g. Local or Instance), then select List or Row from the Type list (note
you can select a Schema, Query or Table class as the Subtype if required) and click on Create Variable; if you have used a
predefined prefix and suffix you may not have to change the scope and variable type

Lists in the JavaScript Client

Like all variables you use in Remote forms to be displayed in the JavaScript Client, any list or row variables that you want to use
in a remote form should be declared as Instance variables (or Local / Parameter as appropriate). Lists can be declared as task
variables which are available to all instances in the current remote task instance.

Defining List or Row Variables

To define a list or row variable you need to specify its columns. You can do this using Omnis commands or the notation. You can
define a list or row variable

• from variables

• from a schema, query, or table class

If you want to use a list in a remote form (or any class that can be opened), you should define the list in the $construct() method
of the class, or call a method from the $construct() that defines the list. This ensures the list is defined and inmemory ready to be
used in the current instance.

(A list can be defined from a File class, but this class type is only available for backwards compatibility in legacy apps using Omnis
datafiles.)

Defining Lists from Variables

To define a list from a number of variables you can use the $define() method (the equivalent of the old Define list command in
previous versions). For example

# The variables for the list columns need to be declared
# cvList1 of List type
# cvCol1 of Short integer type
# cvCol2 of Character type
# cvCol3 of Date Time (Short date 1980..2079) type

Do cvList1.$define(cvCol1, cvCol2, cvCol3)

This method will define the list cvList1 with the columns cvCol1, cvCol2, cvCol3. You can define a list with up to 32k columns,
although you should limit the size of the list to only the columns that are required. The data type of each field or variable defined
in the list determines the data type of the corresponding column in the list.

When $defineresolvesfieldrefs is set to kTrue (default is kFalse), if a field used to define a list is a field reference, Omnis resolves
the field reference and defines/redefines the list using the resolved field.

235



Defining Lists and Rows from SQL Classes

You can define a list based on one of the SQL classes, that is, a schema, query, or table class, using the $definefromsqlclass()
method (the equivalent of the old Define list from SQL class command in previous versions). Alternatively, you can create the
variable in the Variables pane in the Method Editor, or the Create Variable dialog, and set a SQL class name as the Subtype of the
list or row variable.

Defining a list or row based on one of the SQL classes binds the variable to the schema or query class and consequently maps the
list’s columns to the server table. When you define a list or row variable from a table class, it can have its $sqlclassname property
set to the associated schema or query class to get the definition from the SQL class. You can do this either in the PropertyManager
or using the notation.

Do $clib.$tables.MyTable.$sqlclassname.$assign('MySchema') ## or

Do $clib.$tables.MyTable.$sqlclassname.$assign('MyQuery')

You can however use a table class without any schema or query class assigned in $sqlclassname. In this case, the table class has
a $load method that has a manual SQL statement, i.e. with Begin and End SQL. The list variable will then define the list columns
from the select result automatically.

The following example defines an instance row variable from a schema class called ‘MyPictures’:

# create iSqlRow of Row type
Do iSqlRow.$definefromsqlclass('MyPictures')

The full syntax of the $definefromsqlclass() method is as follows:

$definefromsqlclass(class[,row,parameters])

Where class is a schema, query, or table class (name or item reference to it), and the row and parameters are optional.

The row parameter affects the columns used when the SQL class is a schema or table referencing a schema. A row with no
columns (or the parameter is omitted) means that the list is defined using all the columns in the schema. Otherwise if the row is
specified each column in the row becomes the name of a column to add to the list definition from the schema. The parameters
can be a list of parameter values that are passed to $construct() of the table class instance created by the method.

For example:

Do list.$definefromsqlclass('schema',row('c1,'c2'))

would only include columns c1 and c2 in the list definition.

Do list.$definefromsqlclass('schema')

Would include all the columns in schema.

To include all columns and call $construct with parameters:

Do list.$definefromsqlclass('table',row(),1,2,3)

This method passes parameters 1, 2, 3 to $construct and includes all the columns from the schema.

SQL table instance methods

When you create a list or row variable based on one of the SQL classes a table instance is created, so the list or row variable contains
the standard properties and methods of a table instance. Specifically, if you create a variable based on a table class it contains
any custom methods you have added to the table class; these can override the standard table instance methods. The following
standard methods are available for lists based on a SQL class.

• $select()
issues a select statement to the server

236



• $fetch(n[,append])
empties the list and fetches the next n rows from the server; for row variables, n is set to one and the fetched row always
replaces any existing data; the append switch is for list variables and defaults to kFalse which means the list is cleared by
default, otherwise if you pass the append switch as kTrue the fetched rows are added to the end of any existing data in the
list variable

• $insert()
inserts a row into the server database (row variables only)

• $update(old_row)
updates a row in the server database (row variables only)

• $delete()
deletes a row from the server database (row variables only)

• $sqlerror()
reports the type, code and text for an error in processing one of the above methods

These methods offer a powerful mechanism for processing or inserting data on your server via your SQL list or row variable. For
example, to fetch 30 rows into your list

# declare cvList1 of list type
Do cvList1.$definefromsqlclass(MySchema)
Do cvList1.$select() Returns myFlag ## sends a select
If myFlag = 0 ## checks for errors

OK message {SQL error [sys(131)]: [sys(132)]}
End If
Do MyList.$fetch(30) Returns myFlag ## fetches 30 rows

# to fetch another 10 rows and add them to your list
Do MyList.$fetch(10,kTrue) Returns myFlag

Defining Lists using SQL Workers

From Studio 10.1, you can specify that a SQL list or row will use a SQL Worker Object of the same DAM type as the SQL session
object to perform SQL list operations asynchronously. See SQLWorker Lists.

Defining Lists from File classes

For legacy apps using Omnis datafiles, you can define a list based on a file class using the notation list.$define(filename). You
can use the notation list.$define(“lib.filename”) to reference a file class in another library: note that the name must be passed as
a quoted string. You can use the switch /s, e.g. “lib.filename/s”, where s means skip columns with empty names in the file class.

List/Row subtypes

A Schema, Query, or Table class name can be used as the subtype of a list or row variable, that is, a class, instance, local, task or
parameter variable, or a column in a list or row defined from a SQL class.

Omnis uses the subtype class to define the list or row, or in the case of parameters, to identify the expected definition of the list
or row, although Omnis does not do anything if the definition does not match.

Schema classes have a property $createinstancewhensubtype that controls whether or not there is a table instance associated
with a List or Row variable with a schema class as its subtype; you can set this property in the Property Manager when editing
the schema class. The property defaults to kTrue for existing and newly created schema classes. When using the schema class
exclusively with Web Services, it is likely that the table instance will not be required, and in this case turning off $createinstance-
whensubtype will therefore improve performance.

Adding columns

The $addcols() method provides a short-hand way of adding one or more columns to a list or row variable. It has the following
parameters:

list.$addcols(cName,type,subtype,maxlen,...)

237

https://omnis.net/developers/resources/onlinedocs/Programming/07sqlprog.html#sql-worker-lists


which can be used to add one or more columns to a list or row variable, so the parameter count must always be amultiple of four.
Each new columnmust be specified with the following four parameters:

• cName
the name of the new column

• data type
the Omnis data type represented by one of the type constants, such as kCharacter; all data types are allowed except the
Object data type (kObject), since lists of objects are not recommended (you should use object references)

• subtype
the subtype of the new column; only applies to somemajor types

• maxlen
for somemajor types such as Character you can specify the maximum length

Legacy List Commands

All the commands in the Lists and List Lines groups, such as Define list and Search list, have been deprecated in Omnis Studio
11 and are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type the first few characters);
however, they are still present in Studio 11 andwill continue to function in legacy code. You can show these commandsbydisabling
the appropriate Command Filter in theModifymenu in the Code Editor.

You should use the equivalent methods where available, such as $define() instead of Define list, $search() instead of Search list,
$sort() instead of Sort list, and so on, tomanipulate the contents of list variables. Various sections in this chapter will have example
code for both the list methods and the old list commands, and for all new applications you should use the list methods.

Building List Variables

You can build lists from SQL data using a SELECT statement and the $fetch() method.

Building a List from SQL Data

The SQL SELECT statement defines a select table, which is a set of rows on the server that you can read into Omnis in three ways:

• $fetch(n[,append]) table instance method
brings n rows from the select table into a list defined from a SQL class

To transfer rows:

Do mylist.$definefromsqlclass(SchemaRef,Lname,Town) ## define list
Do MyList.$select() Returns myFlag ## make select table
Do MyList.$fetch(10) Returns myFlag ## fetch 10 rows into list or
Do MyRow.$fetch() Returns myFlag ## fetch a row into a row var

You should avoid loading a large number of rows into the list, since thismay interrupt the interface in your app; you could consider
fetching a small batch before refreshing the screen. You can retrieve the rows in batches using the $linemax property which limits
the size of the list, pausing after each batch to redraw the list field.

Viewing the contents of a list variable

You can view the current contents of a list variable by Right-clicking on the variable name in the Method Editor and selecting
the “Variable <var_name>” option (the first option in the context menu), which will open a table containing the list contents. You
can do this wherever the variable name appears in Omnis, including the Variable pane in the method editor, the Code editor or
Catalog. In order to view the contents of a list instance variable the class containing the variable must be open or instantiated,
e.g. a remote formmust be open in the client browser to view its instance variables.

238



List Variable Values

The second option in the List context menu, shown by Right-clicking on a list variable, shows the Value for the variable, which for
a list variable includes information about the number of lines, which lines are selected, as follows:

• The Value context menu option on a list variable previously showed “Value (Not Empty)” when the list contained lines. The
option now tells you the number of lines in the list, the line number of the current line held in $line, and the line numbers
of up to the first 5 selected lines (with an ellipsis if necessary),
e.g. Value (10 lines, $line=4, $selected=1,4,8)

• When you select Value, the text written to the trace log includes the line number of the current line held in $line, and the
line number(s) of all of the selected lines, up to the log entry limit of 255 characters (with an ellipsis at the end if necessary).

• The field valuedialoghas anewoption “OpenLists At Current Line”whichdefaults to true (the state is savedwith thewindow
setup): when true, the grid opens so that the current line is visible.

• In addition, the Goto line command, on the context menu for the line numbers, sets the default line in the popup it opens
to the current line.

List and Row functions

Omnis provides functions for converting independent variables into a row, and for converting a series of row variables into a list.

The list() Function

The list() function accepts a set of row variables as parameters, and creates a list variable from them. The definition for the first
row variable is used to define the list. If subsequent row variables have different definitions, Omnis will convert the data types to
match the first row.

Calculate myList as list(myRow1, myRow2, myRow3)

The row() Function

The row() function accepts a set of variables as parameters, and creates a row variable from them. The variable types are used to
define the columns of the row.

Calculate myRow as row(myVar1, myVar2, myVar3)

Accessing List Columns and Rows

You can access data in a list by loading an entire row of data using the $loadcols() method. The following example for the Sidebar
window control uses the $loadcols() method to load values based on the chosen icon.

# $event method for sidebar component, incl pLinenum (Integer)
On evIconPicked
Do iSidebarList.$line.$assign(pLinenum)
# selects the list line according to item selected in sidebar
Do iSidebarList.$loadcols()
# loads the values in the selected list line, including iID

Switch iID ## branches according to value of iID
Case 1
Do something..

Case 2
Do something..

Case 3
Do something..

End Switch

You can use the lst() function as part of a calculation to extract a particular cell of information from a list.

239



Calculate MyVar as lst(MyList, row, ColumnName)

Youcanaddress cells directly by referring to themasListVarName.ColumnName for the current rowor ListVarName.RowNumber.ColumnName
for a specified row. Omnis also recognizes the syntax ListName(‘ColumnName’,RowNumber). The column name must be in
quotes.

You can use RowVarName.ColumnName or RowVarName.ColumnNumber when you assign a row variable to a remote form or
window edit field. Remember that your list and row variables should be defined in the $construct() of a form or window so they
are available to edit fields and other data bound objects when the form or window opens.

Since ListName.ColumnName and ListName.RowNumber could be ambiguous, Omnis assumes character values are column
names. In the case of the row number being contained by a character variable, this should be indicated by adding ‘+0’.

Calculate MyNum as MyList.Amount ## the current row
Calculate MyNum as MyList.5.Amount ## row 5
Calculate MyNum as MyList('Amount',5) ## this legacy code works, but the above is the preferred method

The two types of statement above are also used to assign a value to a list element.

Calculate MyList.5.Amount as 100 ## sets Amount column, row 5 to 100

As part of resolving list notation (e.g. List.C1), when Omnis accesses a list it will automatically convert a NULL list variable to empty.

List Column Calculations

To allow for expressions like myList.col or myList.10.col where the list line does not exist, perhaps because the list is empty, you
can set the library preference $validcolumninbadrowisnull ($clib.$prefs) to true. If true, non-existent list columns in calculations
evaluate to #NULL rather than an empty character string.

List line commands

The List Lines group of commands (that includes the Load from list command) are now obsolete, and they are no longer visible
in the Code Assistant in the Code Editor (although they are still present in Studio 10 and will continue to function in legacy code).
You can show these commands by disabling the appropriate Command Filter in the Modify menu in the Code Editor.

List Variable Notation

List variables have certain standard properties and methods that provide information about the list, such as how many rows or
columns it has, or the number of the current line. List columns, rows, and cells have properties and methods of their own which
are listed in the Omnis Help (press F1 to open the Omnis Help).

List Properties and Methods

All types of list have the following properties. A list created from a SQL class has the standard properties and methods of a table
instance, together with these list properties.

• $linecount
returns the number of lines in the list; you can change this property or use Set final line number to truncate the list

• $linemax
holds the maximum number of lines in the list; this is set to 10,000,000 by default but you can change it to restrict the list
size

• $line
holds the current line in the list; this changes when the user clicks on a list line, or when using a method such as $search()

• $colcount
returns the number of columns in the list

• $isfixed
true if the list has fixed length columns; changing $isfixed clears the data and the class for the list, but keeps the column
definitions (note that a list defined using $define() has columns of any length). Fixed length columns improve performance
in some cases, but cannot contain all data types

240



• $class
returns the schema, query, or table class for the list, or is empty if it is not based on a SQL class

• $cols
group containing the columns in the list; you can use $add() to add a column, also $addbefore() and $addafter() to add a
column before or after the specified column (these methods do not work with schema or table based lists)

• $smartlist
Set this property to kTrue to make it a “smart list”; setting $smartlist to kTrue creates and initializes the history list which
tracks changes to the list; setting $smartlist to kFalse discards the history list completely. If you define or redefine a list using
any mechanism, or add columns to a list, its $smartlist property is set to kFalse automatically. See later in this chapter for
more details about smart lists.

For a row variable, $linecount, $linemax and $line are all set to 1 and cannot be changed.

Lists also have the following methods.

• $define()
without parameters this clears the list definition, otherwise $define(var1[, var2, var3]…) defines a list using variables or file
class fields; the variable names (or column names from a file class) and var/column types are used to the define the list
column names and types; when using a file class name you can append /s to the file class name to skip empty columns

• $definefromsqlclass()
$definefromsqlclass(query/schema/table class[,cCol1,cCol2,…][„cons-params]) defines a list or row variable from a query,
schema or table class and instantiates a table instance. Passes cons-params to the table $construct() method

• $copydefinition()
$copydefinition(list or row variable[,parm1,parm2]…) clears the list and copies the definition but not the data from another
list or row variable; if the list being copied from is derived from a SQL class, the parameters are passed to $construct() of the
table instance

• $addcols(cName,type,subtype,maxlen,…)
adds one or more columns to a list or row variable, so the parameter count must always be a multiple of four; cName is the
name of the new column, data type is the Omnis data type, such as kCharacter, excluding kObject so you should use object
references, subtype and maxlen apply only to certain major types

• $clear()
clears the data for the list, but keeps the list definition

• $first()
$first([bSelOnly=kFalse, bBackwards=kFalse, condition]) sets $line to first line matching parameters; returns an item refer-
ence to the row. If bSelOnly, matches selected lines only; if bBackwards, matches lines in reverse; if condition is present
lines must match it

• $next()
$next(rRow|iRowNumber [,bSelectedOnly=kFalse, bBackwards=kFalse, condition]) sets $line to the next line after the line
identified by the first argument. If iRowNumber is zero, processing starts at $line. See $first for definitions of the other
parameters

• $add()
$add(column1 value[, column2 value]…) inserts a row of values at the end of the list and returns a reference to the new line

• $addbefore()
$addbefore(list row or row number,col1 value[, col2 value]…) inserts a row before the specified row

• $addafter()
$addafter(list row or row number,col1 value[, col2 value]…) adds a row after the specified row (does not work with schema or
table based lists)

• $remove()
$remove(list row or row number) deletes the specified row

• $search()
$search(calculation [,bFromStart=kTrue, bOnlySelected=kFalse, bSelectMatches=kTrue, bDeselectNonMatches=kTrue])
searches the list; behaves the same as the Search list command; bOnlySelected restricts the search to selected lines. If
bFromStart is kTrue, Omnis searches all of the lines in the list, starting at line 1; otherwise, Omnis starts the search after the
current line ($line + 1).

241



• $count()
$count([bSelectedLinesOnly=kFalse]) returns the count of lines in a list, optionally passing bSelectedLinesOnly as kTrue to
only count selected lines (you can also use LISTCOL.$count() to return the number of lines in a list column)

• $sort()
$sort(first sort variable or calculation, bDescending [, second sort variable or calculation, bDescending]…) sorts the list; you
can specify up to 9 sort fields, including the sort order flag bDescending. The sort fields or calculations can use $ref.colname
or list_name.colname to refer to a list column. The sort order flag bDescending defaults to kFalse (that is, the sort is normally
ascending). For calculated sorts, the calculation is evaluated for line 1 of the list to determine the comparison type (Character,
Number or Date).

• $merge()
$merge(list or row[, by name, only selected]) merges the two lists; note $merge() cannot use search criteria to merger data

• $totc()
$totc(expression[,bSelectedOnly=kFalse]) totals the expression over all of the lines in the list; if bSelectedOnly is kTrue, only
the selected lines are totaled. It is similar to the totc() function, except it also works when the list does not have proper field
columns, for example when the list is defined using a SQL class. For example:

Do MyList.$definefromsqlclass('MySchema') ## the schema has 2 numeric cols, col1 and col2
Do MyList.$add(1.1,2.1)
Do MyList.$add(3.1,4.1)
Do MyList.$add(2.2,1.1)
Do MyList.$totc(MyList.col1+MyList.col2) Returns Total

# outputs Total = 13.7 i.e the total of both columns

Properties and Methods of a List Column

The columns of a list are contained in the List.$cols group. The $cols group has the followingmethods, that is, the standard group
methods, including the $add… methods that allow you to add columns to the list (but not schema or table based lists):

• $add

$add({fieldname|cName,type,sub-type[,iMaxlen=10000000]}) adds a column to the list and returns an item ref to it; either
use just a fieldname (to use the definition of a field) or a name,type and subtype constants (e.g. kCharacter,kSimplechar)
and length

• $addafter()

$addafter(rColumn|iColumnNumber,{fieldname|cName[,type,sub-type,iMaxlen]}) adds a column to the list and returns an
item reference to it

• $addbefore()

$addbefore(rColumn|iColumnNumber,{fieldname|cName[,type,sub-type,iMaxlen]}) adds a column to the list and returns an
item reference to it

• $remove()
$remove(rColumn|iColumnNumber) removes the column from the list; you cannot remove a column from a list defined
from a SQL class

A list column has the following properties:

• $name
returns the simple name of the column

• $dataname
returns the dataname of the list column; empty for a list defined from a SQL class

• $coltype
returns the data type of the column; changing this clears the list data

• $colsubtype
returns the data subtype of the column; changing this clears the list data

242



• $colsublen
returns the length of character and national columns; changing this clears the list

List columns have the following methods:

• $clear()
Clears the data for a list or row, or a column in a list or row; executing List.$clear() for a smart list sets $smartlist to kFalse,
meaning that it is no longer a smart list

• $average()
$average([bSelectedLinesOnly=kFalse]) Returns the average of the non-null list column values

• $minimum()
$minimum([bSelectedLinesOnly=kFalse]) Returns the minimum of the non-null list column values

• $maximum()
$maximum([bSelectedLinesOnly=kFalse]) Returns the maximum of the non-null list column values

• $count()
$count([bSelectedLinesOnly=kFalse]) The count of non-null values in the list column (you can also use LIST.$count() to return
the number of lines in a list)

• $removeduplicates()
$removeduplicates([bSortNow=kFalse,bIgnoreCase=kFalse]) removes all list rows with duplicate values in the column; you
must sort the list on the column before using this method, or you can pass bSortNow as kTrue to force the list to be sorted
prior to running the method. bIgnoreCase affects character values only.
Note: The bSortNow parameter is ignored and always treated as kFalse in client methods.

• $selectduplicates()
$selectduplicates(listname.column) selects all list lines with duplicate values in the column; you must sort the list before
using this method; the list selection state of non-duplicate lines is cleared; this can be used in client-executed remote form
methods, as well as in server methods

• $total()
$total([bSelectedLinesOnly=kFalse]) Returns the total of the non-null list column values

Note: $count, $total, $average, $minimum and $maximum can be used in client executed methods in the JavaScript client.

Properties and Methods of a List Row

A list row has the following properties:

• $group
returns the list containing the row

• $selected
returns true if the row is selected

A list row has the following methods:

• clear()
clears the value of all the columns in the row

• $loadcols()
$loadcols(variable1[, variable2]…) loads the column values for the row into the specified variables

• $assigncols()
$assigncols(column1 value[, column2 value]…) replaces the column values for the row with the specified values

• $assignrow()
$assignrow(row, by name) assigns the column values from the specified row into the list row on a column by column basis

243



Properties of a List Cell

If a list cell is itself a list or row variable it has all properties of a list or row. List cells have the following properties.

• $group
returns the list row containing the list cell

• $ident
returns the column number for the list cell

• $name
returns the column name for the list cell

• $line
returns the row number for the list cell; not necessarily the current line in the list

Manipulating Lists

You can change both the structure and data of a list variable using both commands and notation.

Dynamic List Redefinition

You can add, insert, remove, ormove columns in list or row variableswithout losing the contents of the list or row. This functionality
applies to all types of list and row variables including smart lists.

• List.$cols.$add(variable name)
adds a column to the right-hand end of the list using the specified variable name and type as its definition

• List.$cols.$add(colname, type, subtype, length)
adds a column to the right-hand end of the list using the specified definition

• List.$cols.$remove(column name or number)
removes the specified column and moves any remaining columns to the left; you cannot remove a column from a list that
has been define from a SQL class, or remove a column that has been added to a list that was defined from a SQL class

• List.$cols.$addbefore(rColumn|iColumnNumber, {fieldname|cName [,type, sub-type, iMaxlen]})
inserts a column to the left of the specified column using the specified variable name and type as its definition (unless type,
sub-type, iMaxlen are specified), and moves any columns to the right as necessary

• List.$cols.$addafter(rColumn|iColumnNumber, {fieldname|cName [,type, sub-type, iMaxlen]})
inserts a column to the right of the specified column using the specified variable name and type as its definition (unless
type, sub-type, iMaxlen are specified), and moves any columns to the right as necessary

• List.$cols.column name or number.$ident.$assign(new column number)
moves the column to a new position and moves other columns to the right or left as appropriate; in this case the $ident of
a list column is its column number, therefore changing the ident moves the column to a different position

When using List.$cols.$add(colname, type, subtype, length) to add a column, the type and subtype parameters need to be con-
stants under Data Types and Data Subtypes in the Catalog (press F9). In addition, the subtype and length are not always required,
depending on the type of the column. The following method defines a list and then adds a further two columns to the right of
the existing columns.

Do mylist.$define(col1,col2)
Do mylist.$cols.$add('MyCol',kCharacter,kSimplechar,35)
Do mylist.$cols.$add('MyPicture',kPicture)

Note you cannot add a column to a list using square bracket notation or using the fld() function. In addition, you cannot insert, re-
move, ormove columns in a list defined from a SQL class, since you cannot redefine schema-, query-, or table-based lists. However
you can use List.$cols.$add() to add extra columns to a SQL list.

Clearing List Data

You can use the command Clear list or ListName.$clear() to clear the data from a list. You can clear individual columns of a list
with the ListName.ColumnName.$clear(), and individual rows with ListName.rowNumber.$clear().

244



Searching Lists

You can search a list using the $search() method, and a successful search sets the flag. You can use a search calculation to search
a list as follows:

Do MyList.$search(calculation [,bFromStart=kTrue, bOnlySelected=kFalse, bSelectMatches=kTrue, bDeselectNonMatches=kTrue])

For example, to search the Country column for “USA” you can use:

Do MaiList.$search(Country = 'USA') Returns myFlag

The search calculation can use list_name.colname to refer to a list column. When searching a list column in a client method in
the JavaScript Client you must prefix the column name with $ref. For example:

Do iList.$search($ref.iCol="ABC")

With bSelectMatches or bDeselectNonMatches the first line number whose selection state is changed is returned (or 0 if no
selection states are changed), otherwise the first line number which matches the selection is returned (or 0 if no line is found).

When bSelectMatches and bDeselectNonMatches are kFalse, the list’s current line is set to the first matched row.

$search is optimized to operate on a single line at a time, so your calculation cannot contain multiple line conditions.

Selecting List Lines

When you display the data in a list variable in a list field on a window, by default you can select a single line only. However, you
can allowmultiple selected lines by setting the list or grid field’s $multipleselect property. When the user highlights list lines with
the mouse, the $selected property for those lines is set. If the field does not have $multipleselect set, the current, selected line is
the highlighted one; if the $multipleselect property is set, all highlighted lines are selected, and the current line is the one with
the focus.

Some of the commands that operate on a list variable use $selected to indicate their result. For example, Search list (Select
matches)will set $selected for each line that matches the search criteria.

Each list variable has two select states, the saved and current selections. The current selection is the set of lines currently selected,
whereas the saved selection is the previous set of lines that was selected before the current selection changed.

There are a number of commands that you can use to manipulate selected lines, save the current selection, and swap between
the selected and saved states. These commands are described in the Omnis Studio Help.

Merging Lists

You can copy lines from one list to another using the Merge list command or the $merge() method. Merging copies a specified
set of lines from one list, and appends them to another . The following example copies the selected lines from LIST1 to LIST2 by
checking each line’s $selected property.

Set current list LIST2
Set search as calculation {#LSEL}
Merge list LIST1 (Use search)

$merge() provides slightly different capabilities in that it canmatch thedestination columnsby columnnameaswell as by column
number. Merge listworks by column number only. The syntax is

$merge(list, byColumnName, selectedOnly)

The above example could be written as:

Do List2.$merge(List1, kFalse, kTrue)

Note that $merge() does not have a search capability.

245



Sorting Lists

You can specify up to nine levels of sorting using the Sort list command or $sort() method. To use Sort list you need to set up the
sort fields first, and clear any existing sort levels since these are cumulative. $sort() clears existing sort fields automatically. For
example

Set current list {MyList}
Clear sort fields
Set sort field Country
Set sort field Town
Set sort field Name
Sort list
Redraw lists

The $sort() method takes the sort variables or column names in order, each followed by a boolean indicating the sort direction;
the sort order flag bDescending defaults to kFalse (that is, the sort is normally ascending).. Using notation, the equivalent of the
above example would be

# Country, Town, Name are columns in MyList
Do MyList.$sort($ref.Country,kFalse, $ref.Town,kFalse, $ref.Name,kFalse)
Redraw lists

Removing Duplicate Values

List columns have the $removeduplicates() method which removes lines with duplicate values in the column. You must sort the
list on the column before using this method.

Do MaiList.$sort($ref.CustNum,kFalse) ## sorts list on CustNum column
Do MaiList.$cols.CustNum.$removeduplicates() Returns NumRemoved

Smart Lists

You can track changes made to a list by enabling its $smartlist property. A smart list saves any changes, such as deleting or
inserting rows, in a parallel list called thehistory list. Smart lists canbe filtered, a processwhich allowsdata notmeeting aparticular
criteria to be made invisible to the user while being maintained in the history list.

A smart list variable therefore contains two lists:

• the normal list containing the list data, and

• the history list containing the change tracking and filtering information

If you store a smart list as a binary object is a SQL database, all the smart list information is stored automatically.

Smart Lists and the JavaScript Client

The JavaScript Client does not support smart lists in client executedmethods, insofar as if you change the list in some way on the
client, it will no longer be a smart list when the updated data is sent from the client back to the server.

Enabling Smart List Behavior

To enable the smart list capability of any list variable you have to set its $smartlist property to kTrue.

Do ListName.$smartlist.$assign(kTrue) ## to enable it

Setting $smartlist to kTrue creates and initializes the history list. If it is already kTrue, then setting it again has no effect.

Setting $smartlist to kFalse discards the history list completely. The current normal list remains unchanged, so the current con-
tents of the normal list are preserved, but all history and filtering information is lost.

If you define or redefine a list using any mechanism, or add columns to a list, its $smartlist property is set to kFalse automatically.

246



The History List

The history list has one row for each row in the normal list, together with a row for each row that has been deleted or filtered. The
history list has the columns contained in the normal list as well as the following additional columns:

• $status
contains the row status, which is one of the constants kRowUnchanged, kRowDeleted, kRowUpdated, or kRowInserted,
reflecting what has happened to the row. Only one status value applies, so a row that has been changed and then deleted
will only show kDeleted. Note that kRowUpdated is true if the row has changed in anyway, even if the current values do not
differ from the original column values.

• $rowpresent
true if the row is still present in the normal list, otherwise, the row is treated as if it has been deleted

• $oldcontents
a read only row variable containing the old contents of the row

• $currentcontents
a read only row variable containing the current contents of the row

• $errorcode
an integer value that lets you store information about the row; the standard table instance methods use this to store an
error code

• $errortext
a text string that lets you store information about the row; the standard table instance methods use this to store an error
text string

• $nativeerrorcode
native error code generated by last statement command

• $nativeerrortext
native error text generated by last statement command

Properties of the History List

You can access the history list via the $history property, that is, LIST.$history where LIST is a smart list. $history has the properties:

• $linecount
read-only property that returns the number of rows in the history list

$history also supports the standard group methods $first() and $next() as well as $makelist(), but you cannot change the history
list.

Properties of Rows in the History List

LIST.$history.N refers to the Nth row in the history list. You can use this notation to access the columns using the following prop-
erties:

• $status
the status of the row: not assignable

• $rowpresent
results in the row being removed from, or added to, the normal list: this is assignable, but there are several circumstances
which cause Omnis itself to change $rowpresent and override your changes (deleting a row, applying or rolling back a filter,
etc.)

• $rownumber
the row number of the row in the normal list, or zero if $rowpresent is false; not assignable

• $filterlevel
the number of filters applied to the history list, up to 15: not assignable (see filtering below)

• $oldcontents
the old contents of the row in the normal list: not assignable, but the old contents of the row can be assigned to the normal
list

247



• $currentcontents
the current contents of the row in the normal list: not assignable

• $errorcode
the error code for the row; assignable and initially zero

• $errortext
the error text for the row; assignable and initially empty

• $nativeerrorcode
native error code generated by last statement command

• $nativeerrortext
native error text generated by last statement command

The above row properties are also properties of the list rows in the normal list, and provide ameans of going directly to the history
data for a line. In this case, $rowpresent is always kTrue, but can be set to kFalse.

Tracking the Changes

Change tracking occurs automatically as soon as you enable the $smartlist property for a list. From this time, Omnis automatically
updates the status of each row in the history listwhenever it inserts, deletes, ormakes the first update to the row. Note that change
tracking only remembers a single change since the history list was created. Hence:

• Updating a row of status kRowUnchanged changes it to kRowUpdated; updating a row with any other status leaves the
status unchanged

• Inserting a row always sets the status to kRowInserted and makes the row present in the normal list

• Deleting a row always sets the status to kRowdeleted and makes the row not present in the normal list; the row is still
present in the history list (and can be made present in the normal list) until a $savelistdeletes operation is performed

Change Tracking Methods

Thehistory list has several standardmethods that let youundoor accept changes to the list data. After using any of thesemethods,
the list is still a smart list.

You can use the following methods for accepting changes:

• $savelistdeletes()
removes rows with status kRowDeleted from the history list, and also from the normal list if $rowpresent is kTrue

• $savelistinserts()
changes the status of all rowswith kRowInserted to kRowUnchanged, and sets the old contents of those rows to the current
contents. It does not change $rowpresent

• $savelistupdates()
changes the status of all rows with kRowUpdated to kRowUnchanged and, for all rows, sets the old contents to the current
contents; this does not change $rowpresent

• $savelistwork()
quick and easy way to execute $savelistdeletes(), $savelistinserts() and $savelistupdates()

And these are for undoing changes made to the list data:

• $revertlistdeletes()
changes the status of all kRowDeleted rows to kRowUnchanged or kRowUpdated (depending on whether the contents
have been changed); for these rows $rowpresent is set to true

• $revertlistinserts()
removes any inserted rows from both the normal list and the history list

• $revertlistupdates()
changes the status of all kRowUpdated rows to kRowUnchanged and, for all rows, the current contents are set to the old
contents; this does not change $rowpresent

248



• $revertlistwork()
quick way to execute $revertlistdeletes(), $revertlistinserts() and $revertlistupdates()

The history list also has a default method that lets you set the row present property based on the value of the status.

• $includelines(status)
includes rows of a given status, represented by the sum of the status values of the rows to be included. Thus 0 means no
rows, kRowUnchanged + kRowDeleted means unchanged and deleted rows, and kRowAll means all rows, irrespective of
status. This is a one-off action and does not, for example, mean that rows deleted later will remain flagged as present

Filtering

Filtering works only for smart lists. You apply a filter by using the $filter() method, for example

Do ListName.$filter(COL1 = '10') Returns Count

$filter() takes one argument, which is a search calculation similar to one used for $search(). It returns the number of rows rejected
from the list by the filter.

Filteringuses the rowpresent indicator of thehistory list to filter out rows. In otherwords, after applying a filter, Omnis has updated
$rowpresent to kTrue for each row matching the search criterion and kFalse for the others. Filtering applies only to the rows in
the normal list, that is, rows where $rowpresent is kTrue, with the result that repeated filtering can be used to further restrict the
lines in the list.

Filter Level

Each history row contains a filter level, initially zero. When you apply the first filter, Omnis sets the filter level of all rows excluded by
the filter to one; that is, for each row in the normal list, for which $rowpresent becomes kFalse, $filterlevel becomes one. Similarly
for the nth filter applied, Omnis sets $filterlevel for the newly excluded rows to n. You can apply up to 15 filter levels.

Whenever a row ismade present, for whatever reason, the filter level is set back to zero, andwhenever the row ismade not present,
for any reason other than applying a filter, the filter level is also set back to zero.

Undoing a Filter

You can restore filtered rows to the normal list using the $unfilter() method, for example:

Do ListName.$unfilter() Returns Count

When called with no parameters, $unfilter() removes the latest filter applied. Otherwise, $unfilter removes filters back to the level
indicated by the parameter. Thus $unfilter(0) removes all filters, $unfilter(1) removes all but the first, and so on.

Reapplying a Filter

You can reapply all the filters which have already been applied, in the same order, to all lines present in the normal list using the
$refilter() method. For example

Do ListName.$refilter() Returns Count

The Filters Group

A list has a read-only group called $filters which lets you navigate through a list of the filters that have been applied. For example

ListName.$filters.N

identifies the Nth filter currently applied to the list, that is, the filter which filtered out rows at filter level N. Each member of the
$filters grouphas a single property, $searchcalculation, which is the text for the search calculationpassed to $filter()whenapplying
the filter.

Sorting smart lists

When a smart list is sorted, Omnis sorts the second list. This list does not contain selection states, these are only stored in the first
list, therefore using $selected when sorting a smart list is not supported.

249



Committing Changes to the Server

The current state of the normal list can be committed to the corresponding server table, assuming the list was defined from a
SQL class, using the following smart list methods

• $doinserts(), $dodeletes(), $doupdates()
inserts, deletes, or updates any rows in the list with the row status kRowInserted, kRowDeleted, or kRowUpdated, respec-
tively

• $dowork()
executes the above methods one after the other, in the order delete, update, insert

List Commands and Smart Lists

Any command or notation which defines a list sets $smartlist to false, so that any history information is lost. You can use the
following list commands and notation with smart lists but with particular effects.

• Search list and equivalent notation selects only lines in the normal list.

• Sort list and equivalent notation, includes all rows, even those with $rowpresent set to false, so that if those lines become
present in the normal list they will be included in the correct position.

• When using Merge list or equivalent notation, if the source list is a smart list only its normal list is merged, not the history
information. If the destination list is a smart list themerged lines are treated as insertions and have the status kRowInserted.

• When using Set final line number, if lines are added they are treated as insertions and have the status kRowInserted, and if
lines are removed they are treated as deletions and are kRowDeleted.

• Using a Build list… command gives all lines the status kRowInserted. This performance overhead can be avoided by not
setting $smartlist until after the list is built.

Chapter 7—SQL Programming

The SQL Browser lets you connect to a wide range of server databases, and the SQL Form wizard lets you build the interface to
your server database, quickly and easily. However, you may want to modify the SQL forms created automatically or create forms
from scratch to enhance your web and mobile apps. To do this, you need to use or customize the SQL methods.

The type of database you can access in Omnis Studio will depend on the edition of Omnis Studio you have; all versions allow you
to access the following databases:

• PostgreSQL 8 and later

• SQLite data files v3 and later

In addition to those above, other editions, including the Professional Edition, allow access to:

• Oracle 9i R2 and later

• Sybase Adaptive Server Enterprise 12 and Sybase SQL Anywhere 9 and later

• DB2 Universal Server / DB2 Express 9 and later

• MySQL 4.2 and later

• Plus all ODBC-compliant databases, such as MS SQL Server, and other file systems such as SAP HANA

• You can access an Omnis database (data file) using the Omnis SQL DAM, but this is provided for backwards compatibility
in legacy apps only and should not be used for new applications

This chapter covers features of SQLprogramming that are common to all supporteddatabases, but anydifferences arehighlighted
where appropriate. For information about features that are specific to individual supported databases, see the Server-Specific
Programming chapter.

(Note that support for JDBC has been removed in Studio 10 or above, but the supporting files can be obtained by contacting
Omnis Support.)

250

09serv.html
09serv.html


Overview

The Object DAMs (Data Access Modules) provide an object-oriented mechanism for establishing connections to a variety of SQL
databases and enable you to performmulti-threaded database access as part of an Omnis Server in a web application. The DAM
interface uses objects to represent a database session and session statements. These objects provide properties andmethods that
let you invoke the required database functionality. Using the object-oriented approach, an application creates object variables of
a particular DAM class that are instantiated when the object is created by the component. This is known as a session object and
represents a session of one of the supported DAM types. There is a group of common operations that apply to all session objects
and a set of database specific operations based on the type of session object. For example, if an application requires an ODBC
session, it uses an ODBCSESS session object. The session object controls the connection environment used to pass commands
to the database server. The application creates a statement object in order to issue SQL. A statement object can be used for all
types of statements, e.g., SQL, PL/SQL, cursors and remote procedures. There can be multiple statement objects which share a
common context provided by a single session object.

In the Omnis Servermulti-threaded environment there will bemultiple clients each accessing session objects on the same server.
Although it is possible to allow each client to use its own object this may use large amounts of system resource. Therefore, addi-
tional functionality is provided to create and maintain session object pools where each is of the same type. An application can
allocate session objects from this pool. Each object in the pool is connected with the same attributes when the pool is created.
This has an advantage in performance when a client requests an object since the connection is immediately available.

Setting up a Database Connection

Clientware

To connect to one of the supported databases, you may need to install the appropriate clientware on each machine that will be
connecting to your server. The Omnis DAM uses the clientware to connect to the remote server.

We recommend which third party clientware you can use for each of the supported platforms and DAM connections. This infor-
mation is available on the Omnis DAMs developer web site. For each database type, a recommended driver name and version is
provided. This is the driver which we have tested and certified against and which we recommend you to use.

For most platform/database combinations however, there will be other drivers which work comparably. In the event of technical
support issues, it is the drivers listed on our web site which we ask faults to be verified against.

64-bit DAMs

The DAMs provided with the 64-bit version of Omnis Studio use 64-bit architecture. This means that you will need to install
separate 64-bit clientware where appropriate. The 64-bit DAMs are not interoperable with 32-bit client libraries and vice-versa.
For single-tier and embedded DAMs, including DAMPGSQL, DAMSQLITE, DAMMYSQL and DAMAZON, all necessary changes
have been made (and DAMOMSQL for legacy apps only). The 64-bit ODBC DAM requires the 64-bit ODBC Administrator library
and should be used with 64-bit ODBC Drivers to ensure compatibility.

INI files under macOS

Certain object DAMs available for macOS, namely DAMODBC, DAMSYBSE and DAMORA8, make use of “.ini” files in order to set
system environment variables to be required by their associated client libraries. These files are named after the DAMs to which
they apply and reside inside the Omnis package; in the Contents/MacOS/xcomp/ini folder.

Please note that for Studio 10.0 and later, “.ini” files are no longer used. Instead, please refer to the “macos” section inside the
studio/config.json file which now contains keys for “odbcdam.ini”, “oracledam.ini” and “sybasedam.ini”. Each corresponding value
can consist of one or more comma-separated values, for example:

“oracledam.ini”: “TNS_ADMIN=/instantclient_12_2, NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1”

If you are running Omnis from the command line (i.e. using the “open omnis.app” command), you can set environment variables
from the context of the terminal window before starting Omnis, hence negating the need for these files. If used however, their
values will override any existing values. For example:

cd /Applications
export TNS_ADMIN=/instantclient_12_2
export NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1
open “Omnis Studio 10.2.app”

251

https://www.omnis.net/developers/resources/dams/index.jsp


Connecting to your Database

Aside from hostname, username and password information, the session templates in the SQL Browser contain all the necessary
information required to connect to your server database automatically. However, to connect to your database programmatically
you need to create a session object and log the session object onto the database.

The session object is the primary object that controls the session environment from which statement objects are created. This
includes the connection, the transactionmodeandany commonstatementproperties suchas the size of largeobject data chunks.
The instance of an object is created either explicitly via the $new() external object method, or where it is first used. This initialises
the object with default property values. When the object goes out of scope or is closed explicitly, depending on the session state,
any statements are closed and the connection is logged off.

Creating a Session Object

Create a variable of data type Object in the Variable Pane of the method editor and set the subtype to the session type required
for the database connection.

Connection Session Type

PostgreSQL PGSQLSESS
SQLite SQLITESESS
Oracle ORACLE8SESS
Sybase SYBASESESS
DB2 DB2SESS
MySQL MYSQLSESS
ODBC ODBCSESS
Omnis SQL OMSQLSESS

Note that most of these will only appear in the list of available session types if the relevant client software has been installed on
your computer. DAM objects that fail to load due to missing or incompatible client software will leave an entry in the Trace Log
when Omnis is started; the Trace log can be viewed in the Studio Browser or via the Tools menu or toolbar.

Any type of variable may be used to create a session object. However, a task variable is particularly suitable since it enables a
variety of objects within your library to easily access the database session.

See the section on External Objects in the Object Oriented Programming chapter for further information about creating object
variables.

Logging on to a Session Object

The $logon() method is used to log on to the host server using a valid username and password. This establishes a connection that
this session can then use to send commands to the server.

You can log on to a database using a method call of the form:

Do SessObj.$logon(pHostName,pUserName,pPassword,pSessionName) Returns #F

The parameters pHostName, pUserName, pPassword contain information required to connect to the host database. The values of
these parameters vary according to the session object and database. If the pUserName and pPassword parameters are left empty,
and depending on the session object type, the user may be prompted by the database client to enter the information. See the
Server-Specific Programming chapter for more information.

The optional parameter pSessionName is used to name the new session object and results in the session appearing under the
SQL Browser tab and in the notational group; $sessions.

If the $logon() method is successful, it returns a value of kTrue, a connection to the database is created and the $state property
is set to kSessionLoggedOn. The read-only properties $hostname, $username and $password of the session object are set to the
values that were supplied.

For example, to log on to a session named “MySession” to a SQL Server data source named “MyDb” using an object variable
“SessObj”

Do SessObj.$logon('MyDb','','','MySession') Returns #F

There is no limit to the number of session objects that you can create, except the limits imposed bymemory resources and server
restrictions.

252

05ooprog.html#external-objects
09serv.html


Using Object References

There are two new properties $sessionobjref and $statementobjref of a list or row defined from a SQL table, and one new property
of a session in $sessions called $sessionobjref. These are equivalent to $sessionobject and $statementobject, except that they
work exclusively with object references.

Logging Off from a Session Object

You need to log your session off from the server when you have finished with it using the $logoff() method.

The connection is dropped and the session $state property is set to kSessionLoggedOff. Depending on the session state, state-
ments are cleared, cursors used by statements are closed and pending results are cleared. This call will fail if the session is not
currently logged on. If it fails for any other reason, the connection may be in an undefined state and the current object should
be destroyed. If there was an active transaction on this session, the behavior of the DBMS will determine if that transaction is
committed or rolled back. The $hostname, $username and $password properties are cleared.

Interacting with your Server

Once a user is logged into a server, they canmake use of all the tables and views to which they have been granted access. To send
SQL commands to the server, a statement object must first be created.

Creating a Statement Object

Anewstatement object is createdusing the$newstatement()method. To return anewstatement object in variable StatementObj
with name “MySql” use:

Do SessObj.$newstatement('MySql') Returns StatementObj

The statement object can then be used to send commands and process results.

The variable StatementObj is defined as an object variable with no subtype. Again, any type of variable may be used but a task
variable is convenient to enable a variety of objects within your library to easily access the statement and its results.

If successful a statement object is returned otherwise this call has no effect possibly due to insufficient resources. The new object
has a $statementname property value of “MySql” and defaults for all other properties.

If the parameter to $newstatement() is omitted, each statement name is automatically generated. These names are of the form
“statement_1”, “statement_2”, etc.

Mapping the Data

Before a client application can get any data from a server, it must set up a corresponding place in Omnis to hold the data. This
involves mapping the structure of the data, including column names and data types. Typically, you do this using Omnis schema
classes. You can define a schema to include all columns of the server table or view, or any subset of the columns. In addition, you
can create query classes that use columns from one or more schema classes.

You can use schema and query classes to define list and row variables to handle your server data. Information on creating schema,
query, and table classes will be found earlier in this manual, as will details on using list and row variables.

Mapping Character Columns

The definition of Character columns in Schema classes has changed in Studio 10 and now allows lengths from0xffff to (100000000
- 1) to be stored correctly. In previous versions, the column sublen of 65535 or greater would have been mapped to 100000000.

Sending SQL to the Server

To send SQL to the server, you can either write your ownmethods, or use the table instancemethods that generate SQL automat-
ically and handle both single row and bulk SQL transactions. SQL statements must first be prepared and then executed. If the
statement returns results these may then be fetched.

253



Preparing a SQL Statement

When a SQL statement is prepared, it is sent to the server for verification and if valid is ready to be executed. A single line SQL
statement may be prepared using the $prepare() method. Omnis sends to the server whatever you pass as a parameter to the
method. It can be standard SQL or any other command statement the server can understand. For example

Do StatementObj.$prepare('SELECT * FROM authors ORDER BY au_lname,au_fname') Returns #F

A value of kTrue is returned if the statement was successfully prepared, kFalse otherwise indicating that an error occurred. See
the section on Error Handling for more information. Once a statement has been successfully prepared, the value of the $state
property is set to kStatementStatePrepared.

A SQL statement may also be built up using a number of lines of method code as follows:

Begin statement
Sta: SELECT * FROM titles
If iPrice>0
Sta: WHERE price>=[iPrice]

End if
Sta: ORDER BY title
End statement

Do StatementObj.$prepare() Returns #F

The Begin statement and End statement block contains the SQL statement each line of which is contained in an Sta: command.
Other method commands such as If, End if etc. may be included inside the block in order to build up the SQL statement using
logic.

Note that in this case a $prepare() method with no parameters is used to prepare the statement block.

WhenanOmnisweb server is operating in amulti-threadedmode, the $prepare()methoduses the statementbuffer of the current
method stack.

Once a SQL statement has been prepared it is possible to obtain the contents of the statement as a text string using the $sqltext
property, for example

OK message The current SQL is {[StatementObj.$sqltext]}

The Get statement command returns a copy of the statement buffer created by the Begin statement, End statement and Sta:
commands. Get statement also replaces the bind variable place-holders in the copy of the statement it returns, with the normal
Omnis syntax for bind variables (“@[…]”).

Executing a SQL Statement

After a SQL statement has been prepared, using the $prepare() method, it can be executed. This is done using the $execute()
method. For example

Do StatementObj.$execute() Returns #F

A value of kTrue is returned if the statement was successfully executed, kFalse otherwise indicating that an error occurred. If the
statement $state property is kStatementStateClear prior to the execution of this method it will fail. Once a statement has been
successfully executed, the value of the $state property is set to kStatementStateExecuted.

If the SQL statement generates results (e.g. a SELECT command), the $resultspending property of the statement is set to kTrue.
These results may be retrieved using the $fetch() method.

Once a statement has been executed it may be re-executed as many times as is required using the $execute() method. There is
no need to prepare it again unless a different SQL command is required. Re-executing a statement that has $resultspending set
to kTrue will clear the results set however.

Alternatively, you can prepare and execute a SQL statement with a single command using the $execdirect() method. For example

Do StatementObj.$execdirect('SELECT * FROM authors ORDER BY au_lname,au_fname') Returns #F

This method effectively performs a $prepare() followed by a $execute() method and if successful returns a value of kTrue. Once a
statement has been successfully executed, the value of the $state property is set to kStatementStateExecDirect. It is not possible
to re-execute a statement using $execute that has previously been executed using $execdirect().

254



Fetching Results

WhenaSQL statement is executed that returns results (e.g. a SELECT statement), these canbe retrievedusing the $fetch()method
in the form

Do StatementObj.$fetch(pTableRef,pRowCount,pAppend) Returns lFetchStatus

The results are placed in pTableRef, whichmay be a list or row variable. The pTableRef parametermay be omitted only if a previous
$fetch() defined the row or list to use for returning data.

The pRowCount is a positive integer used to specify the number of results rows to return. It can also be set to kFetchAll to signal
that all remaining rows in the result set should be returned. When pTableRef is a list, the number of rows returned is pRowCount
or less. If pTableRef is a row variable, $fetch() always returns 1 row. If pRowCount is greater than the number of rows in the
current result set, only the available rows are returned. If there are nomore rows left in the current set, kFetchFinished is returned,
otherwise kFetchOK is returned. If the pAppend parameter has a value of kTrue, the rows returned are appended to the list, or if
kFalse, replace the previous contents of the list.

If the row or list is undefined, its column definition is created based upon the names of the columns in the result set and the
results are retrieved. This can be forced by defining the variable as empty prior to fetching any rows. For example

Do iResultsList.$define()
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

If the variable was previously defined and the definition of the list or row columns do not match the data returned, any valid
conversions are performed. If there are no more results pending, the $resultspending property of the statement is set to kFalse.
An attempt to fetch when $resultspending is kFalse will result in a return status of kFetchError.

To limit the number of rows returned to a list use set the value of pRowCount to a value that will not make the list too big. For
example

Do StatementObj.$fetch(iResultsList,100,kTrue) Returns lFetchStatus

The number of rows to be returned is in this case up to 100. If there were more than 100 rows in the results set, the extra rows will
remain waiting to be fetched. The pAppend parameter is set to kTrue indicating that the results rows are to be added to the end
of the list, preserving existing rows.

You can use the $linemax list property to limit the size of the list regardless of the number of rows in the results set. For example
to limit the size of a list to 50 rows

Calculate iResultsList.$linemax as 50
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

Any results generated by a statement will be available until either they have all been fetched or another query is executed using
the same statement object, in which case the previous results set is destroyed.

To limit the result set based on memory rather than the list size, you can use the statement object’s $maxresultsetsize property
which defaults to 100MB. $fetch() stops fetching when this limit is exceeded and lFetchStatus will be set to kFetchMemoryUsage-
Exceeded. To remove any memory limit, set $maxresultsetsize to zero (Studio 10.2 and later).

Fetching directly into Omnis Variables

To return a row of data without using a list or row variable, the $fetchinto() method can be used in the form

Do StatementObj.$fetchinto(vVar1, vVar2,… vVarN) Returns lFetchStatus

$fetchinto() returns a row of data directly into the parameters supplied. A variable number of parameters can be supplied corre-
sponding to each column in the result set .

255



Fetching into an External File

The $fetchtofile() method lets you fetch a results set to an external file. It is the object DAM equivalent of the old-style command
Retrieve rows to file, allowing one or more rows from a result set to be written directly into an external text file (export file).

$fetchtofile() implicitly opens and closes the export file, so also encompasses the old-style commands: Set client import file name,
Open client import file, Close client import file and Delete client import file.

As with the $fetch() and $fetchinto()methods, a result setmust exist before you call $fetchtofile(). The syntax used for $fetchtofile()
is:

Do StatementObj.$fetchtofile(cFilename [,iRowCount=1][,bAppend=kTrue] [,bColumnNames=kTrue][,iEncoding=kUniTypeUTF8/kUniTypeLatin1]) Returns Long int

The parameters are:

• cFilename
is the full path of the export file, formatted as required by the curremt operating system. The filename will usually be given
the extension “.txt”

• iRowCount
is an optional parameter which specifies the number of rows to write to the export file. If iRowCount is less than the number
of rows in the result set, $fetchtofile () can be executed again inwhich case the result set will be fetched from the last unread
row. To retrieve all rows in the result set to the file, specify kFetchAll. If omitted, a single row is written.

• bAppend
is an optional parameter which specifies whether the existing file contents should be appended to or over-written. The
default is to append the data (kTrue).

• bColumnNames
is an optional parameter which specifies that the first row of the file should contain the column names of the result set. This
has no effect when bAppend is set to kTrue. The default behavior will automatically write column names to a file which is
empty or being overwritten.

• iEncoding
is an optional parameter which specifies the type of encoding to be used. iEncoding should be one of the Unicode type
constants and defaults to kUniTypeUTF8. The corresponding Unicode byte order marker (BOM) is written to the beginning
of the file when the file is empty or when bAppend is set to kFalse.

$fetchtofile() automatically creates the export file if it does not exist or otherwise opens the file prior to writing the pending result
rows into it. The file is closed immediately on writing the last row.

$fetchtofile() will return kFetchOk or kFetchFinished if the requested rows are successfully written to the export file, otherwise
kFetchError is returned with the resulting error message being written to statement.$errorcode and statement.$errortext.

Two additional statement properties have been added which work in conjunction with the $fetchtofile() method. These are
$columndelimiter and $rowdelimiter which are used to specify the characters that delimit columns and rows. It may be nec-
essary to change these properties tomatch the format expected by an external application. $columndelimiter and $rowdelimiter
acceptmultiple characters if required (15 charactersmaximum). The default value for $columndelimiter is kTab (chr(9)), and $row-
delimiter is kCr (chr(13)).

Batch Fetching

Where the DBMS is capable, it is possible to reduce network traffic when fetching multiple rows of data from the database by
fetching several rows simultaneously (as a single batch), thus reducing the number of fetches required to return the entire result
set.

There are three statement properties to manage batch fetching; $batchsize, $effectivebatchsize and $maxbuffersize.

By default $batchsize is set to 1, but this can be set to any long integer value. $batchsize should be set before the SQL SELECT
statement is prepared. Changing the $batchsize automatically clears any results which may be pending on the statement ob-
ject. When increasing the batch size, it should be noted that the memory resources required to receive the row set will increase
proportionately.

$maxbuffersize can be used to limit the batch size such that for a given column of result data, the buffer size calculated as
columnSize * batchSize will not exceed the imposed maximum value. If the maximum buffer size would be exceeded, the batch
size is revised downward at prepare time to accommodate the maximum number of result rows per fetch. The default value of
$maxbuffersize is 32KB but will accept any long integer value greater than 255.

256



The resulting batch size is assigned to the $effectivebatchsize property (which is read-only).
The value assigned to $batchsize is stored so that when the statement object is re-used, $effectivebatchsize can be calculated
again.

It is not possible to return non-scalar data types using batch fetching. Such types include Oracle CLOBs and BLOBs which are
not stored in the database directly but referenced by pointers (LOB locators). Thus, the raw data for each column value has to be
fetched using a separate network transaction- negating the potential benefit of using batch fetching.

Batch fetching of large binary data is also prohibitively expensive in terms of memory requirements; only one or two rows could
be fetched in most cases.

For similar reasons, batch fetching is also not supported for columndatawhich is retrievable via chunks (chunking). If thedatabase
supports chunking of fetched data, the session property $lobthreshold should be set high enough to prevent possible chunking
of any of the result columns.

When preparing a select statement which includes one or more non-scalar or chunk-able columns, $batchsize will be set back to
1 automatically. For example

Do mylist.$define()
Do tStatement.$batchsize.$assign(3000) Returns #F ## Not implemented by all servers
Do tStatement.$prepare('select * from mytable') Returns #F
OK message {$batchsize will be limited to [tStatement.$effectivebatchsize] for this result set}
Do tStatement.$execute() Returns #F

Do tStatement.$fetch(mylist,kFetchAll) Returns lStatus

The followingobjectDAMs currently support batch fetching: DAMODBC,DAMORA8, DAMSYBSE&DAMDB2. For database servers
which do not support batch fetching, the $batchsize and $maxbuffersize properties are also read-only.

Debugging Slow Queries

The $trackslowqueries allows you to track and debug slow queries. The value of $trackslowqueries represents the number of
seconds that an EXECUTE or FETCH from the database has to reach before being considered slow. The default is 0 which means
the query tracking is off.

For example, if the value of $trackslowqueries is 2 and a query takes 3347 milliseconds to finish, the query will be reported to the
trace log alongside its execution time. If $debuglevel is set to 2 and a $debugfile is set, the slow query will be reported in both
trace log and file specified in $debugfile.

Part of the SQL executed will be included in the message, up to 80 characters, in order to keep the logs clean; this should be
enough to identify the query in the code.

Measuring Data Transfer

You can measure the amount of data (in bytes) that is received and sent through a session object since logon using the session
properties $bytesreceived and $bytessent. The values can be reset by assigning zero to them. These properties apply to all DAMs.

Describing Results

After executing a SQL statement, you can use the $results() method to obtain information about the columns contained in the
current results set.

The only parameter required is a list variable where the information is to be placed. For example

Do StatementObj.$results(iResultsList) Returns #F

The returned list will be defined with the following columns and will contain one row for each column of the pending results set.

Col Name Meaning

1 ColumnName Name of column
2 OmnisData typeText Omnis data type (description)
3 SQLData type Equivalent standard SQL data type (CHARACTER, NUMBER, DATETIME, …)
4 Length Column width (for character columns)
5 Scale Number of decimal places (for numeric cols), empty for floating numbers

257



Col Name Meaning

6 Null Nulls allowed (kTrue or kFalse)

Substituting Variables into SQL Commands

You can substitute variables into the SQL statement using concatenation. You must supply quoted literals for character columns
according to the rules imposed by your SQL server. For example

Do StatementObj.$prepare(con("SELECT * FROM authors WHERE state='",iState,"' ORDER BY au_lname,au_fname")) Returns #F

Note the use of double-quotes around the statement string, since it is necessary to embed single quotes around the value for the
character column.

If you are using the Sta: command to build up a statement, a variable may be substituted using square bracket notation. For
example,

Begin statement
Sta: SELECT * FROM authors
If iState<>''

Sta: WHERE state='[iState]'
End if
Sta: ORDER BY au_lname,au_fname

End statement

Do StatementObj.$prepare() Returns #F

Note that using these types of substitution you canonly substitute variables containingdata that canbe representedby characters
(i.e. character and numeric variables.) For other types of data including binary, pictures and lists you must use bind variables.

Bind Variables

A bind variable allows an Omnis variable to be passed to a SQL statement. Instead of expanding the expression, Omnis associates,
or binds the memory address of the variable to a SQL variable. To specify a bind variable, you place an @ before the opening
square bracket. Omnis evaluates the expression and passes the value to the server directly rather than substituting it into the
SQL statement as text. You can also use this syntax to bind large fields such as binary, pictures and lists into a SQL statement. For
example

Do StatementObj.$prepare('SELECT * FROM authors WHERE state = @[iState] ORDER BY au_lname,au_fname') Returns #F
# or
Do StatementObj.$prepare('INSERT INTO authors (au_lname,au_fname) VALUES (@[iRow.au_lname],@[iRow.au_fname]') Returns #F

Alternatively using the Sta: command:

Begin statement
Sta: SELECT * FROM authors
If iState<>''

Sta: WHERE state=@[iState]
End if
Sta: ORDER BY au_lname,au_fname

End statement

Do StatementObj.$prepare() Returns #F

Note that you do not need to place quotes around a value to be substituted by a bind variable. You must include quotes when
using square bracket notation to substitute character variables, but you don’t need to when using bind variables.

Not all database systems allow bind variables; in these cases, Omnis will behave as though they do, but will instead perform literal
expansion as though you had entered square bracket notation instead of bind variables

Generally, using bind variables results in better performance than using square bracket notation and is more flexible with respect
to data representation. You should use square bracket notation only when the notation expression evaluates to a part of a SQL

258



statement other than a value reference- such as an entire WHERE clause, or where you know that simple value substitution is all
you need.

If you are inserting NULL data into the database, you should use bind variables, to ensure that SQL nulls, rather than empty strings
are inserted.

Be careful to ensure when using a variable such as a local or instance variable, that it will still exist at the time when the SQL is
executed using the $execute() method. This is not usually a problem when the $execute() method follows immediately after the
$prepare, but may be if the $execute() method is located elsewhere (i.e. in another method.) It does not matter if an instance
variable is not in scope in the method where the $execute() is located so long as the variable has not been destroyed by closing
the instance that owns it.

Once a statement containing bind variables has been prepared, it can be repeatedly executed using the $execute() method. The
values of the bound variables may be changed before each call to $execute(), allowing different data to be passed each time. This
can greatly speed up the process of, say, inserting many rows into a server table within a loop.

Constructing SQL Queries from Row Variables

Several methods are provided that allow you to construct SQL queries based on the definition of the columns of a row or list
variable. These methods return partially complete SQL text that varies according to the session object in use and always includes
all columns from the row or list variable.

Pre-V30 SQL Functions

Existing users should note: The Pre-V30 SQL functions insertnames(), selectnames(), updatenames(), and wherenames() have
been removed from the Catalog (F9/Cmnd-9) in Omnis Studio 6.x onwards, but they can still be used in your code. In addition,
the createnames() and server() functions have been removed from Omnis, including the Catalog, and will no longer work in code
in Omnis Studio 6.x onwards.

$createnames()

To create a new table on the server, you can use the $createnames() method. $createnames() returns a text string which is a
comma delimited list of column names and data types. Use is of the form:

Calculate lColList as SessObj.$createnames(pRowRef)

Parameter pRowRef is a row or list variable.

This can be used in a SQL CREATE TABLE statement, for example to create a new database table called “publishers” based on the
definition of the columns in row variable “iPublishersRow”

Do StatementObj.$execdirect(con('CREATE TABLE publishers (', SessObj.$createnames(iPublishersRow),')')) Returns #F

Note that you need to include the parentheses around the column list because they are not provided by the method.

Depending on the session object, this will create a SQL command similar to

CREATE TABLE publishers (pub_id varchar(4),pub_name varchar(40),city varchar(20),state varchar(2),country varchar(30))

$insertnames()

To insert a row into a table, you can use the $insertnames()method. $insertnames() returns a text string that is a commadelimited
list of column names and values to be inserted. Use is of the form:

Calculate lColList as SessObj.$insertnames(pRowRef)

Parameter pRowRef is a row or list variable. If it is a list variable, the values from the current line (pRowRef.$line) are used.

This can be used in a SQL INSERT statement. For example, to insert a row into the table “publishers” containing data from the row
variable “iPublishersRow”:

Do StatementObj.$execdirect(con('INSERT INTO publishers ', SessObj.$insertnames(iPublishersRow))) Returns #F

259



Note that the method provides the parentheses around the column and values lists and the “VALUES” clause automatically.

This will create a SQL command similar to

INSERT INTO publishers (
pub_id,pub_name,city,state,country)
VALUES (@[iPublishersRow.pub_id],
@[iPublishersRow.pub_name],
@[iPublishersRow.city],
@[iPublishersRow.state],
@[iPublishersRow.country])

$updatenames()

To update a row in a table, you can use the $updatenames() method. $updatenames() returns a text string that is a comma
delimited list of column names and values to be updated. Use is of the form:

Calculate lColList as SessObj.$updatenames(pRowRef)

Parameter pRowRef is a row or list variable. If it is a list variable, the values from the current line are used.

This can be used in a SQL UPDATE statement. For example, to update a row in the table “publishers” containing data from the
row variable “iPublishersRow”:

Do StatementObj.$execdirect(con('UPDATE publishers ', SessObj.$updatenames(iPublishersRow),' WHERE pub_id = @[iPublishersRow.pub_id]')) Returns #F

Note that the method provides the “SET” clause automatically.

This will create a SQL command similar to

UPDATE publishers SET pub_id=@[iPublishersRow.pub_id],
pub_name=@[iPublishersRow.pub_name], city=@[iPublishersRow.city],
state=@[iPublishersRow.state], country=@[iPublishersRow.country]
WHERE pub_id = @[iPublishersRow.pub_id]

For a list with a table instance, there are some additional parameters that allow theWhere clause to be omitted and the updated
columns to be determined from the data that has changed. In this case, the definition for $updatenames() is:

• list.$updatenames([cOldrowName] [,cRowName=”, bExcludeWhere=kFalse,wOldrow=#NULL,wRow=#NULL])

Pass bExcludeWhere as kTrue to exclude the Where clause. This is false by default. If wOldRow is supplied, then wRow can also
be supplied, or if not, the current line of the list will be used (so if wRow is omitted and there is no current line, $updatenames fails
and returns #NULL).

When wOldRow is supplied, in addition to the usual behavior of omitting columns marked as $excludefromupdate, $update-
names also excludes columns where the value in wOldRow equals the value in wRow (or the current list line if wRow is not sup-
plied).

$selectnames()

To select all columns in a table, you can use the $selectnames() method. $selectnames() returns a text string that is a comma
delimited list of column names to be selected. Use is of the form:

Calculate lColList as SessObj.$selectnames(pRowRef,pTableName)

Parameter pRowRef is a row or list variable and pTableName is an optional parameter (default empty) that will prefix column
names with the specified table name.

This can be used in a SQL SELECT statement. For example, to select all columns in the table “publishers” using the column
definition of the list variable “iPublishersList”:

Do StatementObj.$execdirect(con('SELECT ', SessObj.$selectnames(iPublishersList),' FROM publishers ORDER BY pub_name')) Returns #F

This will create a SQL command similar to

SELECT pub_id,pub_name,city,state,country FROM publishers ORDER BY pub_name

260



$wherenames()

To locate a row or rows in a table to be updated or deleted you can use the $wherenames() method. $wherenames() returns a
text string that is a comma delimited list of column names and values. Use is of the form:

Calculate lColList as SessObj.$wherenames(pRowRef,pTableName,pComparison,pOperator)

ParameterpRowRef is a rowor list variable. If it is a list variable, the values fromthecurrent line areused. The remainingparameters
are optional, pTableName will prefix column names with the specified table name, pComparison (default “=”) is used to specify
an alternative comparison operator (e.g. >, <, >= etc.), pOperator (default “AND”) is used to specify an alternative logical operator
(i.e. OR.)

This can be used in a SQL UPDATE or DELETE statement. For example, to delete a row in the table “publishers” where the column
values exactly match all columns in the row variable “iPublishersRow”:

Do StatementObj.$execdirect(con('DELETE FROM publishers ', SessObj.$wherenames(iPublishersRow))) Returns #F

This will create a SQL command containing a WHERE clause similar to

DELETE FROM publishers WHERE pub_id=@[iPublishersRow.pub_id]
AND pub_name=@[iPublishersRow.pub_name]
AND city=@[iPublishersRow.city]
AND state=@[iPublishersRow.state]
AND country=@[iPublishersRow.country]

Table and Column names

Table instances and session variables have a property called $quotedidentifier which determines whether or not table and col-
umn names are contained in quotes. If set to kTrue, table and columnname identifiers returned from the $createnames(), $insert-
names(), $updatenames(), $selectnames() and $wherenames() methods will be quoted “thus”, facilitating case-sensitive names
and names containing spaces. The new property affects table instance methods as well as session object methods.

SQL Errors

It is possible for an error to occurwhen a session or statementmethod is executed. The errormay originate from the session object
or in the database. The session or statement method will indicate that an error has occurred by returning the value kFalse. The
value returned by these methods may be placed into any variable. The following example places the return value in the Omnis
flag variable:

Do StatementObj.$execute() Returns #F

Themethodswill also return a generic (i.e. database independent) code andmessage describing the error in the properties $error-
code and $errortext. For example, in the event of an error occurring, SessObj.$logon() would return an error code in the property
SessObj.$errorcode and an error message in SessObj.$errortext whilst StatementObj.$execute() would return an error code in
StatementObj.$errorcode and message in StatementObj.$errortext. You can create a method to display the error code and mes-
sage. For example:

OK message SQL Error {Code = [StatementObj.$errorcode], Msg = [StatementObj.$errortext]}

If smart lists are used, the history list row properties $errorcode and $errortext contain the value of StatementObj.$errorcode and
StatementObj.$errortext for each row updated.

Additionally, you can obtain the native error code and message from the server using the session and statement properties $na-
tiveerrorcode and $nativeerrortext. Some servers may return more than one combination of native error code andmessage for a
single error. Currently only Sybase and Microsoft SQL Server behave in this way. When an error occurs the $errorcode and $error-
text will contain a generic error from the session object and the $nativeerrorcode and $nativeerrortext will contain the first error
reported by the server. If there are further error messages, $nativeerrorpending (a Boolean property of the statement object) will
be set the kTrue. In order to access the next native error code and message, use the $nextnativeerror() method that will set the
$nativeerrorcode and $nativeerrortext properties to the next error. You can repeatedly call the $nextnativeerror() method until all
errors have been processed ($nativeerrorpending=kFalse). For example

261



While StatementObj.$nativeerrorpending
Do StatementObj.$nextnativeerror()
OK message SQL Error {Code = StatementObj.$nativeerrorcode], Msg = [StatementObj.$nativeerrortext]}]}
End While

All server errors cause the statement method to return a value of kFalse. If you get an error from a method it does not prevent
execution of further methods. You should always test the return value after execution of a session or statement method and take
an appropriate action.

Data Type Mapping

Omnis converts the data in an Omnis field or variable into the corresponding SQL data type. Since each DAM maps to a wide
variety of data types on servers, each DAM determines the correct conversion for the current server. See the Server-Specific
Programming chapter for details on how each DAMmaps SQL data types to Omnis data types and vice versa.

DAMs support for 64-bit Integers

The Studio 6.0 DAMs perform additional data typemappings betweenOmnis 64-bit integers and the corresponding large integer
data typeon thedatabase server. Formost databases thiswill beBIGINT. Thenotable exception isOraclewhichusesNUMBER(19,0)
instead.

Note also that BIGINT UNSIGNED columns will be converted to signed 64-bit Integers when fetched into Omnis. In order to
preserve such values, a CAST(column as CHAR) function can be used to fetch the value into a character field.

Where schemas and lists are defined using Integer 64-bit columns, the session object’s $coltext() and $createnames() methods
now return the appropriate SQL data type. Integer 32-bit columns retain their previous behavior.

Clearing Statements and Sessions

It is possible to clear individual statement objects back to their default state using the $clear() method. For example

Do StatementObj.$clear() Returns #F

When used with a statement, the $clear() method will cancel any pending results or operations on the statement object and
set all properties to their default values (except for $statementname, $usecursor.) The statement object is placed in the kState-
mentStateClear state. If the statement is using a cursor, it will be closed.

When used with a session object the $clear() method will clear all statements controlled by the session object instance. For
example:

Do SessObj.$clear() Returns #F

All of the statement objects are placed in a kStatementStateClear state. Depending on the session state this will clear all SQL text,
close all cursors and destroy pending results of all statement objects owned by the session.

Listing Database Objects

Omnis provides statement methods that enable you to access data dictionary information about any database to which you can
connect using a session object. Using thesemethods, you can create database-independent code to list objects contained in your
server database, regardless of its type. These methods work by creating results sets as though you had queried the information
from the database. You then use the $fetch() method to read the results into Omnis.

Listing Tables and Views

The $tables() method generates a results set containing details of tables available to the statement object. Use is of the form:

Do StatementObj.$tables(pType,pOwner) Returns #F

The parameter pType is used to indicate what types of object are to be listed and may contain kStatementServerTable to obtain
details of all tables, kStatementServerView to obtain details of all views, or kStatementServerAll (default) to obtain details of all
tables and all views. The parameter pOwner is used to list only objects belonging to a single named owner and defaults to all
owners. For example, to create a list of all available tables and views for all owners:

262

09serv.html
09serv.html


Do StatementObj.$tables() Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

To create a list of all available views owned by DBO:

Do StatementObj.$tables(kStatementServerView,'DBO') Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

The result set contains the following columns:

Col Name Description

1 Owner Name of user that owns the database object
2 TableOrViewName Name of table or view
3 TableType Object type (kStatementServerTable or kStatementServerView)
4 Description Remarks or description for the object where available
5 DamInfoRow A row of database specific information about the table or view. This may

be empty for some session objects

Listing Columns

The $columns() method generates a results set containing details of columns for a specified table or view.

The only parameter required is the name of the database table or view for which column details are required. For example, to
create a list of columns in the “authors” table:

Do StatementObj.$columns('authors') Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

The results set contains the following columns:

Col Name Description

1 DatabaseOrCatalog Name of database or catalog that contains the object
2 Owner Name of user that owns the database object
3 ColumnName Name of column
4 OmnisData typeText Omnis data type (description)
5 OmnisData type Omnis data type (notational)
6 OmnisDataSubType Omnis data subtype (notational)
7 SQLData type Equivalent standard SQL data type (CHARACTER,

NUMBER, DATETIME, …)
8 Length Column width (for character columns only*)
9 Scale Number of decimal places (for numeric cols), empty for

floating numbers
10 Null Nulls allowed (kTrue or kFalse)
11 Index Index exists for column (kTrue or kFalse)
12 PrimaryKey Column is the primary key (kTrue or kFalse)
13 Description Remarks or description for the column where available
14 DamInfoRow A row of database specific information about the column.

This may be empty for some session objects

*As of Studio 6.1, $columns() accepts an additional flags parameter which can be used to return lengths for other column types.
Refer to Statement Methods for details.

Listing Indexes

The $indexes() method generates a results set containing details of index columns for a specified table. Use is of the form:

Do StatementObj.$indexes(pTableName,pType) Returns #F

263



The parameter pTableName is the table of which indexes are to be listed. The parameter pType is used to indicate what types
of indexes are to be listed and may contain kStatementIndexUnique (default) to obtain details of unique indexes, kStatementIn-
dexNonUnique to obtain details of non-unique indexes, or kStatementIndexAll to obtain details of all indexes. For example, to
create a list of all indexes for the table “authors”:

Do StatementObj.$indexes('authors',kStatementIndexAll) Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

The results set contains the following columns:

Col Name Description

1 DatabaseOrCatalog Name of database or catalog that contains the object
2 Owner Name of user that owns the database object
3 ColumnName Name of column contained in index
4 IndexName Name of index
5 Unique Unique index (kTrue or kFalse)
6 ColumnPosition Position of column (integer) in index (1 for normal

index, 1,2,3… for column in compound index)
7 DamInfoRow A row of database specific information about the

index. This may be empty for some session objects

Building Schema Classes

Using the $makeschema() session method you can make a schema class automatically that matches the columns in a database
table using a command of the form:

Do SessObj.$makeschema(pSchema,pTableName) Returns #F

The parameter pSchema is a reference to an existing schema class that will be overwritten with the definition from the server
table pTableName.

For example, to create a schema called “scAuthors” from the server table “authors”:

Do $schemas.$add('scAuthors') Returns #F
Do SessObj.$makeschema($schemas.scAuthors,'authors') Returns #F

Using the $tables() and $makeschema() methods you can obtain a list of tables on the server and build a schema class for each
server table.

Defining Lists from Server Tables

As of Studio 8.1.5, the session method; $definelistorrow() can be used to define a list or row variable directly from a named server
table, i.e. without the requirement for a schema class. For example:

Do SessObj.$definelistorrow(iList1,'logon_names') Returns #F

Inside a table instance you can also pass $cinst as the list/row name. If the server table contains a primary key, $definelistorrow
sets $excludefromwhere to kTrue for non-primary key columns.

Remote Procedures

Omnis provides methods that enable you to list and execute remote procedures that exist in the database. Support for these
methods varies from one database to another, see the Server-Specific Programming chapter for more details.

264

09serv.html


Listing Remote Procedures

The $rpcprocedures() method generates a results set containing details of remote procedures available to the statement object.
Use is of the form:

Do StatementObj.$rpcprocedures(pOwner) Returns #F

The optional parameter pOwner is used to list only objects belonging to a single named owner and defaults to all owners. For
example to create a list of all available remote procedures for all owners

Do StatementObj.$rpcprocedures() Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

The results set contains the following columns:

Col Name Description

1 DatabaseOrCatalog Name of database or catalog that contains the object
2 Owner Name of user that owns the database object
3 ProcedureName Name of remote procedure
4 DamInfoRow A row of database specific information about the remote procedure. This may be

empty for some session objects

Listing Remote Procedure Parameters

The $rpcparameters() method generates a results set containing details of all parameters required by a particular remote proce-
dure. Use is of the form:

Do StatementObj.$rpcparameters(pProcedureName) Returns #F

TheparameterpProcedureName is thenameof the remoteprocedure. This parametermay take the formDatabase.Owner.Procedure
name depending on whether database and owner qualifiers are supported. The Database and Owner are optional. The use of
the qualifier is as follows.

Only
Procedure
name specified

Return parameter information for all procedures with specified
Procedure name in all available databases.

Owner.Procedure
name specified

Return parameter information for all procedures with specified
Procedure name owned by Owner in all available databases.

Database.Owner.Procedure
name specified

Return parameter information for specified procedure owned
by Owner in Database

For example, to create a list of all parameters for remote procedure “byroyalty”:

Do StatementObj.$rpcparameters('byroyalty') Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

The results set contains the following columns:

Col Name Description

1 OmnisData type Omnis data type (notational)
2 OmnisDataSubType Omnis data subtype (notational)
3 Length Column width (for character columns)
4 PassType How the parameter is used. One of the constants kParameterInput,

kParameterOutput, kParameterInputOutput, or
kParameterReturnValue.

265



Col Name Description

5 C5 Reserved for future use.
6 C6 Reserved for future use
7 DatabaseOrCatalog Name of database or catalog that contains the object.
8 Owner Name of user that owns the database object.
9 ParameterName Name of the parameter.
10 OmnisData typeText Omnis data type (description)
11 SQLData type Equivalent standard SQL data type (CHARACTER, NUMBER, DATETIME,

…)
12 Scale Number of decimal places (for numeric cols), empty for floating

numbers
13 DamInfoRow A row of database specific information about the parameter. This may

be empty for some session objects

Note that columns 1, 2 and 3 are the closest Omnis type to the server type specified in the server definition of the procedure
parameter. |

Calling a Remote Procedure

Before you can call a remote procedure, it must first be registered with Omnis using the sessionmethod $rpcdefine().Use is of the
form:

Do SessObj.$rpcdefine(pProcedureName,pList) Returns #F

The parameter pProcedureName is the case-sensitive name of the remote procedure that must exist on the server. If the proce-
dure has previously been defined, the new definition replaces the old one. The parameter pList defines the parameters and the
return value of the remote procedure. The list must have the same layout as that returned by $rpcparameters(pProcedureName),
except that only the first 4 columns are required. See the section on Listing Remote Procedure Parameters ($rpcparameters) for
details of the list layout.

The easiest way to define a procedure is to first call $rpcparameters(), fetch the result set into a list, and pass the list to $rpcdefine().
For example:

Do iResultsList.$define()
Do StatementObj.$rpcparameters('byroyalty') Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus
Do SessObj.$rpcdefine('byroyalty',iResultsList) Returns #F

Once a remote procedure has been defined, it can be invoked using the statement method $rpc().Use is of the form:

Do StatementObj.$rpc(pProcedureName,pParam1,…pParamN) Returns #F

The call to $rpc() will fail if pProcedureName has not been defined using $rpcdefine() or does not exist on the server. The session
object will invoke the specified remote procedure, using the procedure definition to determine the parameters it needs. If the
optional parameters pParam1…pParamN are included, they are passed to the stored procedure.

If the call is successful, any output parameter values are returned. If the procedure has a return value specified in its definition,
it is written to the statement property $rpcreturnvalue, if not, $rpcreturnvalue is Null. If the call to the procedure generates a
result set, the statement property $resultspending is set to kTrue and these results may be retrieved using the $fetch() method.
Following successful execution of the remote procedure, the statement $state property will be set to kStatementStateExecDirect.
If the state prior to this call was not kStatementStateClear, any pending result set or unexecuted SQL statement is cleared.

For example, to invoke the stored procedure “byroyalty” passing the variable lPercentage to the 1st parameter and fetch the results
set generated by the stored procedure:

Do StatementObj.$rpc('byroyalty',lPercentage) Returns #F
Do StatementObj.$fetch(iResultsList,9999) Returns lFetchStatus

266



Transactions

The $transactionmode session property controls the way that transactions aremanaged. Depending on the value of this property
the session object may automatically manage transactions, or it may be necessary to manage transaction using explicit method
calls or SQL statements.

Some servers do not provide support for transactions. You can determine whether a particular server allows transactions using
the read-only Boolean session property $allowstransactions which contains kTrue if the server supports transactions or kFalse
otherwise. Some session objects will contain a value of kUnknown in this property until the session is logged on. If your server
does not allow transactions, the properties and methods described in the section on Transaction Modes below should not be
used.

Transaction Modes

You can set the $transactionmode session property using a command of the form:

Do SessObj.$transactionmode.$assign(kSessionTranManual) Returns #F

The potential values for the transaction mode are

• kSessionTranAutomatic
This is the default and specifies that all transaction management be provided automatically.

• kSessionTranManual
Enables the application to manage transactions manually using the session methods $begin(), $commit() and $rollback().

• kSessionTranServer
Transaction management is provided by the DBMS.

Automatic Mode

After a SQL statement has successfully executed, i.e. $execute() or $execdirect() returns kTrue, the current transaction is automat-
ically committed by the session object. If the command fails, the transaction is rolled back automatically. A new transaction is
started automatically if required after a successful commit or rollback.

Note that since each individual SQL command is committed immediately that it is executed, automatic mode does not allow for
the creation of transactions that contain a number of SQL commands to be individually prepared and executed prior to a single
commit. If this is required, you should use Manual or Server mode.

Manual Mode

In kSessionTranManual mode you manage transactions manually using session methods.

$begin()

Where required by the session object, use the $begin()method to start a new transaction, for example:

Do SessObj.$begin() Returns #F

The $begin() method should only be executed where the DBMS does not implicitly start a transaction. The read-only session
property $autobegintran will contain the value kTrue to indicate for a particular session object that a transaction is automatically
started when a connection is established to the database or the previous transaction is committed or rolled back, and in this case
the $begin() method should not be used. This method may fail if there is a current transaction or the server does not support
nested transactions.

$commit()

Do SessObj.$commit() Returns #F

The$commit()methodwill fail if the session$stateproperty is kSessionLoggedOff, if the transactionmode is not kSessionTranMan-
ual or if there is no current transaction. With certain types of session objects this will commit and clear all statements, close any
cursors used by a statement and clear pending results. This will not destroy the statement objects used by a session. Depending
on the value of the session property $autobegintran, the server may begin a new transaction automatically.

$rollback()

267



Do SessObj.$rollback() Returns #F

The $rollback() method will fail if the $state property is kSessionLoggedOff, if the transaction mode is not kSessionTranManual
or if there is no current transaction. This method cancels the current transaction. With certain types of session objects this will
rollback and clear all statements, close any cursors used by a statement and clear pending results. This will not destroy the
statement objects used by a session. Depending on the value of the session property $autobegintran, the server may begin a
new transaction automatically.

The read-only session properties $commitmode and $rollbackmode describe the effect that the $commit() and $rollback() meth-
ods have on statements and their cursors.

kSessionCommitDelete
kSessionRollbackDelete

Prepared statements and cursors on all statement objects are deleted. Any pending results are
lost. The statement object itself is not deleted but will be set to a kStateClear state. To re-execute
the same statement it must first be re-prepared.

kSessionCommitClosekSessionRollbackClose Prepared statements and cursors on all statement objects are closed. Any pending results are lost.
A statement can be re-executed without first being re-prepared. Any statement objects that have
successfully prepared a statement will be in the kStatePrepared state.

kSessionCommitPreservekSessionRollbackPreserveThe state of all statements and cursors remains unchanged.

Note that with some session objects these properties may change once a session is logged on.

Server Mode

Transaction management is provided by the DBMS. The default behavior is determined by the database, which may for example
automatically commit each SQL statement unless you override the default.

Youmay also execute SQL BEGIN, COMMIT and ROLLBACK or other statements depending on the DBMS SQL dialect, to manage
transactions manually.

The read-only session property $autobegintran will contain the value kTrue to indicate for a particular session object that a trans-
action is automatically started when a connection is established to the database, or after a SQL COMMIT or ROLLBACK statement.
If $autobegintran is kFalse, an explicit SQL BEGIN statement is required. SQL based transaction commands should not be used
other than in kSessionTranServer mode.

As a general rule it is recommended that either automatic or manual mode should be used in preference to server mode.

In kSessionTranManual or kSessionTranServer mode the behavior of the DBMS dictates whether closing a connection commits
the current transaction.

The effect of a commit or rollback on existing statement cursors is dependant on the behavior of the DBMS. In most cases, a
commit or rollback will close all cursors in the session and clear all results sets. This does not destroy the statement object. It may
be possible to re-execute the statement but generally the statement will need to be prepared again.

Care should be taken to note the circumstances in which commits occur as this can have a side effect on the processing of other
statement objects associated with the session.

Cursor Results Sets

When a statement is executed that generates results, the results set is preserved until another SQL command is executed. Cursor
results sets enable you to process the results of 2 ormore different SQL SELECT commands in parallel using anumber of statement
objects that were created from the same session object using the $newstatement() method.

Note: to use multiple concurrent cursors, the session transaction mode usually needs to be set to kSessionTranManual.

If the database does not implicitly allow for the concurrent processing of multiple results sets, you need to set the statement
property $usecursor to a value of kTrue for each statement prior to executing the SELECT. This indicates that a statement should
be created via a server-based cursor. It controls the server specific behavior of the $prepare(), $execute(), $execdirect() and $fetch()
methods. In some circumstances, the client will automatically generate server-based cursors for SQL SELECT statements and
therefore this property is ignored. If the session object manages cursors and the client does not support the manual generation
of cursors, the session object will explicitly issue the SQL cursor commands.

Currently, DAMs which support the $usecursor property include the ODBC and Sybase DAMs. The Oracle and OmnisSQL DAMs
provide $prepareforupdate() and $posupdate() methods, whilst DB2 provides its own record locking feature.

If the session object has to explicitly issue SQL cursor commands and a statement is prepared when $usecursor is kTrue, the
following will be prefixed to the statement:

268



DECLARE <$name> CURSOR FOR <$sqlText>

It is important that $sqltext specifies a SQL SELECT statement. Note that the syntax of the DECLARE and associated SELECT
commandmay vary slightly if a particular server does not adhere to the SQL-92 standard.

A subsequent $execute() and $fetch() will issue an

OPEN CURSOR <$name> and FETCH CURSOR <$name>

Depending on the value of $commitmode and $rollbackmode, any pending results set may be destroyed when a transaction is
committed or rolled back.

To ensure that the results sets are not destroyed by an update command you need to set the transaction mode to kSessionTran-
Manual and commit updates manually when ready using the $commit method.

For example, to create a new statement, execute and fetch results from a SELECT command using a cursor:

Do SessObj.$newstatement() Returns StatementObj
Do StatementObj.$usecursor.$assign(kTrue)
Do StatementObj.$execdirect('SELECT * FROM authors ORDER BY au_lname,au_fname') Returns #F

Calculate lFetchStatus as StatementObj.$fetch(iResultsList,10)

Non-Unicode Compatibility

The DAMs provided with Studio 5.0 are able to function in Unicode or 8-bit compatibility mode. This means that after converting
your existing libraries for use with Studio 5.0, it should be possible to continue interacting with non-Unicode databases.

In 8-bit compatibility mode, all DAMs

• Return non-Unicode character data types via the $createnames() and $coltext attributes

• Bind outgoing character variables using the database’s non-Unicode data types

• Convert all data inside outgoing character bind variables to single-byte characters

• Define incoming character columns using the database’s non-Unicode data types

• Convert all data inside incoming character bind variables from bytes into the Omnis character set

Switching to 8-bit compatibility mode

To switch to 8-bit compatibility mode, there is a session property: $unicode- which should be set to kFalse from its default value
of kTrue. This implementation allows multiple Unicode and 8-bit session objects to exist side by side if required.

Character Mapping

This section is applicable to session objects operating in 8-bit compatibility mode only.

When reading data from a server database, Omnis expects the character set to be the same as that used in an Omnis data file.
The Omnis character set is based on the macOS extended character set, but is standard ASCII up to character code 127. Beyond
this value, the data could be in any number of different formats depending on the client software that was used to enter the data.

When assigned, the $maptable session property identifies files containing translation tables for character codes read into and sent
out of Omnis. For example, suppose you are working with a database that stores EBCDIC characters. In order to accommodate
this database, you should create an ‘.IN’ map file that translates EBCDIC characters to ASCII characters when Omnis in reading
server data and amatching ‘.OUT’ file that reverses the process by converting ASCII to EBCDIC characters when Omnis is sending
data to the server.

Under Windows and Linux, Omnis uses the same character set as under macOS, so in the general case, mixed platform Omnis
applications should have no need for character mapping. However, if the data in a server table was created by another software
package, running underWindows for example, the characters past ASCII code 127would appear incorrect when read usingOmnis.
In this situation the $maptable property should be used to map the character set.

There are two kinds of character maps: IN and OUT files. IN files are used to translate characters coming from a server database
into Omnis. OUT files are used to translate characters that travel from Omnis back to a server database.

269



The Character Map Editor

The Character map editor is accessed via the Add-On tools menu item and enables you to create character-mapping files. You
can change a given character to another character by entering a numeric code for a new character. The column for the Server
Character for both .IN and .OUT files may not actually represent what the character is on the server. This column is only provided
as a guide. The Numeric value is the true representation in all cases.

To change a character, select a line in the list box and change the numeric code in the Server Code edit box. Once the change has
been recorded, press the Update button to update the character map. You can increase/decrease the value in the Server Code
edit box by pressing the buttonwith the left and right arrows. Pressing the left arrow decreases the value, pressing the right arrow
increases the value.

Make Inverse Map

The File menu lets you create new character map files, save, save as, and so on. The Make Inverse Map option creates the inverse
of the currentmap, that is, it creates an “.IN” file if the current file is an ”.OUT” charactermap, and vice versa. When using theMake
Inverse Map option, if any character is defined more than once within the IN.map then only the first value will be translated, and
subsequent characters will be set to spaces (dec 32, hex 20). You should check the validity of the results when using the inverse
mapping.

Using the Map Files

Establish the charactermapping tables by setting the session property $maptable to the path of the twomap files. Both filesmust
have the same name but with the extensions .IN and .OUT and be located in the same folder. The $maptable property establishes
both .IN and .OUT files at the same time. For example:

Do SessObj.$maptable.$assign('C:\Users\My User\Charmaps\pubs') Returns #F

In this example, the two map files are called “pubs.in” and “pubs.out”.

The session property $charmap controls the mode of character mapping that is to be applied to the data. Set the character
mapping mode using a command of the form:

Do SessObj.$charmap.$assign(pCharMap) Returns #F

The potential values for the character mapping mode parameter pCharMap are

• kSessionCharMapOmnis
Use the internal Omnis character set.

• kSessionCharMapNative
This is the default and specifies that the client machine character set is to be used.

• kSessionCharMapTable
Use the character mapping table specified in the $maptable property. If the $maptable property is not set and the applica-
tion attempts to assign kSessionCharMapTable this fails.

If you wish to use the character mapping tables defined using the $maptable property, you must set $charmap to kSession-
CharMapTable.

Handling Extended Characters

When operating in non-Unicodemode, the session property $codepage determines how 8-bit character codes will be interpreted
by the DAM. For example when $codepage is set to kUniTypeAnsiGreek, fetched ANSI extended character codes are interpreted
as letters from the Greek alphabet. Conversely, Greek characters inserted from Omnis are mapped to character codes from the
Greek code page.
Thus, when operating in non-Unicode mode it is important that the value of $codepage matches with the character set being
used by the remote database.

It should also be noted that when inserting data, any Unicode characters which do not correspondwith characters in the selected
code page will not be mapped correctly and such data is liable to loss or truncation.

Omnis character mapping is applied to fetched character data before conversion from the selected codepage, whilst inserted
character data has Omnis character mapping applied after conversion to the selected code page.

270



Interpreting 8-bit Data

This section is applicable to the PostgreSQL, MySQL, and Openbase DAMs which interface with their respective client libraries
using the UTF-8 encoding .

When operating in Unicode mode, it is possible to receive mixed 8-bit and Unicode data- since UTF-8 character codes 0x00 to
0x7F are identical to ASCII character codes.
Where this data was created using the non-Unicode version of Omnis however, it is possible that the data may contain ASCII
extended characters. In this case, the Unicode DAMwill encounter decoding errors- mistaking the extended characters as UTF-8
encoded bytes.

This issuewas not a concern for the non-Unicode version of Omnis Studio since extended characters were always read andwritten
as bytes- irrespective of the database encoding.

In order to avoid problems when upgrading to the Unicode version of Omnis Studio, it is advisable to convert tables containing
ASCII extended characters to UTF-8. This process is simplified where the database character set is already set to UTF-8 (as is often
the case with MySQL). All that is required is to read and update each row in the table and repeat this for all tables used by the
application. In so doing, Omnis will convert the 8-bit data to Unicode and then write the converted Unicode data back to the
database.

In order to facilitate this within the DAM, the session property: $validateutf8 is provided. When set to kTrue (the default), any
fetched character data is validated using the rules for UTF-8 encoding. Where a given text buffer fails validation, it is assumed to
be non-Unicode data and is interpreted accordingly. When written back to the database, all character data will be converted to
UTF-8. Such updates will result in frequently accessed records having their contents refreshed automatically.

By setting $validateutf8 to kFalse, validation is skipped and the DAM reverts to the previous behaviour- in which case extended
ASCII characters should be avoided.

Aside from the issue of UTF-8 encoded data, the DAMs provided with Studio 5.0 are able to retrieve non-Unicode data from non-
Unicode database columns in either Unicode or 8-bit compatibility mode. The DAM knows the text capabilities of each character
data type and assigns encoding values to each result column accordingly.

The difference in behaviour when using 8-bit compatibility is that in compatibility mode, it is also possible to write data back to
non-Unicode columns.

In Unicode mode, the DAM assumes that it will be writing to Unicode compatible data types and this will cause data inser-
tion/encoding mismatch errors if the clientware tries to insert into non-Unicode database columns.

Character Mapping in Unicode Mode

Charactermapping to and fromtheOmnis character set is alsopossiblewhere sessionobjects are operating inUnicodemode. This
was previously removed from the Unicode DAMs since it provided compatibility between the various 8-bit character sets. Where
Unicode DAMs encounter 8-bit data however, the session $codepage property indicates the ANSI code page which should be
used to interpret the data.
In the general case, you cannot insert non-Unicode data when the DAM is operating in Unicode mode. To insert such data you
should switch to 8-bit compatibility mode ( by assigning $unicode to kFalse).

Server Specific Programming

Certain DAMs, namely DAMORA8 and DAMODBC also provide session properties which allow mixing of Unicode and 8-bit data
when the DAM is operating in Unicode mode.

The Oracle DAM provides $nationaltonvarchar and $nationaltonclob which allows the Omnis National character subtype to be
used with Unicode data, whilst the Character subtype is reserved for non-Unicode data.

The ODBC DAM provides $nationaltowchar which performs a similar function. These properties are documented further in the
Server Specific Programming chapter.

The onus is upon the developer not to put Unicode characters into Character subtypes when using these properties, otherwise
data insertion/encoding mismatch errors will occur.

Stripping Spaces

The session object can automatically strip trailing spaces from data returned from the server. This functionality is switched on
by setting the statement $sqlstripspaces property to kTrue. The default value for a statement is taken from the session object
$sqlstripspaces and the default for the session is read from $clib.$prefs.$sqlstripspaces.

Some data sources may strip trailing spaces prior to sending it to the session object in which case this property has no effect.

271



Treatment of Date Values

The way the session handles partial, empty and NULL valued date columns can be modified using two properties; ses-
sionObj.$defaultdate and sessionObj.$emptydateisnull.

The $defaultdate property is used to specify default date parts to be usedwhen parts of the date are omitted at bind time. Parts of
the date (day, month and/or year) are also substituted where the value being inserted would otherwise constitute an invalid date.
This property provides better support for Omnis custom date types, for example DateTime ‘H:N:S.s’ whichmay have a correspond-
ing server type which includes the date. Bind variable values override default date values for the constituent date parts which are
supplied. The default value for this property is “1 Jan 2000 00:00:00”. It is not possible to assign a #NULL value to $defaultdate.

$emptydateisnull can be used to set all outgoing bound dates with an empty value to NULL. This applies to date bind variables
used in the WHERE clauses of SELECT, UPDATE and DELETE statements as well as to the input bind variables of INSERT and
UPDATE statements. To insert (or test for) empty date values, it is necessary to set $emptydateisnull to kFalse and to assign an
empty date to $defaultdate.

The implications of these two properties are summarized below:

To… Use value… $defaultdate $emptydateisnull

INSERT a NULL date
into a datetime
column
orSELECT…WHERE a
date value is NULL

#NULLor<empty> IgnoredIgnored IgnoredkTrue

INSERT an date
value into a
datetime column
orSELECT…WHERE a
date value is

<empty> <empty> kFalse

INSERT/test for a
date in a datetime
column,
substituting a
default time, (empty
datetimes are
treated as NULL) or
INSERT/test for a
Time in a datetime
column,
substituting a
default date, (empty
datetimes are
treated as NULL).

Datetime value Defaultdatetime kTrue

INSERT/test for a
Date in a datetime
column,
substituting a
default time, (empty
datetimes take on
$defaultdate)
orINSERT/test for a
Time in a datetime
column,
substituting a
default date, (empty
datetimes take on
$defaultdate).

Datetime value Default datetime kFalse

Large Objects

When working with large objects (LOBs) there are some properties that may be used to tune the system so that data is handled
and transferred in an efficient way. Large objects include large text, list, binary, picture data and instances of object classes.

272



Blob Size

The session property $blobsize defines the maximum size of a binary data item. The default value for this property is 10MB, but it
may be adjusted to conserve memory. Some session objects may take this value into account when executing a $createnames()
method and resulting data types may vary according to the value of $blobsize.

Chunking Large Objects

In order to pass large objects to the server they are broken down into chunks. This is due to potential memory limits that exist
with some database vendor client APIs. The session properties $lobchunksize and $lobthreshold represent respectively the size
of a single chunk in bytes and the size of object in bytes at which chunking starts. The default value of both of these properties is
32KB.

This only applies to Omnis Character, Picture, Binary, List and Object data types that are greater than 255 bytes.

The value of $lobthreshold may be set to any value between 256 bytes and 2GB. Note that if not set judiciously, this may cause
resource problems due to the amount of memory required to cache an object.

The value of $lobchunksize may be set to any value between 256 and the $lobthreshold.

Due to limitations in the database vendor client API, certain session objects may impose their own values for the default and
maximum chunk sizes.

Session Pools

Pools of session instances can be created when Omnis starts up andmade available to anymethods running within Omnis. They
are designed to be used by themulti-threaded server and allow clientmethods to quickly obtain SQL sessionswithout the burden
of constructing their own instances.

There is a notation group $root.$sessionpools that contains the current session pools. Normally the session pools are created by
the startup task and exist until Omnis is shut down. Pooled sessions do not appear in the SQL Browser.

When a session is required in order to perform a SQL query, it is obtained from the pool using an object variable and a statement
object created in the normalway in order to execute the query and fetch any results. When the session object variable is destroyed
the session instance is returned to the pool for later reuse.

Creating a Session Pool

Session pools are created using the $makepool() session object method. The syntax of the method is:

$makepool(nam[,count=0,hostname,username,password,initmethod])
# creates a pool of session objects

The call to $makepool() will only be successful if used with an external object that is a session object or an object class that has
a session object as its subtype, that is, the external server object is its superclass. The method is executed for each session being
created before the session is actually logged on.

The $makepool() method returns an item reference to the pool if it is successfully created and the required number of session
instances are constructed, otherwise it returns NULL. Once a session pool has been created there is no need tomaintain it further
during the time that the library is open, however it is possible to change the number of available instances using notation.

Errors encountered when creating session pools are returned via #ERRCODE and #ERRTEXT.

Using $makepool() with an External Object

Create a session pool using an external object with a method call of the form:

Do $extobjects.DAMobject.$objects.SessObject.$makepool(pPoolName, pCount,pHostName,pUserName,pPassword) Returns lPoolRef

DAMobject is the name of the external component. You can find out what DAM objects are available on your workstation by
examining the $root.$extobjects branch of the notation tree using the Notation Inspector. SessObject is the name of the session
object. You can find out what session object is available by expanding the $objects group for a particular DAM object using the
Notation Inspector. The pPoolName parameter is the name of the pool and must be unique amongst session pools and the
pCount parameter is the number of object instances to be initially contained in the pool. The other parameters are optional and if
specified are passed to the $logon() method for the instance. If they are not specified, the instance is constructed but not logged
on.

For example, to create a session pool called “poolone” containing 5 sessions all logged on to SQL Server

273



Calculate lHostName as 'SqlServer'
Calculate lUserName as ''
Calculate lPassword as ''
Do $extobjects.ODBCDAM.$objects.ODBCSESS.$makepool('poolone',5, lHostName,lUserName,lPassword) Returns lPoolRef

Using $makepool() with an Object Class

Alternatively $makepool() may be used with an object class with a method call of the form

Do $objects.ObjectClass.$makepool( pName,pCount,pHostname,pUserName,pPassword) Returns lPoolRef

ObjectClass is the name of an object class that must have a session object as its superclass. You can achieve this by selecting the
object class in the browser and clicking on the $superclass in the Property Manager, click the arrow and select External Objects
and double-click on the required session object.

For example:

Do $objects.odbcobj.$makepool('pooltwo',10,lHostName,lUserName,lPassword) Returns lPoolRef

Initialising session objects

Themakepool() method has a sixth parameter that allows you to pass the name of an initialisationmethod to the session object in
the form ‘class.method’. The initialisation method needs to have a parameter at position 1 of Object Reference type. This method
is called for each session added to the pool. The Object Reference Parameter will contain a reference to the newly created session
which can be used to initialise the session object. Example:

Do $extobjects.MYSQLDAM.$objects.MYSQLSESS.$makepool('pool1', 5,'192.168.1.25', 'user1', 'mypass', 'NewWindow.$myinit') Returns lPoolRef

Obtaining a Session Instance From a Pool

The $new() method is used to assign a session instance from a pool. For example

Calculate SessObj as $sessionpools.poolone.$new()

If $new() is successful the session instance assigned from the pool belongs to SessObj and is normally returned to the pool when
SessObj is destroyed (for example, if SessObj is a local variable the session is returned to the pool when the method containing
SessObj terminates). Alternatively the session can be manually returned to the pool by assigning some other object or zero to
SessObj. The $newmethod returns NULL if all instances contained in the pool have already been assigned out.

Now you can use the $newstatement() method with the session object to create a statement to execute SQL in the normal way.

Session Pool Notation

The group $sessionpools supports the usual $findname(), $first(), $next() and $makelist() notation. The $remove() method is also
implemented but not $add() since $makepool() is used to create a session pool.

A pool has the $name, $poolsize and $inuse properties. The $poolsize property is the number of instances stored in the pool and
$inuse is the number of these which are currently assigned out. If you increase the value of $poolsize the new session instances
are immediately constructed and if the hostname, username and password parameters were specified at $makepool, they are
also logged on.

You can use poolRef.$poolsize.$assign(poolRef.$poolsize-1) to reduce the pool size, that is, to destroy a session instance in the pool,
providing enough sessions are available to be destroyed. If not, then the pool size is reduced as and when sessions are returned
to the pool. Note that the $poolsize property reflects the actual number of active sessions and not necessarily the number of
sessions required by the user.

An alternative formof the $new()method is poolone.$new(pWaitSeconds)which is designed to beused in clientmethods running
on themulti-threaded server. If there are no sessions currently available in the pool this waits for the specified number of seconds.
Whilst it is waiting other threads are allowed to run and if a session is returned to the pool it will be used by the waiting method.
At the end of the time period NULL is returned if no session has become available. Note that this waiting time period should be
treated as approximate.

274



Destroying a Session Pool

A session pool normally exists for the lifetime of the Omnis process. You can forcibly destroy a session pool using notation, passing
an item reference to the $sessionpools.$remove() method. For example:

Set reference ref to $sessionpools.pool1.$ref()
Do $sessionpools.$remove(ref) Returns #F

Diagnosing Problems

As of Omnis Studio 5.0, the session object provides the $debugfile and $debuglevel properties. These are useful in the event of pro-
gram faults, if you are looking to optimise network traffic or if you are simply curious about how the DAM is executing commands.
It should be noted that when debugging is enabled, there is a noticeable impact on performance. Hence, debugging should be
reserved for application development and technical support issues- in which case use of $debuglevel 4 is recommended.

When $debugfile is set to a valid filename, the DAM starts writing debug information to this file- which is cleared before use. The
file is created if it does not already exist. Debugging continues either until the session object is destructed or until $debugfile is
set to an empty string. For macOS and Linux, a POSIX style path is expected and the user must have permission to write to the
file at the specified location.

It is also possible to assign the value “stderr” to $debugfile. This is useful for macOS and Linux platforms where Omnis is run from
the command prompt. Debug information will be written to the terminal window.

The $debuglevel property determines the level of debugging information that is written to the debug file and supports the fol-
lowing values:

Debug level Description

0 No debugging. The debug file remains open but
debugging output is suspended until $debuglevel is set
to a higher level.

1 Base level debugging. At this level, the DAM base class
writes high level descriptions about the operation of the
DAM; statement prepares, executes, describing of result
sets, fetching, etc. This is the default level of debugging.

2 Detail refinement 1. At this level metadata, property and
method call information are also written including the
SQL text associated with $prepare()s and $execdirect()s.

3 Detail refinement 2. At this level, buffer allocation,
parameter and bind variable values are also written
where possible.

4 Detail refinement 3. At this level, details of parameters
passed to implementation API calls are also written,
provided that the DAM implements this level of
debugging.

5 Causes a time stamp to be prepended on to each debug
entry. The time stamp is accurate to 1/60th second and
reflects the time since the session object logged-on.
Debug lines written before $logon() reflect the system
up-time.

Session and Statement Properties and Methods

Below is a summary of the base methods and properties common to all object DAMs.
For details of DAM specific methods and properties, refer to the chapter on Server Specific Programming.

Session Methods

Method Description

$begin() $begin() explicitly begins a new database transaction.
$clear() $clear() clears all statement objects based in the session and resets the session to its default state.
$coltext $coltext(vVarRef) returns the DBMS specific SQL text corresponding to the data-type of the supplied variable.

275



Method Description

$commit() $commit() explicitly commits the current database transaction.
$createnames() $createnames(vTableDef,[bNullInfo,bPrimaryKeyInfo]) returns a DBMS specific text string consisting of the SQL column names

and types based on the column types of the supplied list or row variable. The optional parameters bNullInfo and bPrimaryKeyInfo
can be used to request additional information about columns where the list has been defined from a schema or file class.

$definelistorrow() $definelistorrow(&vListOrRow,cTableName) defines a list or row from the specified server table. (Studio 8.1.5 and later)
$insertnames() $insertnames(wRowRef) returns a text string consisting the SQL column names and bind variable names corresponding to the

supplied list or row variable.
$logoff() $logoff() disconnects the session from the database.
$logon() $logon(cHostname,cUsername,cPassword[,cSessionName]) connects the session to the DBMS using the supplied parameters,

The optional cSessionName parameter registers the session with $root.$sessions and the SQL Browser utility.
$makeschema() $makeschema(pSchema,cTableName) makes a schema class based on the specified server table name.
$newstatement() $newstatement([cStatementname]) returns an instance to a new statement object. cStatementname is optional.
$newstatementref() $newstatementref([cStatementname]) returns a reference to a new statement object. cStatementname is optional.
$nextnativeerror() $nextnativeerror() retrieves a pending DBMS error code and error message, placing them in $nativeerrorcode and

$nativeerrortext.
$rollback() $rollback() explicitly rolls-back the current database transaction.
$rpcdefine() $rpcdefine(cProcedureName,lParamList) defines the parameter structure for a subsequent call to statement.$rpc(). The definition

and contents of the lParamList parameter are discussed in Calling a Remote Procedure
$selectnames() $selectnames(vTableDef[,cTableName]) returns a text string consisting of comma delimited column names corresponding to

vTableDef. The optional cTableName is pre-pended to the column names if supplied.
$updatenames() $updatenames(wRowRef) returns the text string for a SQL UPDATE clause based on the contents of wRowRef.
$wherenames() $wherenames(wRowRef[,cTableName,cComparison,cOperator]) returns the text string for a SQLWHERE clause based on the

supplied list or row variable. The optional cTableName is pre-pended to the column names if supplied. The cComparison and
cOperator parameters can be used to modify the corresponding parts of the WHERE clause.

Session Properties

Property Description

$allowstransactions kTrue if the session is capable of manual transactions. (Read-only)
$apiversion Version of the database client API that the DAM was built with. (Read-only)
$autobegintran kTrue if the session automatically begins transactions, e.g. each time a transaction is committed/rolled-back. In which case, $begin() should not be used.

(Read-only)
$batchsize The desired batch size used when fetching multiple rows in a single network transaction. Statement objects inherit this value, allowing its use with SQL worker

objects. Default value: 1. (Studio 10.0.1)
$blobsize The maximum size of a binary data item. Default value 10MB. Also used by $createnames() for some DBMSs.
$charmap Determines how character data received from and sent to the DBMS is mapped. For Non-Unicode session objects, this property accepts values of

kSessionCharMapOmnis (the default), kSessionCharMapNative or kSessionCharMapTable.For Unicode session objects, this property governs the character set
assumed for fetched 8-bit data; either kSessionCharMapLatin or kSessionCharMapRoman.

$commitmode Indicates how SQL cursors behave when a session is committed. Either kSessionCommitClose, kSessionCommitDelete or kSessionCommitPreserve. (Read-only)
$damname The DAM name as shown in $root.$components. (Read-only)
$debugfile When set to a valid filename, the DAM starts writing debug information to this file. Debugging continues either until the session object is destructed or until

$debugfile is set to an empty string. For macOS and Linux, a POSIX style path is expected.
$debuglevel Determines the level of debugging information that is written to the $debugfile. 0 specifies no debugging, 4 specifies maximum debugging info.
$defaultdate Used to specify the default date parts to be used when parts of the date are omitted at bind time. The default value for this property is “1 Jan 2000 00:00:00”
$emptydateisnull If set to kTrue, all out-going bound dates with an empty value will be set to NULL.
$encoding Indicates the Unicode encoding used by the client library for bind data and fetched rows. The DAM converts to and from this encoding when exchanging data

with Omnis. (Read-only)
$codepage Set to one of the kUniType… constants found in the Catalog under Unicode types. Default value kUniTypeAnsiLatin1. This property determines the ANSI code

page used to interpret non-Unicode data. $codepage should match the character set of the database so that non-Unicode extended characters are read and
written correctly.

$errorcode Returns the Internal Omnis error code generated by last executed session method. (Read-only)
$errortext Returns the error message generated by the last executed session method. (Read-only)
$fetch64bitints If kTrue (default), 64-bit integers are fetched into 64-bit Integer fields. If kFalse, they are fetched as 32-bit Integers and truncated accordingly. This property

provides backward compatibility with the old-style web client plug-in which does not support 64-bit integers.
$hostname The hostname currently in use by the connection. (read-only)
$lobchunksize The size (in bytes) of a single chunk when inserting large binary data. Default value is 32KB
$lobthreshold The size (in bytes) of a binary data item at or above which chunking will occur. Default value is 32KB
$maptable The path to the character map files to use when $charmap is assigned kSessionCharMapTable. The filename is specified without either the “.in” or “.out” suffix.
$nativeerrorcode The error code generated by the DBMS or DBMS clientware in response to the last executed session method. (Read-only)
$nativeerrorpending kTrue indicates that a further native error code and error text are available. See session.$nextnativeerror().(Read-only)
$nativeerrortext The error message generated by the DBMS or DBMS clientware in response to the last executed session method. (Read-only)

276



Property Description

$password The password currently in use by the connection. (Read-only)
$quotedidentifier If kTrue, table and column name identifiers returned from the $createnames(), $insertnames(), $updatenames(), $selectnames() and $wherenames() methods

will be quoted “thus”, facilitating case-sensitive names and names containing spaces. Affects table instance methods as well as session object methods. (Studio
5.2 and later)

$rollbackmode Indicates how SQL cursors behave when a session is rolled-back. Either kSessionRollbackClose, kSessionRollbackDelete or kSessionRollbackPreserve.
(Read-only)

$sqldecimalseperator The character that the DBMS uses to represent the decimal separator when storing numeric values, usually ‘.’
$sqlstripspaces If kTrue, trailing blank characters are stripped from character data returned from the DBMS.
$sqlthousandsseperator The character that the DBMS uses to represent the thousands separator when storing numeric values, usually ‘,’
$state Indicates the current state of the session object’s connection. Either kSessionStateLoggedOff or kSessionStateLoggedOn. (Read-only)
$transactionmode Used to set the transaction mode. Can be one of kSessionTranAutomatic (the default), kSessionTranManual or kSessionTranServer.
$unicode Used to enable/disable 8-bit compatibility mode.If kTrue (the default), all character data is exchanged with the client as Unicode. If kFalse, the behaviour of a

non-Unicode DAM is adopted.
$username The username currently in use by the connection. (Read-only)
$validateutf8 If kTrue and the $encoding is kSessionEncodingUtf8 and $unicode is kTrue, fetched UTF-8 data is validated and treated as non-Unicode data on failure.See also;

$charmap. Not implemented by all DAMs.
$version Once a session has been established this is the version of the database the object is connected to. This defaults after a $logoff(). (Read-only)

Statement Methods

Method Description

$clear() $clear() clears pending results and resets the statement.
$columns() $columns(cTableName[,iFlags]) generates a result set describing the columns of the specified table. An optional flags

parameter can be specified to generate column lengths for Number, Integer and Date columns. Values to be ORed
together can be found in the catalog under Statement Flags.

$execdirect() $execdirect([cSqlText]) directly executes the specified SQL text or executes the contents of the Statement buffer if
cSqlText is omitted.

$execute() $execute() executes previously prepared SQL text.
$fetch() $fetch([lListOrRow,iRowCount,bAppend]) fetches the specified number of rows from the result set into the supplied list

variable. If iRowCount is omitted, a single row is fetched. If bAppend is kFalse or omitted, the list or row contents are
cleared prior to the fetch.

$fetchinto() $fetchinto(vParam1…vParamN) fetches one row of the result set and stores each column in the supplied variables, one
variable for each column.

$fetchtofile() $fetchtofile(cFileName[,iRowCount,bAppend,bColumnNames]) fetches the specified number of rows from the result
set and stores them in the specified file. iRowCount, bAppend and bColumnNames parameters are optional.

$indexes() $indexes(cTableName[,iIndexType]) generates a result set providing information on the indexes of the specified table.
The optional iIndexType can be one of kStatementIndexUnique (default), kStatementIndexNonUnique or
kStatementIndexAll.

$nextnativeerror() $nextnativeerror() retrieves a pending DBMS error code and error message for the statement object, placing them in
$nativeerrorcode and $nativeerrortext.

$prepare() $prepare([cSqlText]) prepares the supplied SQL text ready for subsequent execution. If omitted, the contents of the
statement buffer are prepared instead.

$results() $results(lListOrRow) populates the supplied list variable with a description of the columns contained in the current
result set.

$rpc() $rpc(cRpcName,vParam1…vParamN) calls the specified remote procedure. Any supplied parameters are passed to the
procedure call.

$rpcparameters() $rpcparameters(cRpcName) generates a result set describing the parameters used by the specified remote procedure.
$rpcprocedures() $rpcprocedures([cOwnerName]) generates a result set containing the names of remote procedures callable by the

specified user. If omitted, all procedure names are returned.
$tables() $tables([iTableType,cTableOwner]) generates a result set containing the names of tables accessible by the specified user.

If cTableOwner is omitted all tables are returned. iTableType can be one of kStatementServerTable,
kStatementServerView or kStatementServerAll (the default).

Statement Properties

Property Description

$batchsize The number of simultaneous rows to be retrieved for a single network transaction. Defaults to 1* but accepts any long integer
value. Not implemented by all DBMSs, in which case this property will be read-only.(*In Studio 10.0.1, $batchsize is inherited
from sessionObject.$batchsize).

277



Property Description

$effectivebatchsize Reflects the maximum attainable batchsize for the current statement. Will be less than $batchsize if memory for the desired
batch size cannot be accommodated. (equivalent to $maxbuffersize / largest-column-size) (Read-only)

$columncount The number of columns contained in the current result set. (Read-only)
$columndelimiter The character used to delimit column values when fetching data using $fetchtofile(). Defaults to kTab but accepts any single

character value. Non-printable characters should be assigned using the chr() function.
$errorcode The Omnis internal error code generated by the last statement method. (Read-only)
$errortext The error message generated by the last statement method. (Read-only)
$maxbuffersize Used in conjunction with $batchsize. Sets the maximum buffer size used to store an array of column values when batch

fetching. Defaults to 32KB but accepts any value larger than 255. Not implemented by all DBMSs, in which case this property
will be read-only.

$maxresultsetsize Designed to prevent Omnis from running-out of memory during $fetch() operations, this property limits the size of a result set
to the specified value. The default value is 100MB

$nativeerrorcode Error code generated by the last statement method. (Read-only)
$nativeerrorpending Indicates that a further error message is available. Use $nextnativeerror() to retrieve. (Read-only)
$nativeerrortext Error message generated by the last statement method. (Read-only)
$resultspending Indicates that the last statement method generated some results or that there is another result set pending. (Read-only)
$rowcount The number of rows in the current result set. If a particular session object cannot determine this value, this property returns –1.

(Read-only)
$rowdelimiter The character used to delimit row values when fetching data using $fetchtofile(). Defaults to kCr but accepts any single

character value. Non-printable characters should be assigned using the chr() function.
$rowsaffected The number of rows affected by the last executed statement; usually an INSERT, UPDATE or DELETE statement. If a particular

session object cannot determine this value, this property returns –1. (Read-only)
$rowsfetched The number of rows retrieved by the last fetch method to be executed. (Read-only)
$rpcreturnvalue The return value of the most recently executed call to $rpc().(Read-only)
$state A constant value indicating the current state of the statement object. (Read-only)
$statementname The name which was assigned to the statement object during creation. (Read-only)
$sqlstripspaces Denotes that fetched character data should have trailing spaces stripped.
$sqltext The DBMS representation of the last SQL statement submitted to $prepare() or $execdirect(). (Read-only)
$usecursor Denotes that this statement object should be associated with a SQL cursor.

SQL Multi-tasking and SQL Workers

You can execute long-running tasks such as a SELECT statement on a separate background thread that reports back to the main
thread as each task completes. To enable this functionality, the Omnis DAMs allow the creation of “SQL Workers” which are
instantiated from a SQLWorker Object variable type available in the PostgreSQL, SQLite, DB2, Sybase, Oracle, MySQL, and ODBC
DAMs (subject to your version of Omnis Studio).

SQLWorker object completionmethods allow list fields and other formdata to bepopulated asynchronously,making applications
more responsive and potentially faster where multiple SQL Workers are used simultaneously. There is an example library in the
Hub (availablewhen you start Omnis Studio) showing how you can use the SQLWorker Objects: the example connects to a SQLite
database and runs multiple queries, some with bind variables, running at the same time.

Overview

The SQLWorker Objects support three primary methods:

• $init()
Initialises or resets a worker object ready to perform its task

• $start()
Starts the worker task on a background thread (non-blocking); can be called multiple times to run different threads simul-
taneously

• $cancel()
Aborts a worker task running on a background thread

There are additional properties to allow a running task to be discarded in place of a new task and to cancel such tasks as they
become “orphaned”. There is also a property to report the state of a worker object’s running background thread.

Worker objects are created by sub-classing an Omnis Object class with the appropriate SQLWorker Object type. You initialise the
object by supplying a SQL statement along with any bind variables that the SQL statementmay need. Logon details or optionally
the name of a session pool are also passed during initialisation.

278



A SQL Worker thread is dispatched by calling $start(). Upon completion, the worker thread calls back into the worker object’s
$completed() method, or $cancelled(), with the result set or error information.

SQL Worker Object Methods

Method Description

$init() $init(ParamRow). Initialises or resets a worker object ready to perform a unit of work.*
$start() Starts the worker task running on a background thread (non-blocking).*
$run() Starts the worker task running on the caller thread (blocks until complete). Intended for testing purposes.*
$cancel() Aborts a worker task running on a background thread.*
$sessionref() $sessionref(ObjectRef). Returns a reference to the session object being used by the underlying background thread.*
$completed() Called by the background thread upon completion of its work.
$cancelled() Called by the background thread if the running background task was cancelled.

*Returns kTrue on successful execution, kFalse otherwise.

SQL Worker Object Properties

Property Description

$cancelifrunning If kFalse (the default), orphaned background tasks run to completion. If kTrue, they are instructed
to cancel before being detached.

$waitforcomplete If kTrue (the default), the Interface Object waits for completion of a running background task
before the object can be used again. If kFalse, the running task is detached and a new
background thread takes its place.

$state Returns the current state of the underlying background task; either kWorkerStateCancelled,
kWorkerStateClear, kWorkerStateComplete, kWorkerStateInit or kWorkerStateRunning.

$errorcode On failure of a command function, contains the error code.
$errortext On failure of a command function, contains the error message.
$threadcount Reports the number of active threads spawned by the worker object, including detached threads.

Creating SQL Worker Objects

Worker objects are created by sub-classing anOmnis object class as aWorker Object. For example, using the Select Object dialog,
assigning a $superclass for use with an Oracle connection results in: .ORACLEDAM.Worker Objects\OracleWorker.

Figure 129:

Note that some objects may not appear in the Select Object dialog depending on your version of Omnis Studio.

To access worker functionality from your code, you then create one or more object instance variables of subtype <your-object >.

279



Worker Object Initialization

A worker object must be initialised on the caller thread before it can run. You initialise the object by supplying a SQL statement
along with any bind variables that the SQL statement may require. Logon details, or optionally the name of a session pool, are
also passed during initialisation.

The initialisation parameters are supplied to the $init() method via a row containing attribute values. Attribute names appear in
the column headings. The attribute names recognised by the Worker Object are as follows (case-insensitive):

Attribute name Attribute value

session A session object or object reference. The session must be
logged-on and in a useable state.

poolname The name of an existing session pool. The worker will take a
session object from this pool, returning it upon completion.

hostname The hostname/IP address of the database server.
database The database name to use for a logon.
username The username to use for a logon.
password The password to use for a logon.
query The SQL statement to be executed by the worker object.
bindvars A list containing bind variable values. Bind variables are matched

by name. If the list contains multiple rows, the query is
re-executed for each row.

work A list containing multiple SQL queries and associated bind
variables. If specified in place of query and bindvars, allows the
worker object to execute multiple SQL statements and return any
result sets associated with each query.

If the session attribute is supplied, the other logon attributes, i.e. hostname, database, username & password are ignored, since it
is assumed that the session object is already in a useable state.

Please Note: In this mode, the session should be considered reserved for use exclusively by the worker. If the main application
attempts to share a session object being used by a worker running on another thread, the results are undefined.

The logon parameters are also ignored if the poolname attribute is supplied. In thismode, theworker attempts to obtain a session
from the named session pool, releasing it when theworker task completes. (If both session and poolname are supplied, poolname
is ignored.)

Where neither, session or poolname are supplied, an internal session object is created dynamically. Valid logon credentials should
be supplied via hostname, username and password. Although read during the call to $init(), the worker will not attempt to logon
until the $run() or $start() method is called. In this mode, the session is automatically logged-off when the worker task completes
(or is cancelled). Should you need to modify one or more session attributes before calling $run() or $start(), it is possible to obtain
a reference to the session object by calling the worker object’s $sessionref() method, for example:

Do iWorkerObj.$sessionref(lObjRef) Returns #F
Do lObjRef.$port.$assign(5435)

The SQL text supplied via the query attribute may contain any SQL statement but ideally, should be a statement that normally
takes an appreciable amount of time to execute, for example; a SELECT, UPDATE or DELETE statement. The query text may also
contain one or more bind variables, specified using standard @[…] notation.

Bind variable values are supplied via a separate bindvars parameter. The supplied list is stored during $init() and read when the
worker task starts. Where the list containsmultiple rows, the worker re-executes the supplied SQL statement for each row of bind
variables. Bind variable place holders in the query must reference columns by name within the bindvars list.

Running the Worker Object

The $start() method causes the worker task to run on a background thread. Thus, return from $start() is immediate and themain
application is free to continue processing. For example, the iWorkerObj var has been created from the oPostgreSQLWorker class:

Figure 130:

280



# iWorkerObj is an instance of an Object class
Calculate Params as row(iSQLText,'192.168. 0.10',iUser,iPassword,iDBName)

Do Params.$redefine(query,hostname,username,password,dat)
Do iWorkerObj.$init(Params)

Do iWorkerObj.$start() Returns #F

The $run() method is analogous to $start() but provided for debugging and testing purposes only. In this mode, the benefit of
the worker object is negated owing to the fact that the worker will run on the same thread as the caller, thus blocking the caller
thread until the worker task is complete.

Once initialised, a worker object may be run repeatedly if desired provided that the supplied session object remains useable, the
session pool has one or more free sessions or that the logon credentials remain valid. Any bind variables supplied will be re-used
each time the worker is run.

If an error occurs during $init(), $start() or $run(), an errormessage is returned via the object’s $errorcode and $errortext properties.

Processing Worker Results

When complete, the worker task causes the main thread to jump into one of the worker object’s callbackmethods:

• $completed()
This method is called with a row parameter defined with two columns: Results: a three-column list containing zero ormore
SQL result sets (lists) together with their associated QueryNum and BindRow where appropriate. Errors: a four-column list
containing ErrorCode, ErrorMsg, NativeErrorCode and NativeErrorMsg values.

• $cancelled()
This method is called (without parameters) if the user calls $cancel() on the worker object whilst it is running. When can-
celled, any pending results are discarded.

A library may contain multiple worker objects of a given type. Each may be assigned a separate unit of work (SQL query) and
each may be started asynchronously. It is the responsibility of the completion method in each worker object to process its result
information and make this available to the main application as/when it becomes available. For example, here is a $completed()
method:

Calculate List as pRow.Results.1.1 ##extract the first result set
Calculate Errors as pRow.Errors ##extract list containing error info
If Errors.$linecount()>0
Do method reportError(Errors)

Else
Do method updateWindow(List) ## see comment below

End If

Calculate iThreadCount as $cinst.$threadCount ##shows how many threads are running

If the results returned by $completed() are to be displayed in a window or a remote form in the JavaScript Client, you will have
to explicitly redraw the window instance, or in the case of a web form the remote client must contact the server to get updated
automatically.

Executing Multiple SQL Statements

If theworker object is initialisedwith awork parameter in place of thequery andbindvarsparameters then a list of SQL statements
will be executed and the worker’s $completed() methodwill be called once all statements have been executed and any result sets
have been generated. The work parameter is a list defined with two columns;

• query – a character column containing the SQL statement plus any required bind variable place holders

• bindvars – a list containing one or more rows. Bind variable place holders in the query must reference columns by name
within the bindvars list

Example

281



Do work.$definefromsqlclass('scWork') ## scWork is defined as query(char) and bindvars(list)
Do work.$add('select * from table1 where col1 < @[binds1.col1]',binds1)
Do work.$add('select count(*) from table1',)
Do work.$add('select * from table2 where idCol >= @[binds2.idCol]',binds2)

Do work.$add('select oneCol from table3',)
Do initRow.$definefromsqlclass('scWorkInit') ## scWorkInit is defined as hostname(char), username(char), password(char) & work(list)

Do initRow.$add(lHostname,lUsername,lPassword,work)
Do iWorker.$init(initRow) Returns #F

Do iWorker.$start() Returns #F

Note that when the worker object’s $completed() method is called, the user is responsible for associating each result set with its
originating SQL query, e.g.

Calculate ResultInfo as pResults.Results.1
Calculate Result1 as ResultInfo.Result

Manual Transaction Mode

If the session object passed to the worker is placed in manual transaction mode (kSessionTranManual), then all SQL statements
executed by the worker object are executed as a single transaction which will either be committed on completion of the last
statement, or rolled-back if one of the statements returns an error.
To use manual transaction mode, the worker object should be supplied with a pre-initialised session object, using the poolname
or session parameters.
Manual transaction mode has no effect for SELECT statements, although if specified as part of awork list, the SELECT will not be
executed if an error occurs in one of the preceding statements.

Worker State

The current state of a SQLWorker object may be interrogated by inspecting the object’s $state property. This will return either:

• kWorkerStateCancelled – The worker has been cancelled.

• kWorkerStateClear – The worker is in a pre-initialised state.

• kWorkerStateComplete – The worker has completed.

• kWorkerStateInit – The worker has been initialised.

• kWorkerStateRunning – The worker is currently running.

For example:

If iWorkerObj.$state=kWorkerStateRunning & iWorkerObj.$waitforcomplete=kTrue
Calculate iMesg as 'Still running (waiting for completion)'
Quit method

End If

How SQL Worker Objects work

A worker object may be thought of as two sub-objects:

• Interface Object
This takes the form of a standard Omnis non-visual object and provides the methods and properties described above

• Background Object
Normally created/executed on a separate thread, the Background Object performs the actual work of the worker object,
calling back to the Interface Object upon completion.

Behind eachWorker Object, there is hidden Background Object.

282



Figure 131:

Detaching Worker Processes

When instructed to $start(), the Background Object completes its work before calling back to the Interface Object’s $completed()
or $cancelled() method. For $run(), $completed() is always called since the worker object blocks- preventing cancellation.

A detached Background Object. The Interface Object may have gone out-of-scope
or may now point to a new Background Object.

For $start() however, the Interface Object may legitimately go out-of-scope or otherwise get destructed before the background
thread completes. In this situation, the background thread has no object and hence no $completed()/$cancelled() method to call
back to. Any results or error information will therefore be discarded.

Discarding Running Processes

In the case where the Interface Object remains in scope, it is possible to call $init() and $start() whilst the worker object is still
running a previous task. In this case, the $waitforcomplete property determines whether the running process should be allowed
to run to completion and call back to the Interface Object to signal completion.

If $waitforcomplete is kFalse, the running process is detached from the Interface Object as if the Interface Object were about to
go out-of-scope. In this case however, a new Background Object is created which is then initialised and used to execute the new
worker process, and potentially call back to the Interface Object when complete.

If $waitforcomplete is kTrue,WorkerMain returns an error to the InterfaceObject if an attempt ismade to re-use theworker object
while the Background Object is still running. In this case, the worker object cannot be re-used until $completed()/$cancelled()
has been called and the $state changes to indicate completion.

Aworker object with its $waitforcomplete property set to kFalse, effectively becomes a “fire and forget” worker object, for example
allowinga successionof INSERT,UPDATEorDELETE statements tobe continuously dispatched to separate threadsusing the same
worker object.

Cancelling Detached Processes

By default, orphaned background threads are allowed to run to completion. When aworker process becomes orphaned itmay be
preferable to issue a cancel request to theworker, especially where itmay be processing a SELECT statement- forwhich the results
will not be retrievable once detached from the Interface Object. This is achieved by setting $cancelifrunning to kTrue before the
worker object gets re-used or destructed.

If $cancelifrunning is set to kFalse (the default), orphaned worker threads run to completion before discarding their results and
exiting.

283



Alternative Completion Model

From Studio 8.0.2 Worker Objects support an alternative completion model. The $completed and $cancelled methods can op-
tionally be sent directly to another instance. This means you do not need to sub-class the worker object, in order to receive its
results. We would recommend that you use object references rather than objects for this technique.

Use of $callbackinst allows callbacks to be sent to another class instance.

In order to use this new functionality, there is a new property of worker object instances, called $callbackinst. If you do not use
this new property, behavior is unchanged from Studio 8.0.1 and earlier.

For example, if iWorker is a SQLWorker Object (an instance variable in a window class), then within the window instance you can
execute:

iWorker.$callbackinst.$assign($cinst)

You need to implement $completed and $cancelled in the window class methods. The parameters are as follows:

• $completed(row,object)
where row is a parameter of type Row, same definition as that passed to $completed in the sub-classed object when not
using $callbackinst.
object is a parameter of type Object reference (when the worker object is an object reference) or Item reference (when the
worker object is an object). object is the worker object for which $completed is being called.

• $cancelled(object)
where object is the same as for $completed

Additional Notifications

The SQL Worker Objects supplied with Studio 8.1 and later support an interim ‘$progress’ method to be called whilst the worker
is running. If implemented in the $callbackinst;

• $progress(row)
will be called with a row parameter containing a single column; ‘Progress’ calculated as a percentage of the total number
of SQL queries that will be executed.

Where a work-list/query and bindvar combination is supplied, the total number of queries is calculated by adding the number of
times each query will be executed. The received parameter value is suitable for direct assignment to a progress bar component,
for example:

On evClick
…
Do iWorker.$callbackinst.$assign($cinst)
Do iWorker.$init(lParams) Returns #F

Do iWorker.$start() Returns #F

284



This code appears in the window instance’s $progress method

Do $cwind.$objs.progress.$val.$assign(pRow.Progress)

The ‘worker’ sample component supplied with the External Component SDK Component SDK also demonstrates this functional-
ity.

SQL Worker Lists

You can define a list or row variable from a SQL class (query, schema or table class), and associate a SQL Session Object with
the variable in order to perform various SQL operations on the list, e.g. populate the list from the database, insert a row into the
database.

Alternatively, you can specify that the SQL list or rowwill use a SQLWorker Object of the sameDAM type as the SQL SessionObject
to performSQLoperations asynchronously (or synchronously, if preferred). Because the SQLWorker can run asynchronously, there
are some differences in the way that you can use a table class from which the list or row is defined, compared to the way you use
the table class with a SQL session object. To be specific, there is less scope to override SQLmethods using the table class because
of the need to execute the worker in a separate self-contained thread.

Using a Worker in a SQL List or Row

$useworker and $synchronous

If youwant to use aworker objectwith your SQL list or row, youneed to assign the property, $useworker to kTrue. $useworkermust
be assigned after assigning $sessionobject, and once you have assigned $useworker, you can no longer assign $sessionobject, or
access $statementobject (the latter is destroyed if present when $useworker is assigned). $useworker cannot be assigned to
kFalse.

In addition, there is the property $synchronous: if true, and $useworker is true, the worker object for the schema or table instance
executes synchronously in the current thread rather than asynchronously in a separate thread. $synchronous defaults to false
(meaning use another thread).

In addition, Omnis does not expose the worker properties $waitforcomplete and $cancelifrunning.

$waitforcomplete will always be kTrue, to make sure the application is notified of the success or failure of an operation, and $can-
celifrunning is not relevant - the table will not invoke a new request until the previous request has completed - requests are
queued by the table instance while the worker is busy processing a request.

Selecting & Fetching Data

Non-worker SQL lists and rows can operate in a synchronousmanner. So $select() can be used to generate a result set, and $fetch()
can be called multiple times to retrieve the result set.

SQLWorker based lists and rows cannot run in this simple synchronousmanner, because the result set is generated by theworker
in a separate thread. Therefore, worker SQL lists and rows have a newmethod, $selectfetch that performs both the select and the
fetch of the data. It has the following definition:

• $selectfetch()
$selectfetch([bDistinct=kFalse, iMaxRows=1, bAppend=kTrue, cText,…])

Note that $selectfetch() cannot be used with a row variable defined from a SQL class, so if you want to fetch data using a worker
you must define a list from the SQL class.

Note also that you cannot override $selectfetch() in a table class. The parameters are as follows:

• bDistinct
Pass this as kTrue to make the worker use a SELECT DISTINCT query rather than SELECT.

• iMaxRows
The maximum number of rows to fetch. Must be between 1 and 10000000 inclusive.

• bAppend
Pass this as kTrue to append the fetched data to the list, kFalse to replace the list contents with the fetched data.

• cText,…
Any further parameters are treated as SQL text and appended to the generated SELECT or SELECT DISTINCT query.

Any errors that are detected before invoking the worker object, result in a call to $sqlerror in the table instance.

After fetching the data, the worker generates a notification to $completed in the table instance.

285

https://www.omnis.net/developers/resources/download/tools/buildyourown.jsp


Inserts, Updates and Deletes

When using a worker, you cannot override $insert, $update or $delete in a table class.

When you execute thesemethods via a worker, the table instance copies the current values of the affected row (rows for $update)
into the parameter list for the worker, and then starts the worker.

Any errors that are detected before invoking the worker object, result in a call to $sqlerror in the table instance.

On completion, the worker generates a notification to $completed in the table instance.

Smart List Methods

When using aworker, you cannot override $dowork, $doinserts, $doupdates, $dodeletes, $doinsert, $doupdate or $dodelete. Also,
you cannot call $doinsert, $doupdate or $dodelete.

When you call $dowork, $doinserts, $doupdates or $dodeletes, the table instance generates a single query for each of the relevant
operations insert, update and delete. The instance then copies bind variable values into a list, for each set of rows to be inserted,
updated or deleted. Finally, the table instance starts the worker with the copied data as its parameters. When the worker com-
pletes, the worker generates a notification to $completed, that identifies any rows for which an error occurred, with information
about the error.

Note that as soon as you call $dowork, $doinserts, $doupdates or $dodeletes, the smart list updates just before starting theworker

Any errors that are detected before invoking the worker object, result in a call to $sqlerror in the table instance.

Completion Row

The table instance properties $rowsaffected and $rowsfetched are not relevant when using a worker.

$completed in the table instance is passed a row variable parameter with columns as follows:

• errorcode
An error code. Zeromeans the worker was successfully passed the query and bind variables. Note that the query or queries
may still have failed - see the errors column.

• errortext
Error text describing the errorcode.

• work
The list of queries and bind variables that were passed to the worker. This has the usual structure for SQL workers - two
columns, query and bindvars.

• errors
If errorcode is zero, this is a list of queries that generated a SQL error of some sort. This has the same structure as the Errors
column generated by a SQL worker in the worker completion row.

• rowsFetched
If a call to $selectfetch successfully fetched some rows, this is the number of rows fetched.

Chapter 8—SQL Classes and Notation

Omnis has three SQL classes that provide the interface to your server database: they are the Schema class, Query class, and Table
class.

Schema and Query classes map the structure of your server database; they do not contain methods, and you cannot create
instances of schema or query classes. You can however use a schema or query class as the definition for an Omnis list using
the $definefromsqlclass() method, which lets you process your server data using the SQL methods against your list; or when you
declare a list or row variable, you can set its subtype to a schema or query class. When you create a list based on a schema or
query class a table instance is created which contains the default SQL methods.

Table classes provide the interface to the data modeled by a Schema or Query class, and exist primarily to allow you to override
the default methods in the table instance. Like schema and query classes, you can use a table class as the definition for an Omnis
list and use the same SQL methods against your list.

The SQL list methods and notation are described in this chapter.

286



Schema Classes

A schema classmaps the structure or data dictionary of a server table or view within your library. A schema class contains the
name of the server table or view, a list of column names and data types, and some additional information about each column. The
data types are the equivalent Omnis data types, and the names must conform to the conventions used by the particular server.
Schema classes do not contain methods, and you cannot create instances of a schema class. You can define a list based on a
schema class using the Define list from SQL class command or the $definefromsqlclass() method, or a schema can be used as
the subtype of a list variable. You can create a schema class using the New Class>>Schema option in the Studio Browser.

Schema Class Notation

Each library has a $schemas group containing all the schema classes in the library. A schema class has the type kSchema.

In addition to the standard class properties, such as $moddate and $createdate, a schema class has the following properties

• $objs
the group of columns in the schema class

• $servertablename
the name of the server table or view to which the schema corresponds

The $objs group containing the columns in the schema class supports the group methods including $first(), $add(), $addafter(),
$addbefore(), and $remove(). The $add… methods require the following parameters

-. Name
the name of the column

• Type
constant representing the Omnis data type of the column

• Subtype
constant representing the data subtype of the column

• Description (optional)
a text string describing the column

• Primary-key (optional)
a boolean set to kTrue if this column is a primary key. If omitted it defaults to kFalse

• Maximum-Length (optional)
for character and national columns, the maximum length; for other types, Omnis ignores the value of this parameter. If
omitted for character and national columns, it defaults to 10000000.

• No-nulls (optional)
a boolean set to kTrue if this column cannot have NULL values. If omitted it defaults to kFalse

You can identify a particular column in the $objs group using its column name, order, or ident, a unique number within the scope
of the schema class assigned to the column when you add it. A schema column has the following properties (all are assignable
except $ident)

• $name
the name of the column

• $coltype
the Omnis data type of the column

• $colsubtype
the Omnis subtype for the data type of the column

• $colsublen
the maximum length for Character and National columns

• $desc
a text string describing the column

• $primarykey
if kTrue the column is a primary key

287



• $nonull
if kTrue the column does not allow null values

• $order
the position of the column in the list of columns in the schema class

• $ident
a unique number within the scope of the schema class, identifying the column

List/Row Subtypes

A schema class (or a query or table class) can be used as the subtype of a list or row variable, that is, a class, instance, local, task or
parameter variable, or a column in a list or row defined from a SQL class.

Schema classes have a property $createinstancewhensubtype that controls whether or not there is a table instance associated
with a List or Row variable with a schema class as its subtype. You can set this property in the Property Manager when editing the
schema class: it defaults to kTrue for existing and newly created schema classes.

Making a Schema from a Server Table

You can make a schema class that matches the columns in a database table automatically using the $makeschema() session
method:

Do SessObj.$makeschema(pSchema,pTableName) Returns #F

The parameter pSchema is a reference to an existing schema class that will be overwritten with the definition from the server
table pTableName using the current Omnis session.

Query Classes

Query classes let you combine one or more schema classes or individual columns from one or more schemas, to give you an
application view of your server database. A query class contains references to schema classes or individual schema columns. Like
schema classes, query classes do not contain methods, and you cannot create instances of a query class. You can define a list
based on a query class using the Define list from SQL class command or the $definefromsqlclass() method, or a query class can
be used as the subtype of a list variable.

You can create a query class using the New Class>>Query option in the Studio Browser. The Catalog pops up when you open the
query class editor, which lets you double-click on schema class or columnnames to enter them into the query editor. Alternatively,
you can drag schema class or column names into the query editor. Furthermore, you can reorder columns by dragging and
dropping in the fixed left column of the query editor, and you can drag columns from one query class onto another. You can also
drag a column from the schema editor to the query editor.

You can drag from the query list, the schema editor, and the Catalog, and drop onto the extra query text field labeled ‘Text ap-
pended to queries’. Dragging a query column from the right-hand list of the catalog query tab inserts a bind variable reference
in the form@[$cinst.name].

The column entries have a context menu, which allows you to delete a column, and to open the schema editor for the schema
containing the column.

The additional query text edit field has a context menu which allows you to insert text commonly used in SQL queries.

The query class editor does not validate schema class or columnnames, nor doesOmnis automatically update query classeswhen
you edit a schema class. You need to update your SQL classes manually using the Find and Replace tool.

The alias allows you to eliminate duplicate column names when defining a list from the query class. By default, each list column
name is the same as the schema columnname. You can override this with the alias. If the column name is empty, meaning use all
columns in the schema, Omnis inserts the alias at the start of each column name in the schema, to create the list column name;
otherwise, Omnis uses a non-empty alias as the list column name.

Calculated Columns

Query classes can also contain calculated columns. A calculated column is an entry in a query class which has:

• A schema name, which determines the table to be used in the SQL statement.

288



• A column name. This is the calculation. Omnis treats a column name as a calculation if it contains at least one open
parenthesis and one close parenthesis. This rule helps to distinguish a calculated column from a badly named schema
column. Omnis performs no validation on the calculation, and it simply inserts it into queries generated by $select or
$selectdistinct, and into the result of $selectnames.

• An alias, used as the list column name.

A calculated column is represented, in the list or row variable defined from a SQL class, as a character column ofmaximum length.
If you include strings in the form “<schema name>.” or “<library>.<schema name>.” in the calculation, then Omnis replaces them
with “<server table name>.” when it adds the calculation to a query. The “<server table name>” comes from the schema class.

Query Class Notation

Each library has the group $queries containing all the query classes in the library. A query class has the type kQuery.

A query class has the standard properties of a class together with $extraquerytext, a text string which in some cases Omnis
appends to automatically generated SQL, and for example may contain a where clause. The extra query text string can be empty.
Before Omnis adds $extraquerytext to a SQL query, it replaces strings in the form “<schema name>. “and “<library>.<schema
name>. “ with “<server table name>.”. The “<server table name>” comes from the schema class. This allows you to design query
classes which are independent of the table names actually used on the server, since the only place storing the table name is the
schema.

A query class has a $objs group containing a list of references to schema columns, or schema classes. $objs supports the same
groupmethods as $objs for the schema class, with the exception of $findname. The $add…methods require the following param-
eters:

• Schema name
the name of the schema, which can be qualified by a library name

• Column name (optional)
the name of the column in the schema

• Alias (optional)
the alias used to eliminate duplicate list column names

• $schema
the name of the schema, which can be qualified by a library name

• $colname
the name of the column in the schema; if empty, all columns from the schema class specified in the $schema property are
included

• $alias
lets you eliminate duplicate column names from a list defined from a query or a table class referencing the query; if $col-
name is empty, this is a prefix which Omnis inserts at the start of each column name in the schema named in $schema;
otherwise, Omnis uses a non-empty alias in the place of the column name

• $order
the position of the object in the class

• $ident
a unique numeric identifier for the object

A list defined from a query class using the $definefromsqlclass() method has columns which correspond to the objects in the
query class. The order of the columns in the list corresponds to the order of the columns in the query class. When an object
includes a complete schema, the columns have the order of the columns in the schema class. You can eliminate duplicate list
column names using the $alias property.

Queries Tab in the Catalog

The Catalog has a queries tab which lists the query classes in the current library. For each query class, the right hand list shows
the list column names which would result from defining a list from the query class.

Creating Server Tables from Schema or Query Classes

You can create a table or view in your server database by dragging a schema or query class from your library in the Studio Browser
and dropping it onto an open session in the SQL Browser.

To create a server table or view from a schema or query class

289



• Create the schema or query class in the Studio Browser

• Define the columns in the schema or query class

• Use the SQL Browser to open the SQL session for your database

• Drag the schema or query class from your library and drop it on to your Session

If you drag a schema class onto an open session, Omnis creates a SQL table with the table name defined in your schema class. If
you drag a query class, Omnis creates a SQL view with the name of the query class.

Table Classes

An instance of a table class provides the interface to the datamodeled by a schema or query class. You only need to create a table
class if you wish to override some of the default processing provided by the built-in table instance methods.

You can create a table class using the New Class>>Table option in the Studio Browser. You can edit the methods for a table class
or add your own custommethods in the method editor.

Table Class Notation

Each library has a $tables group containing all the table classes in your library. A table class has all the basic properties of a class
plus $sqlclassname, which holds the name of the schema or query class associated with the table class. To create a table class
using a method, you can use the $add() method.

Do $clib.$tables.$add('MyTable') Returns TabRef # returns a reference to the new table
Do TabRef.$sqlclassname.$assign('AgentSchema') Returns MyFlag

Table Instances

You create a table instance in Omnis when you define a list or row variable from a schema, query, or table class, using the Define
list from SQL class command, or the $definefromsqlclass() method. Table instances created from schema or query classes have
all the default methods of a table instance. Table instances created from a table class have all the default methods of the table
class in addition to any custommethods you have added, perhaps to override the default methods.

When you use Define list from SQL class or $definefromsqlclass(), Omnis defines your list to have either one column for each col-
umn in the schema class, or one column for each column referenced by the query class (which can contain a subset of columns
from a schema class). In the case where you use a table class, Omnis uses the $sqlclassname property of the table class to deter-
mine the schema or query from which to define the list. You can pass the query/schema/table class as either an item reference
to the class, or as the name of the class, in the form [library.]class, where the library defaults to the current library if omitted.

A list variable defined in this way has all of the methods and properties of a normal list variable, together with all of the methods
and properties of the table instance. You never access the table instance directly; you can think of it as being contained in the list
variable.

For example, if you want to display a grid containing your data in a SQL form you can use the following code in the $construct()
method of the form to create a list based on a schema class

# Declare instance variable iv_SQLData of type List
Do iv_SQLData.$definefromsqlclass('SCHEMACLASSNAME')
Do iv_SQLData.$sessionobject.$assign(iSessionObj)
Do iv_SQLData.$select()
Do iv_SQLData.$fetch(1000) ## Fetch up to 1000 rows

Once you have defined and built your list you can use the table instance methods to manipulate the data. Equally you could
declare a row variable, define it from a table, schema or query class, and manipulate your data on a row-by-row basis using many
of the samemethods.

The Define list from SQL class command and $definefromsqlclass() method both reset the $linemax property of the list to its
largest possible value.

If you pass a schema class, or a table class that references a schema class, then the list is defined to have all columns in the schema,
unless you pass an explicit list of columns to use from the schema, such as:

Do iv_SQLData.$definefromsqlclass(query / schema / table class [,cCol1,cCol2,...])

290



Passing Parameters to a Table instance

You can pass construction parameters to the $construct() method of the table instance by adding a list of parameters after the
list of columns in your list definition method, as follows:

Do iv_SQLData.$definefromsqlclass(query/schema/table class [,cCol1,cCol2,...] [,,con-params])

Note that there is an empty parameter to separate the explicit column list from the cons-params that are passed to $construct
for the table instance. Note also that this empty parameter is still required when using a query class or table class that references
a query class.

Adding Columns to a SQL List

You can add columns to a list which has a table instance using the $add() method. For example, the following method defines a
list from a query class and adds a column with the specified definition to the right of the list.

Do LIST.$definefromsqlclass($clib.$queries.My_Query)
Do LIST.$cols.$add('MyCol',kCharacter,kSimplechar,1000)

Columns added in this way are excluded from the SQL queries generated by the SQL methods described in this section, since
they are not defined in the SQL class. You can only add columns to the right of the schema or query related columns in the list.

Table Instance Notation

Table instances havemethods and properties which allow you to invoke SQL queries and related functionality via the list contain-
ing the table instance. Somemethods apply to list variables only and some to row variables only. Some of thesemethods execute
SQL, which by default executes in the context of the current Omnis session. The methods do not manage transactions; that is
your responsibility.

The table instance methods are summarized in this section, with a more detailed description of eachmethod in the next section.

• $select()
generates a Select statement and issues it to the server

• $selectdistinct()
generates a Select DISTINCT statement and issues it to the server

• $fetch()
for a list, fetches the next group of rows from the server, for a row, fetches the next row

The following methods apply to row variables only.

• $insert()
inserts a row into the server database

• $update()
updates a row (or rows if the where clause applies to several rows) in the server database

• $delete()
deletes a row (or rows if the where clause applies to several rows) from the server database

The following methods apply to smart lists only, updating the server database from the list.

• $doinserts()
inserts all rows in the list with the row status kRowInserted

• $dodeletes()
deletes all rows in the list with the row status kRowDeleted

• $doupdates()
updates all rows in the list with the row status kRowUpdated

• $dowork()
executes the three $do… methods above, in the order delete, update, insert

291



When you call $doinserts(), $dodeletes(), $doupdates() or $dowork(), the table instance calls the appropriate method(s) from the
following list, to invoke each individual insert, delete or update. This allows you to use table class methods to override the default
processing. As a consequence these methods only apply to smart lists.

• $doinsert()
inserts a single row with row status kRowInserted

• $dodelete()
deletes a single row with row status kRowDeleted

• $doupdate()
updates a single row with row status kRowUpdated

The following methods apply to smart lists only, reverting the state of the list, that is, they do not affect the server database.

• $undoinserts()
removes any inserted rows from the list

• $undodeletes()
restores any deleted rows to the list, and resets their status to kRowUnchanged

• $undoupdates()
restores any updated rows to their original value, and resets their status to kRowUnchanged

• $undowork()
executes the three $undo… methods above, one after the other, in the order insert, update, delete

You can use the following methods to create text strings suitable for using in SQL statements. You are most likely to use these if
you override default table instance methods using a table class.

• $selectnames()
returns a comma-separated list of column names in the list or row variable, suitable for inclusion in a SELECT statement

• $createname()
returns a comma-separated list of column names, data types, and the NULL or NOT NULL status, for each column in the list
or row variable, suitable for inclusion in a CREATE TABLE statement

• $updatenames()
returns a text string containing a SET clause, suitable for inclusion in an UPDATE statement

• $insertnames()
returns a text string containing a list of columns and values for a row variable, suitable for inclusion in an INSERT statement

• $wherenames()
returns a text string containing aWhere clause, suitable for inclusion in a SQL statement that requires a constraining clause

You can use the following method in a table class.

• $sqlerror()
a means of reporting errors. The table instance default methods call this method when a problem occurs while executing
SQL

Table instances have the properties of list or row variables as well as the following.

• $sqlclassname
the name of the associated schema or query class used to define the columns of the list; this property is NOT assignable

• $useprimarykeys
if true, only those schema columns that have their $primarykey property set to true are used inWhere clauses for automati-
cally generated Update and Delete statements. Omnis automatically sets $useprimarykeys to kTrue when defining the list,
if and only if there is at least one primary key column in the list

• $extraquerytext
a text string appended to automatically generated SQL; used by the $select(), $selectdistinct(), $update(), $delete(), $doup-
dates() and $dodeletes() methods; for example, it can contain a Where clause. When the table instance is defined either
directly or indirectly via a query class, Omnis sets the initial value of this property from the query class; otherwise, this prop-
erty is initially empty

292



• $servertablenames
a comma-separated list of the names of the server tables or views referenced by the schemas associated with the table
instance. If the table instance uses a schema class to define its columns, there is only one name in $servertablenames. If
the table instance uses a query class, there can be more than one name, corresponding to the schemas referenced by the
query class, and in the order that the schemas are first encountered in the query class

• $sessionname
the name of theOmnis session to the server, onwhich the table instancemethods execute their SQL; if empty, Omnis issues
the SQL on the current session

• $colsinset
the number of columns in the current result set for the session used by the table instance; this property is NOT assignable

• $rowsaffected
the number of rows affected by the last call to $insert(), $update(), $delete(), $doinserts(), $doupdates(), or $dodeletes()

• $rowsfetched
the number of rows fetched so far, using the $fetch() method, in the current result set for the session used by the table
instance

• $allrowsfetched
set to kTrue when all rows in the current result set for the current table instance have been fetched, otherwise kFalse at
other times

List columns in a list containing a table instance have three table instance related properties: $excludefromupdate, $exclude-
frominsert and $excludefromwhere.

When $excludefromupdate is true, the column is omitted from the result of $updatenames, and from the list of columns in the
SQL statements generated by $update.

When $excludefrominsert is true, the column is omitted from the result of $insertnames, and from the list of columns in the SQL
statements generated by $insert.

Note that $excludefromupdate does not cause the column to be omitted from the where clause generated by $update and $up-
datenames, therefore allowing you to have a column which is purely a key and not updated. If you do want to exclude a column
from the where clause, set $excludefromwhere to true. $excludefromwhere affects the where clause generated by $update, $up-
datenames, $delete and $wherenames.

For example:

Do MyList.$cols.MyKey.$excludefromupdate.$assign(kTrue)

The default setting of these properties is kFalse, except for calculated columns, in which case the default is kTrue. However, note
that calculated columns are omitted from the where clause, irrespective of the setting of $excludefromwhere.

If you define a list from a SQL class and use $add to add additional columns, you cannot set these properties for the additional
columns.

Table Instance Methods

The following methods use the list variable MyList or row variable MyRow which can be based on a schema, query, or table class.

$select()

Do MyList.$select([parameter-list]) Returns STATUS

$select() generates a Select statement and issues it to the server. You can optionally pass any number of parameters whichOmnis
concatenates into one text string. For example, parameter-list could be aWhere or Order By clause. The method returns kTrue if
the table instance successfully issued the Select.

The $select() method executes the SQL statement equivalent to

Select [$cinst.$selectnames()] from [$cinst.$servertablenames] [$extraquerytext] [parameter-list]

The following $construct() method for a SQL form defines a row variable and builds a select table. The form contains an instance
variable called iv_SQLData with type Row.

293



Set current session {session-name}
Do iv_SQLData.$definefromsqlclass('schema-name')
Do iv_SQLData.$select()
$selectdistinct()

$selectdistinct()

Do MyList.$selectdistinct([parameter-list]) Returns STATUS

$selectdistinct() is identical in every way to $select(), except that it generates a Select Distinct query.

$fetch()

Do MyList.$fetch(n[,append]) Returns STATUS

$fetch() fetches up to n rows of data from the server into the list, or for row variables fetches the next row. If there are more rows
available, a subsequent call to fetch will bring them back, and so on. The $fetch() method returns a constant as follows

Constant Description

kFetchOk Omnis fetched n rows into the list or row variable
kFetchFinished Omnis fetched fewer than n rows into the variable; this means that there are no more

rows to fetch
kFetchError An error occurred during the fetch; in this case, Omnis calls $sqlerror() before returning

from $fetch(), and the list contains any rows fetched before the error occurred
kFetchMemoryUsageExceeded Omnis fetched fewer than n rows into the variable; some rows could not be fetched

because $maxresultsetsize was exceeded

When fetching into a list, if the Boolean append parameter is kTrue, Omnis appends the fetched rows to those already in the list;
otherwise, if append is kFalse, Omnis clears the list before fetching the rows. If you omit the append parameter, it defaults to
kFalse.

The followingmethod implements a Next button on a SQL form using the $fetch() method to fetch the next row of data. The form
contains the instance variables iv_SQLData and iv_OldRow both with type Row.

# declare local variable lv_Status of Long integer type
On evClick
Do iv_SQLData.$fetch() Returns lv_Status
If lv_Status=kFetchFinished=kFetchError

Do iv_SQLData.$select()
Do iv_SQLData.$fetch() Returns lv_Status

End If
Calculate iv_OldRow as iv_SQLData

Do $cwind.$redraw()

$insert()

Do MyRow.$insert() Returns STATUS

$insert() inserts the current data held in a row variable into the server database. It returns kTrue if the table instance successfully
issued the Insert. The $insert() method executes the SQL statement equivalent to

Insert into [$cinst.$servertablenames] [$cinst.$insertnames()]

The following method implements an Insert button on a SQL form using the $insert() method to insert the current value of the
row variable. The form contains the instance variable iv_SQLData with type Row.

On evClick
Do iv_SQLData.$insert() ## inserts the current values
...

294



$update()

Do MyRow.$update(old_row[,disable_where]) Returns STATUS

$update() updates a row in a server table from the current data held in a row variable. It returns kTrue if the table instance
successfully issued the Update. Note that if the SQL statement identifies more than one row, each row is updated.

The old_row parameter is a row variable containing the previous value of the row, prior to the update.

The optionaldisable_whereparameter is a booleanwhich defaults to kFalsewhen omitted. If you pass kTrue, thenOmnis excludes
the where clause from the automatically generated SQL. This may be useful if you want to pass your own where clause using
$extraquerytext.

The $update() method executes the SQL statement equivalent to

Update [$cinst.$servertablenames][$cinst.$updatenames(‘old_row’)] [$extraquerytext]

The followingmethod implements an Update button on a SQL form using the $update() method. The form contains the instance
variables iv_SQLData and iv_OldRow both with type Row.

On evClick
Do iv_SQLData.$update(iv_OldRow)
...

$delete()

Do MyRow.$delete([disable_where]) Returns STATUS

$delete() deletes a row froma server table, matching that held in the row variable. It returns kTrue if the table instance successfully
issued the Delete. Note that if the SQL statement identifies more than one row, each row is deleted. The optional disable_where
parameter is a boolean which defaults to kFalse when omitted. If you pass kTrue, then Omnis excludes the where clause from the
automatically generated SQL. This may be useful if you want to pass your own where clause using $extraquerytext.

The $delete() method executes the SQL statement equivalent to

Delete from [$cinst.$servertablenames] [$cinst.$wherenames()] [$extraquerytext]

Note that [$cinst.$wherenames()] is omitted by setting disable_where to kTrue.

The following method implements a Delete button on a SQL form using the $delete() method. The form contains the instance
variable iv_SQLData with type Row.

On evClick
Do iv_SQLData.$delete()
Do iv_SQLData.$clear()
Do $cwind.$redraw()

$doinserts()

Do MyList.$doinserts()Returns MyFlag

This method only works for smart lists. $doinserts() inserts rows with status kRowInserted in the history list, into the server table,
and returns kTrue if the table instance successfully issued the Inserts. $doinserts() calls $doinsert() once for each row tobe inserted.
$doinserts() then accepts the changes to the smart list, unless an error occurred when doing one of the Inserts.

$dodeletes()

Do MyList.$dodeletes([disable_where])Returns MyFlag

Thismethod only works for smart lists. $dodeletes() deletes rows with status kRowDeleted in the history list, from the server table,
and returns kTrue if the table instance successfully issued the Deletes. $dodeletes() calls $dodelete() once for each row to be
deleted. $dodeletes() then accepts the changes to the smart list, unless an error occurred when doing one of the Deletes. The
optional disable_where parameter is a boolean which defaults to kFalse when omitted. If you pass kTrue, then Omnis excludes
the where clause from the automatically generated SQL. This may be useful if you want to pass your own where clause using
$extraquerytext.

295



$doupdates()

Do MyList.$doupdates([disable_where]) Returns MyFlag

This method only works for smart lists. $doupdates() updates rows with status kRowUpdated in the history list, in the server table,
and returns kTrue if the table instance successfully issued the Updates. $doupdates() calls $doupdate() once for each row to be
updated. $doupdates() then accepts the changes to the smart list, unless an error occurred when doing one of the Updates. The
optional disable_where parameter is a boolean which defaults to kFalse when omitted. If you pass kTrue, then Omnis excludes
the where clause from the automatically generated SQL. This may be useful if you want to pass your own where clause using
$extraquerytext.

$dowork()

Do MyList.$dowork([disable_where]) Returns MyFlag

This method only works for smart lists. $dowork() is a shorthand way to execute $doupdates(), $dodeletes() and $doinserts(), and
returns kTrue if the table instance successfully completed the threeoperations. Theoptionaldisable_whereparameter is aboolean
whichdefaults to kFalsewhenomitted. If youpass kTrue, thenOmnis excludes thewhere clause from the automatically generated
SQL for $dodeletes() and $doupdates(). This may be useful if you want to pass your own where clause using $extraquerytext.

$doinsert()

$doinsert(row)

$doinsert inserts the row into the server database. The default processing is equivalent to

row.$insert()

$dodelete()

$dodelete(row)

$dodelete deletes the row from the server database. The default processing is equivalent to

row.$delete()

$doupdate()

$doupdate(row,old_row)

$doupdate updates the row in the server database, using the old_row to locate the row. The default processing is equivalent to

row.$update(old_row)

$undoinserts()

Do MyList.$undoinserts() Returns MyFlag

This method only works for smart lists. $undoinserts() undoes the Inserts to the list and returns kTrue if successful. It is equivalent
to the smart list method $revertlistinserts().

$undodeletes()

Do MyList.$undodeletes() Returns MyFlag

This method only works for smart lists. $ undodeletes() undoes the Deletes from the list and returns kTrue if successful. It is
equivalent to the smart list method $revertlistdeletes().

296



$undoupdates()

Do MyList.$undoupdates() Returns MyFlag

This method only works for smart lists. $undoupdates() undoes the Updates to the list and returns kTrue if successful. It is equiv-
alent to the smart list method $revertlistupdates().

$undowork()

Do MyList.$undowork() Returns MyFlag

This method only works for smart lists. $undowork() undoes the changes to the list and returns kTrue if successful. It is equivalent
to the smart list method $revertlistwork().

$sqlerror()

Do MyList.$sqlerror(ERROR_TYPE, ERROR_CODE, ERROR_TEXT)

Omnis calls $sqlerror() when an error occurs while a default table instance method is executing SQL. The default $sqlerror()
method performs no processing, but you can override it to provide your own SQL error handling. It passes the parameters:

Parameter Description

ERROR_TYPE indicates the operation where the error occurred: kTableGeneralError, kTableSelectError,
kTableFetchError, kTableUpdateError, kTableDeleteError or kTableInsertError.

ERROR_CODE contains the SQL error code, as returned by sys(131).
ERROR_TEXT contains the SQL error text, as returned by sys(132).

$selectnames()

Do MyList.$selectnames() Returns SELECTTEXT

Returns a text string containing a comma-separated list of column names in the list variable in the format:

TABLE.col1,TABLE.col2,TABLE.col3,...,TABLE.colN

The returned column names are the server column names of the list columns in the order that they appear in the list, suitable for
inclusion in a SELECT statement; also works for row variables. Each column name is qualified with the name of the server table.

$createnames()

Do MyList.$createnames() Returns CREATETEXT

Returns a text string containing a comma-separated list of server columnnames anddata types for each column in the list variable,
suitable for inclusion in a CREATE TABLE statement; also works for row variables. The returned string is in the format:

col1 COLTYPE NULL/NOT NULL,col2 COLTYPE NULL/NOT NULL,col3 COLTYPE NULL/NOT NULL,...,colN COLTYPE NULL/NOT NULL

The NULL or NOT NULL status of each column is derived from the $nonull property in the underlying schema class defining the
column.

297



$updatenames()

Do MyRow.$updatenames() Returns UPDATETEXT

Returns a text string in the format:

SET TABLE.col1=@[$cinst.col1],TABLE.col2=@[$cinst.col2],TABLE.col3=@[$cinst.col3],...,TABLE.colN=@[$cinst.colN]

where col1…coln are the server column names of the columns in the row variable. Each column name is qualified with the name
of the server table.

Do MyRow.$updatenames([old_name]) Returns UPDATETEXT

The optional parameter old_name is the name of a row variable to be used to generate a ‘where’ clause. If you include old_name,
a ‘where’ clause is concatenated to the returned string in the following format:

WHERE col1=@[old_name.col1] AND ... AND colN=@[old_name.colN]

The columns in the where clause depend on the setting of $useprimarykeys. If $useprimarykeys is kTrue, then the columns in the
where clause are those columns marked as primary keys in their schema class. Otherwise, the columns in the where clause are
all non-calculated columns except those with data type picture, list, row, binary or object.

You can replace $cinst in the returned string using:

Do MyRow.$updatenames([old_name][,row]) Returns UPDATETEXT

where row_name is the name of row variable which Omnis uses in the bind variables. This may be useful if you override $doup-
date() for a smart list.

$insertnames()

Do MyRow.$insertnames() Returns INSERTTEXT

Returns a text string with the format:

(TABLE.col1,TABLE.col2,TABLE.col3,...,TABLE.colN) VALUES (@[$cinst.col1],@[$cinst.col2],@[$cinst.col3],...,@[$cinst.colN])

where col1…colN are the server column names of the columns in the row variable. The initial column names in parentheses are
qualified with the server table name. You can replace $cinst in the returned string using:

Do MyRow.$insertnames([row]) Returns INSERTTEXT

where row_name is the name of row variablewhichOmnis uses in the bind variables. Thismay be useful if you override $doinsert()
for a smart list.

$wherenames()

Do MyRow.$wherenames() Returns WHERETEXT

Returns a text string containing a Where clause in the format:

WHERE TABLE.col1=@[$cinst.col1] AND TABLE.col2=@[$cinst.col2] AND TABLE.col3=@[$cinst.col3] AND ... TABLE.colN=@[$cinst.colN]

where col1…colN are the server column names of the columns in the row variable. Each column name is qualified with the server
table name.

The columns in the where clause depend on the setting of $useprimarykeys. If True, then the columns in the where clause are
those columns marked as primary keys in their schema class. Otherwise, the columns in the where clause are all non-calculated
columns except those with data type picture, list, row, binary or object.

The = operator in the returned string is the default, but you can replace it with other comparisons, such as < or >=, by passing them
in the operator parameter.

298



Do MyRow.$wherenames([operator]) Returns WHERETEXT

You can replace $cinst in the returned string using:

Do MyRow.$wherenames([operator][,row]) Returns WHERETEXT

where row_name is the nameof row variablewhichOmnis uses in the bind variables. Thismay be useful if you override $dodelete()
for a smart list.

If you want to see the SQL generated by the table instance SQL methods, you can use the command Get SQL script to return
the SQL to a character variable after you have executed the SQL method. Note that the returned SQL will contain bind variable
references which do not contain $cinst. This is because Get SQL script does not execute in the same context as the table instance.
However, you will be able to see the SQL generated, which should help you to debug problems.

SQL Classes and Sessions

A row or list variable defined from a SQL class has the $sessionobject property which is the session object that is used by the
table. For a new table instance $sessionobject is initially empty. The $sessionobject may be assigned in the table class $construct
method or elsewhere. Here are some examples using a list variable iResultsList and object class odbcobj

Do iResultsList.$definefromsqlclass('T_authors')
Do iResultsList.$sessionobject.$assign($objects.odbcobj.$new())
Do iResultsList.$sessionobject.$logon(hostname,username,password)

Or if a session pool is used:

Do iResultsList.$definefromsqlclass('T_authors')
Do iResultsList.$sessionobject.$assign($sessionpools.poolone.$new())

Or if the session instance is already set up in an object variable:

Do SessObj.$logon(hostname,username,password)
Do iResultsList.$definefromsqlclass('T_authors')

Then the $sessionobject may be assigned using:

Do iResultsList.$sessionobject.$assign(SessObj)

In this final case the object instance in SessObj is duplicated so that the $sessionobject is a separate instance. However, both
instances continue to refer to the same session. This is a general rule for session instances, when an object instance is duplicated
both instances refer to the same underlying session. For example:

Calculate SessObj as $sessionpools.poolone.$new()
Calculate SessObj2 as SessObj

At this point both variables contain separate instances that refer to the same session and if we now

Calculate SessObj as $clib.$classes.odbcobj.$new()

SessObj2 continues to refer to the original session whereas SessObj is now a separate object

Calculate SessObj2 as 0

Now no variables refer to the original session that is automatically returned to the pool.

A list defined from an SQL class also has the $statementobject property. This is a read-only property which is the statement
object that is being used by $sessionobject. The $statementobject property is intended to be used in methods that are being
overridden by a table class ($select for example). Unlike $sessionobject it is not safe to assume $statementobject will remain the
same throughout the life of the list.

299



Table Class Methods and Sessions

The $sessionobject and $statementobject properties can be used to obtain a session and statementwhen required so that a table
instance may execute SQL. For example

A session pool “poolone” has been created using

Calculate lHostName as 'SqlServer'
Calculate lUserName as ''
Calculate lPassword as ''
Do $extobjects.ODBCDAM.$objects.ODBCSESS.$makepool('poolone',5, lHostName,lUserName,lPassword) Returns #F

A list variable is then defined in the $construct method of a window class using

Do iResultsList.$definefromsqlclass('T_authors')

In the table class “T_authors” $construct method a session instance is obtained from session pool “poolone” and assigned to the
$sessionobject property of the list variable using

Calculate lRef as $sessionpools.poolone.$new()

Do $cinst.$sessionobject.$assign(lRef) Returns #F

Where “lRef” is an item reference variable. In this situation $cinst is a reference to the list variable “iResultsList”. Note that the
statement object iResultsList.$statementobject is created automatically and there is no need to use the $newstatementmethod
to create it.

The table class enables the developer to override the default SQLmethods, for example a $select method to select all columns in
the list variable

Begin statement
Sta: SELECT [$cinst.$sessionobject.$selectnames($cinst)] FROM [$cinst.$servertablenames]
If len(pExtraQueryText)

Sta: [pExtraQueryText]
End If

End statement
Do $cinst.$statementobject.$prepare() Returns #F
If flag true
Do $cinst.$statementobject.$execute() Returns #F

End If

Quit method #F

Where “pExtraQueryText” is a character parameter containing SQL clauses to be appended to the query.

The results of the select may be retrieved using a $fetch method in the table class containing

Do $cinst.$statementobject.$fetch($cinst,pNumberOfRows,kTrue) Returns lFetchStatus
Quit method lFetchStatus

Where “pNumberOfRows” is an integer parameter containing the number of rows to be fetched.

These methods may then be called from the window $construct method in order to build a list using

Do iResultsList.$select() Returns #F
Do iResultsList.$fetch(9999) Returns lFetchStatus

300



Chapter 9—Server-Specific Programming

This chapter contains server-specific information for each of the proprietary databases and middleware configurations that can
be accessed in Omnis Studio.

The type of database you can access in Omnis Studio will depend on the edition of Omnis Studio you have. All editions allow you
to access:

• PostgreSQL

• SQLite

In addition to those above, other editions, including the Professional Edition, may provide access to:

• Oracle

• Sybase

• DB2

• MySQL

• ODBC

• Amazon SimpleDB

The following are for legacy or existing Omnis applications only and should not be used for new applications:

• OmnisSQL DAM
provided for backwards compatibility for legacy apps only, should not be used for new apps

• JDBC
support for JDBC has been removed in Studio 10 or above, but the supporting files can be obtained by contacting Omnis
Support

Every DBMS has its own specific, extra features that are not part of the SQL standard. Some of these features are supported by
sending a specific database command to the server using the standard $prepare(), $execute(), and $execdirect()methods. Others
are implemented as special session and statement object properties and methods.

In addition to the DAMs provided with Omnis Studio, FrontBase Inc also produce and maintain DAMs for Omnis Studio, see:
http://www.frontbase.com

Server and Clientware Compatibility

Some aspects of functionality and compatibility are subject to frequent change with new versions of server software or
clientware. Check the Omnis Developer website for details of software versions supported and middleware configurations at:
www.omnis.net/developers/resources/dams/

There you can view the latest information about the Clientware supported by the different server databases supported in the
current version Omnis Studio.

64-bit DAMs

The DAMs provided with the 64-bit version of Omnis Studio 8.0 or higher use 64-bit architecture. This means that you will need
to install separate 64-bit clientware where appropriate. The 64-bit DAMs are not interoperable with 32-bit client libraries and vice-
versa. For single-tier and embedded DAMs, including DAMSQLITE, DAMOMSQL, DAMMYSQL, DAMPGSQL and DAMAZON, all
necessary changes have been made. The 64-bit ODBC DAM requires the 64-bit ODBC Administrator library and should be used
with 64-bit ODBC Drivers to ensure compatibility.

PostgreSQL

This section contains the additional information you need to access a PostgreSQL database, including server-specific program-
ming, data type mapping to and from PostgreSQL, as well as troubleshooting. For general information about logging on and
managing your database using the Omnis SQL Browser, refer to the earlier parts of this manual.

For additional information on changes to the PostgreSQLDAM, refer to the readme filewhich accompanies yourOmnis download.

301

http://www.frontbase.com
http://www.omnis.net/developers/resources/dams/


PostgreSQL Client Libraries

This section discusses the PostgreSQL client library, whichmust be present on the library search path before the PostgreSQLDAM
can be used.

Win32 platforms

For Win32 platforms, the library search path includes the Windows\System32 folder or any location in the PATH environment
variable, including the folder containing omnis.exe. The Win32 client library is named libpq.dll.

Linux and macOS platforms

The Linux and macOS ports of the PostgreSQL DAM look for libpq.so or liqpq.dylib respectively.

Inmost cases the library present on your systemwill be labelled according to the version you have installed. For example on Linux,
libpq.so might be a symbolic link to the target library libpq.so.5.0. A detailed directory listing shows this relationship, e.g.

12 2007-01-15 10:20 libpq.so -> libpq.so.5.0
117338 2007-01-15 10:20 libpq.so.5.0

Under Linux and macOS therefore, it is essential that the target library and symbolic link to it both exist either in the li-
brary search path or in the same folder as the Omnis executable. For macOS, the library search path also includes the
Omnis.app/Contents/Frameworks folder.

Properties and Methods

In addition to the “base” properties and methods documented in the SQL Programming chapter, the PostgreSQL DAM provides
the following additional features.

Session Properties

Property Description

$maxvarchar Defines the maximum size above which- Omnis Character fields will be mapped to TEXT type instead of
VARCHAR. The default value for this property is 2000.

$database Used to set the additional dbname logon parameter. If not specified, defaults to be the same as the user name.

$service Service name to use for additional parameters. It specifies a service name in pg_service.conf that holds
additional connection parameters. This allows applications to specify only a service name so connection
parameters can be centrally maintained.

$protocolversion (Read-only)This property reports the communication protocol version supported by the client library.
DAMPGSQL requires version 3.0 or higher in order to work correctly.

$backendpid (Read-only) Following logon, this property holds the process ID of the backend server process handling the
connection. This may be useful for debugging purposes since the PID is reported in NOTIFY messages.

$port Used to set the additional port logon parameter. This property has a default value of 5432.
$socket (Read-only) Following logon, this property holds the file descriptor number of the connection socket to the

server. A valid descriptor will be greater than or equal to 0; a result of -1 indicates that no server connection is
currently open.

$options Used to specify additional text to be appended to the logon connection string. One or more parameter
settings can be added, separated by spaces. The options string is limited to 255 characters. Discussion of
advanced connection options is beyond the scope of this text but an example string might be: Do
sess.$options.$assign(“options=‘-c geqo=off’ sslmode=require”)

$logontimeout Maximumwait for a connection, in seconds. Zero implies wait indefinitely. The default timeout is set to 15
seconds. A timeout of less than 2 seconds is not recommended.

$timezone Character string representing the time zone to be appended on to bind variables being inserted into TIMETZ
and TIMESTAMPTZ columns. The default time zone is “+00” but $timezone will accept any character string (80
characters max).

$usetimezone If set to kTrue, the value contained in $timezone is appended to outgoing Time and Datetime bind variables.
This property also affects the text returned by $createnames() for Time and DateTime columns. $timezone will
be ignored during insert/update of TIMESTAMP & TIME columns

$serializable If set to kTrue, manual transactions will be created using the Serializable isolation level. When set to kFalse
(the default), manual transactions will be created using the Read Committed isolation level.

302



Property Description

$readonly If set to kTrue, manual transactions will be created using read-only access mode. When set to kFalse (the
default), transactions will have read/write access.

$schema The optional schema name to be prepended to table names. Used by the SQL Browser when performing
SELECTs. The default schema name is an empty string.

$numericprecision Defines the precision used by $createnames() when mapping Omnis number (dp) columns to the NUMERIC
type. Cannot be set lower than the default value: 15.

$sequencetoint If set to kTrue, the Omnis Sequence type is mapped to INTEGER. If set to kFalse (the default), the Sequence
type is mapped to SERIAL. Affects $createnames() and outward bind variables.

$char38touuid If set to kTrue, Omnis character types of field length 38 are mapped to the PostgreSQL 8.3 Universally Unique
Identifier type (UUID).

$char39tooid If set to kTrue, Omnis character types of field length 39 are mapped to the PostgreSQL Object Identifier type
(OID).

$defaultdateisempty If kTrue, fetched datetimes matching $defaultdate are treated as empty values.
$programname If specified, registers an application name during $logon() which will be stored in the pg_stat_activity table.
asof 35971 $listenername If specified, registers a name for the $listen session which will be stored in the pg_stat_activity table.
$infinitydates If kTrue, date value 31 Dec 9999 and datetime value 31 Dec 9999 23:59:59 maps to the special value; ‘infinity’.
asof 35977 $cannotify While kTrue, the $notify() method is enabled. While kFalse, notifications are queued. This property can be

used to temporarily disable notifications for example; while a thread-critial method is running.

Session Methods

Method Description

$connectstatus() Returns a PGSQLDAM Connection Status constant representing the current state of the connection to
the database server, or empty if not connected.

$escapebinary() Returns a text-escaped representation of the supplied binary variable, suitable for use in an SQL
statement as a quoted string literal. The returned string does not include the quotes.

$getssl() Returns qtrue if the connection is using SSL, qfalse otherwise. An optional list parameter can also be
passed to return additional information. Currently, the SSL type and version are returned.

$listen() Listens for the specified notification channel name and calls obj.$notify() when triggered. Call $unlisten()
to remove the listener.

$notify() Create this method inside an object class of subtype PGSQLDAM.PGSQLSESS. obj.$notify() will be called
with a single parameter of type row when a client issues a NOTIFY command with a channel name
previously registered using the $listen() method. The row parameter will be defined as:
Channel: the notification channel name PID: the ID of the calling client process Message: character
variable containing the message ‘payload’

$transactionstatus() Returns the current in-transaction status of the server. The status can be kPgSqlTranIdle (currently idle),
kPgSqlTranActive (a command is in progress), kPgSqlTranInTrans (idle, in a valid transaction block), or
kPgSqlTranINError (idle, in a failed transaction block). kPgSqlTranUnknown is reported if the connection
is bad. kPgSqlTranActive is reported only when a query has been sent to the server and not yet
completed.

$parameterstatus() Looks up a current parameter setting of the server. Supported (string) parameters include server_version,
server_encoding, client_encoding, is_superuser, session_authorization, DateStyle, TimeZone,
integer_datetimes, and standard_conforming_strings. For a full list, refer to the API documentation for
the PQparameterStatus function.

$reset() Resets the communication channel to the server. This function will close the connection to the server
and attempt to re-establish a new connection to the same server, using all the same parameters
previously used. This may be useful for error recovery if a working connection is lost.

$cancel() Requests that the server abandon processing of any transactions pending on the session. Successful
execution is no guarantee that the request will have any effect, however. If the cancellation is effective,
the current command(s) will terminate early and return an error result.

$addcustomtype() $addcustomtype(iFieldlength,cDatatype) Creates a custom data type mapping for specified Omnis
character subtypes. Intended to allow creation and insertion into PostgreSQL 8.3 enum, xml and json
columns.

$clearcustomtypes() $clearcustomtypes() Removes all previously created custom data type mappings.
$lobimport() $lobimport(cFilename[, iOid]) Imports the contents of the specified operating system file into the

database and returns the new OID on success, zero otherwise. If a specific OID value is desired, it may be
passed in via parameter 2. Must be called within a manual transaction block.

$lobexport() $lobexport(cFilename, iOid) Exports the object specified by iOid into the specified operating system file.
Must be called within a manual transaction block. Returns kTrue on success.

303



Method Description

$lobcreate() $lobcreate([iOid]) Creates a new large object and returns the new OID value on success, zero otherwise. If
a specific OID value is desired, it may be passed in via parameter 1. Must be called within a manual
transaction block.

$lobunlink() $lobunlink(iOid) Removes the specified object from the database and unlinks the Object Identifier,
effectively deleting the object. Must be called within a manual transaction block. Returns kTrue if the
object was successfully unlinked.

$lobopen() $lobopen(iOid[, bReadOnly]) Opens the specified large object for reading/writing and returns the
large-object descriptor which is only valid for the duration of the current transaction. If bReadOnly is
specified (kTrue), a read-only snap shot of the object is taken as it was at the start of the transaction.

$lobwrite() $lobwrite(iDesc, xBinary[, iSize]) Writes the supplied binary data to the specified large-object descriptor,
returning the number of bytes that were written on success, or -1 on failure. By default, the entire binary
field is written unless iSize is specified.

$lobread() $lobread(iDesc, xBinary[, iSize]) Reads the large object specified by iDesc into xBinary and returns the
number of bytes read on success, or -1 on failure. If specified, iSize bytes are allocated and read from the
large object. If omitted, $blobsize bytes are allocated/requested.

$lobseek() $lobseek(iDesc, iOffset, iWhence) Moves the read/write pointer within an open large object by iOffset
bytes. iWhence governs how the offset is interpreted; kPgSqlSeekSet specifies an absolute offset from
the start of the object, kPgSqlSeekCur specifies an offset from the current position, kPgSqlSeekEnd
specifies an offset from the end of the object. Returns the new location on success, or -1 on failure.

$lobtell() $lobtell(iDesc) Returns the current position of the read/write pointer within the large object specified by
iDesc, or -1 on failure.

$lobtruncate() $lobtruncate(iDesc, iSize) Resizes the specified large object to iSize bytes. If iSize is larger than the current
size, the large object is padded with null bytes. Returns kTrue on success, kFalse otherwise.

$lobclose() $lobclose(iDesc) Explicitly closes the specified large-object descriptor. Any large-object descriptors that
remain open at the end of a transaction will be closed automatically. Returns kTrue on success, kFalse
otherwise.

$unlisten() Removes the specified notification channel from the listener queue.

Statement Properties

Property Description

$sqlstate (Read only) On error, this property contains the five-character SQLSTATE associated with the $nativeerrortext.
Refer to the PostgreSQL reference manual for a full list of SQLSTATEs.

Logging on to PostgreSQL

In addition to thehostname, usernameandpasswordparameters providedby the$logon()method, thePostgreSQLDAMprovides
several session properties which enable additional logon parameters to be set. These should be set before calling $logon().

• $database is used to specify the dbname connection parameter.

• $port is used to specify the port connection parameter.

• $logontimeout is used to specify the connect_timeout parameter.

• $options is used to specify further optional connection parameters.

• $service is used to specify a service (filename) to use for additional parameters.

The $logon() hostname parameter can either be specified as an IPv4 (e.g. 192.168.1.100) or an IPv6 IP address or as amachine name.
If prefixed with a slash, name refers to a Unix domain name.

Metadata Functions

• $indexes()

The DamInfoRow for $indexes() is defined with a single column containing the SQL text used to define the index.

• $tables()

304



The PostgreSQL DAM implements $tables() slightly differently. In particular, only the kStatementServerTable and kState-
mentServerView parameters are supported. This is because the processes for querying tables are incompatible with those for
querying views. (kStatementServerAll defaults to kStatementServerTable).

TheDamInfoRow for $tables() is definedwith threeBoolean columnswith additional information on the table or view: HasIndexes,
HasRules & HasTriggers.

Transactions

PostgreSQL supports two transaction isolation levels: Read Committed (the default) and Serializable. Using Read Committed
mode, a statement can only see rows that were committed before the current transaction began. Using Serializable mode, all
statements in the current transaction can only see rows that were committed before the first query or data-modification state-
ment was executed in this transaction.

Transactions can also be instantiated as read-only if required. This enables significant performance improvements for read
operations. When a transaction is read-only, the following SQL commands are disallowed: INSERT,UPDATE,DELETE and
COPY FROM if the table they would write to is not a temporary table; all CREATE,ALTER and DROP commands; COM-
MENT,GRANT,REVOKE,TRUNCATE,EXPLAIN ANALYZE and EXECUTE if the command they would execute is among those
listed. Please refer to the PostgreSQL documentation on transactions for further details.

When usingmanual transactionmode (kSessionTranManual), the transaction isolation level can be switched between Read Com-
mitted and Serializable using the $serializable session property.

The access mode can be changed using the $readonly session property.

The PostgreSQL DAM treats the kSessionTranAutomatic and kSessionTranServer transaction modes identically. In either of these
modes the server automatically begins and commits read/write transactions.

Remote Procedure Calls

PostgreSQL does not support the concept of stored procedures but supports functions instead. This has a few implications as
described below.

• $rpcprocedures()
The DamInfoRow returned by $rpcprocedures is defined with the following columns:

Column Description

Language The implementation language or call interface for this function.
IsAgg kTrue if this is an aggregate function.
SecDef kTrue if this function is a security definer (i.e. a “setuid” function).
IsStrict kTrue if this is a “strict” function. Strict functions must be prepared to

handle null inputs.
RetSet kTrue if the function returns a result set (i.e. multiple values of the

specified data type).
Volatile Indicates whether the function result depends only on its input

arguments, or is affected by outside factors. It is i for “immutable”
functions, which always deliver the same result for the same inputs. It is
s for “stable” functions, whose results (for fixed inputs) do not change
within a scan. It is v for “volatile” functions, whose results may change at
any time, that have side-effects for other functions or tables or
functions which cannot otherwise be optimised.

Source Indicates how the function should be invoked. It might be the actual
source code of the function for interpreted languages, a link symbol, a
file name, or just about anything else, depending on the
implementation language/call convention.

• $rpc()
Calling $rpc() is similar to executing a SQL SELECT statement of the form:

SELECT * from proc_name (param1, param2, … )

with the exception that $rpc() will also set any InputOutput or Output parameters.

Any return value generatedby the functionwill be available via $rpcreturnvalue although in the casewhere the functiongenerates
a result set, itmay be preferable to retrieve the entire set by calling $fetch(). The value returned by $rpcreturnvalue is also returned
as the first row of this result set.

305



Notification Channels

PostgreSQL supports asynchronous notification channels via its LISTEN, UNLISTEN and NOTIFY SQL commands. You can register
the session object as a listener for a notification channel using the $listen() method, specifying the channel name to listen for.
$unlisten() removes the listener.

Once registered, if any client executes a NOTIFY for that channel name, the listener calls the session object’s $notify() method
with parameters that indicate the channel name, the notifier’s process ID and an optional ‘payload’/ text string.

In the following example, oPgSQL is an object class with $superclass .PGSQLDAM.PGSQLSESS:

Do oPgSQL.$logon('192.168.0.96','postgres','postgres','session1') Returns #F
Do oPgSQL.$listen('charliex') Returns #F
Do oPgSQL.$newstatement() Returns statObj
Do statObj.$execdirect("notify charliex,'This is an important message'") Returns #F

Createmethod oPgSQL.$notify() with a single parameter of type Row to be calledwhenever a notification is received. For example:

OK message Notification received {Channel=[pRow.Channel]//PID=[pRow.PID]//Message=[pRow.Message]}

Figure 132:

As of Studio 10.2, $listen() automatically encloses the channel name in double quotes when $quotedidentifier is kTrue.
Unquoted channel names containing illegal characters now cause $listen() to return kFalse with $nativeerrortext; “Malformed
unquoted identifier”.

Valid unquoted identifiers are case-insensitive, commence with a-z or _ and can contain a-z, 0-9 as well as _ and $. Quoted
identifiers are case-sensitive and can contain any characters. PostgreSQL identifiers have a maximum length of 63 characters.
As of Studio 10.2, the message size can be up to 8000 ANSI characters.

Similar to the $programname session property, you can assign or change the name for the listener session using the $listener-
name property. This name will subsequently appear in the pg_stat_activity system table.

To prevent incoming notifications from interrupting the currently executingmethod, you can use the $cannotify property. Setting
this to kFalse, disables the $notify()methodandcauses incomingnotifications tobequeued. Set $cannotify to kTrue again in order
to receive any queued notifications.

Handling Dates

When kTrue, the $defaultdateisempty tells the DAM to convert retrieved datetimes to empty when they match $defaultdate.

UUID, ENUM and XML Column Types

Support for the following data types is available in Omnis Studio 4.3.1 and above.

UUID

The PostgreSQL DAM is able to read and write Universally Unique Identifiers. An example of a UUID in standard formmight be:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11 (36 characters)

306



but the DAM also accepts UUIDs formatted without hyphens and/or encapsulated using curly braces.

Output from UUID columns is always in the standard form.

To allow input binding of UUIDs and to make $createnames() return UUID types, it is necessary to set $char38touuid to kTrue.
Once set, the Omnis Character 38 data subtype maps to UUID.

Note: there is no facility either in the PostgreSQL client library or in the DAM to create UUID values. This must be implemented
by the Omnis application.

ENUM

Enumerated types are created by executing CREATE TYPE statements, for example:

Do statObj.$execdirect("CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy')") Returns #F ##creates the enumerated type

To make Omnis map certain character sub types to ENUMs, the $addcustomtype() method is provided.

The following example maps the Omnis Character 2001 data subtype to the “mood” enumerated type:

Do sessObj.$addcustomtype(2001,'mood') Returns #F

Once set, this mapping affects the text generated by $createnames() as well as input binding.

To clear previously defined enumerated type mappings, the $clearcustomtypes() method is provided.

XML

The $addcustomtype() method can also be used to force an Omnis Character subtype to map to the XML data type, for example:

Do sessObj.$addcustomtype(10001,'xml') Returns #F

As above, thismapping affects the text generated by $createnames() as well as input binding and remains in effect until $clearcus-
tomtypes() is called.

Large Object Support

As of Omnis Studio 5.1.1, the PostgreSQL DAM supports additional session object methods for manipulating large objects stored
in the database.

Themethods; $lobimport(), $lobexport() and $lobunlink() complement their SQL equivalents (lo_import(), lo_export() & lo_unlink())
with the exception that the client-side methods operate on files in the client machine’s file system. The SQL functions operate on
files in the database server’s file system. In other respects, the operation of these methods is comparable:

• $lobimport() – creates a large object and imports data into it from a local file.

• $lobexport() – retrieves data from a large object and writes it to a local file.

• $lobunlink() – removes a large object from the database.

There is an additional client-side method for creating a large object:

• $lobcreate() – creates a new (empty) large object and returns the OID value.

The large objects are identified by their OID values, which can subsequently be stored and retrieved in database Oid columns in
a similar fashion to standard integers.
Once created, the following methods can be used to manipulate data inside large objects:

• $lobopen() – opens a large object (OID) and returns a large object descriptor.

• $lobclose() – closes a large object descriptor.

• $lobread() – reads zero or more bytes from a descriptor into a Binary variable.

• $lobwrite() – writes zero or more bytes to a descriptor from a Binary variable.

• $lobseek() – repositions the read/write pointer within a large object.

307



• $lobtell() – reports the current pointer position within a large object.

• $lobtruncate() – resizes a large object to the desired size (in bytes).

To use these methods, it is important to note that large object operations must be performed within a single transaction, i.e. in
manual transaction mode. Any open large object descriptors are automatically closed upon $commit(). For example:

Do cSess.$transactionmode.$assign(kSessionTranManual)
Do cSess.$begin()
Do cSess.$lobcreate() Returns lOid ## create new oid

Do cSess.$commit()
Do cSess.$begin()
Do cSess.$lobopen(lOid) Returns fileDesc
Calculate lBinary as 'Some Unicode character data'
Do cSess.$lobwrite(fileDesc,lBinary) Returns lNumBytes ## write data into the large object
Do cSess.$lobseek(fileDesc,8,kPgSqlSeekSet) Returns lFilePos ## move the read/write pointer to byte 8/character position 3
Do cSess.$lobread(fileDesc,lCharValue) Returns lNumBytes ;;=> 'me Unicode character data'

Do cSess.$commit() ## commit closes the descriptor

For further information on the behavior of these methods and the parameter values that may be applied, please refer to the
Session Methods section above.

JSON Column Types

As of Studio 8.0.3 you can select and insert JSON strings into PostgreSQL JSON and JSONB columns. In earlier versions of Studio,
there was partial support for insertion of JSON strings and it was possible to select from JSON columns using the CAST(… as
VARCHAR(n)) operator.

The client library will parse and validate text before insertion into JSON/JSONB columns. You can optionally use this feature to
validate JSON strings, for example:

Do cStat.$execdirect("select '5'::json as myCol") Returns #F

Do cStat.$fetchinto(lResult) ## Returns 5
Do cStat.$execdirect("select '{""col1"":1,""col2"":""mostly cloudy"",""col3"":true}'::json as myJSON") Returns #F

Do cStat.$fetchinto(lResult) ## Returns {"col1":1,"col2":"mostly cloudy","col3":true}
Do cStat.$execdirect("select '{""col1"":1,""col2"":""600 meters"",""col3"":[[""one"",""two"",""three""]}'::json as myValue") Returns #F

Do cStat.$fetchinto(lResult) ## Returns {"col1":1,"col2":"600 meters","col3":["one","two","three"]}

Any of the resulting strings can then be inserted into the database:

Do cStat.$execdirect('create table jsontest(col1 int, col2 jsonb)') Returns #F
Do cStat.$execdirect('insert into jsontest values(1,@[lResult])') Returns #F

Note that JSON string literals must be suitably escaped in respect of quotes and square brackets, as shown above.

To insert JSON strings using bind variables, the $addcustomdatatype() method should be used. This tells the DAM tomap Omnis
character fields of a specific fieldlength to JSON and/or JSONB columns, and also allows $createnames() to generate JSON and/or
JSONB columns. For example:

Do cSess.$addcustomtype(1000,'JSON') Returns #F
Do cSess.$addcustomtype(1001,'JSONB') Returns #F
Do lList.$definefromsqlclass('scTest')
Calculate lSql as cSess.$createnames(lList)

Where scTest defines Character columns of length 1000 or 1001, the ‘JSON’ and ‘JSONB’ column type will be returned accordingly.

308



PostgreSQL Data Type Mapping

Omnis to PostgreSQL

Omnis Data Type PostgreSQL Data Type

CHARACTER
Character/National n (n<=$maxvarchar) VARCHAR(n) [4]

Character/National n (n>$maxvarchar) TEXT
Character(38) UUID [3]

NUMBER
Integer 64 bit BIGINT
Integer 32 bit INTEGER
Short integer SMALLINT
Number 0..14dp NUMERIC(15[1] ,0..14)
Short number 0/2dp NUMERIC(15[1],0/2)
Number floating dp DOUBLE PRECISION
DATE/TIME
Short date (all subtypes) DATE
Short time TIME /TIMETZ*
Datetime (all subtypes) TIMESTAMP /TIMESTAMPTZ*
OTHER
Boolean BOOLEAN
Sequence SERIAL/INTEGER [2]

Picture BYTEA
List BYTEA
Row BYTEA
Object BYTEA
Binary BYTEA
Item reference BYTEA

[1] Numeric precision for Number (dp) columns uses the value of $numericprecision.
[2] The mapping used for the Omnis Sequence type depends on the value of $sequencetoint.
[3] This mapping occurs only if $char38touuid is set to kTrue
[4] Use the $addcustomtype() method to add additional mappings, e.g. for XML and JSON
*Time zone data types are used when session.$usetimezone is set to kTrue

PostgreSQL to Omnis

PostgreSQL Data Type Description Omnis Data Type

NUMBER
INT2/SMALLINT -32768 to +32767 Integer 32 bit
INT/INT4/INTEGER -2147483648 to +2147483647 Integer 32 bit
INT8/BIGINT -2^63 to +2^63-1 Integer 64 bit
SERIAL 1 to 4294967296 Integer 32 bit
SERIAL8/BIGSERIAL 1 to 2^64 Integer 64 bit
FLOAT4/FLOAT/REAL 1E-37 to 1E+37 Number floating dp
DOUBLE/FLOAT8 1E-307 to 1E+308 Number floating dp
NUMERIC Numbers with max precision 1000 Number floating dp (1)

MONEY -21474836.48 to +21474836.47 Number 2dp
DATE/TIME
DATE Dates only Short date
TIMESTAMP/TIME Timestamp/time without time zone Datetime (#FDT)
TIMESTAMPTZ/TIMETZ Timestamp/time with time zone Character
INTERVAL Flexible format time interval Character
CHARACTER
CHAR Blank-padded characters with size limit Character
VARCHAR Variable length characters with size limit Character
TEXT Variable length characters with no size limit Character
JSON/JSONB JavaScript Object Notation Character(2)

BOOLEAN/BOOL {‘f’, ‘false’, ‘n’, ‘no’, ‘0’, ‘t’,‘true’,‘y’,‘yes’,‘1’} Boolean
CIDR, INET, MACADDR Strings containing address information Character

309



PostgreSQL Data Type Description Omnis Data Type

UUID Universally Unique Identifier Character 36
ENUM Custom enumerated types Character 64
XML Extensible Markup Language content Character
OTHERS (including, but not limited
to)
BYTEA, BIT, VARBIT, BOX, CIRCLE,
POINT, LINE, PATH, POLYGON, LSEG

Binary

(1) DAMwill map decimal values to the Omnis Number dp data type where column scale is <=14
(2) Supported in Studio 8.0.3 and later

PostgreSQL Troubleshooting

The following points may help in resolving programming issues encountered using PostgreSQL session and statement objects.

• $rpcparameters()
When calling $rpcparameters(), the DAM uses defaults for the column precision and/or scale since this information is not
provided by the pg_proc system table.
For this reason, the API may report parameter-matching problems when calling certain functions and the list (passed to
$rpcdefine()) may need to be manually coerced.

• Error Messages
The following additional error messages may be returned via the session or statement $errortext property:

– “Native error text could not be retrieved”. No connection currently exists to the server or there is no message corre-
sponding to the current error code.

– “Unsupported client protocol version”. The protocol version reported by the client API is too low. The DAM cannot use
this version and you should upgrade to a newer version of the client library. Use the PostgreSQL access library supplied
with Omnis Studio.

– “Client or interface function not available”. The most likely cause of this error is that the client library (or one of its
dependencies) was not found and has not been loaded. Can also occur if the client library being used does not provide
a required interface function.

– “server closed the connection unexpectedly. This probably means the server terminated abnormally before or while
processing the request.” This error can occur when logging on with a username other than “postgres”. The client
library uses the username for the database nameunless the database name is specified. Set $database to the required
database name (e.g. “postgres”) and try again.

– “SCRAM authentication requires libpq version 10 or above” or “authentication method 10 not supported”.
The PostgreSQL client library shipped with Omnis Studio does not support the requested authentication method
(scram-sha-256) which was introduced in PostgreSQL v10. For connection to PostgreSQL version 10 and later, we have
a technote that discusses the replacement of the PostgreSQL Client library: TNSQ0031. The relevant client library and
any OpenSSL dependencies can be copied from the PostgreSQL server installation.

• Linux Terminal Messages. On Linux, NOTICE and/or WARNINGmessages are sent to stderr, (normally the terminal window
behind Omnis). To avoid these, refer to the server configuration parameter: client_min_messages and set this to a higher
level.

• Chunking and Batch Fetching. Chunking of large character/binary data is not handled by DAMPGSQL but is handled au-
tomatically by the API. Such data is effectively returned to the DAM as single chunks. $lobthreshold , $lobchunksize and
$blobsize therefore have no effect.

Batch fetching of data is also not handled by DAMPGSQL. The API automatically manages transfer of the data and presents the
DAM with the entire result set. Hence setting $batchsize has no effect.

Further troubleshooting notes, “how-tos” and tips can be found on the Omnis website at: https://www.omnis.net/developers/
resources/technotes/

310

https://www.omnis.net/developers/resources/technotes/tnsq0031.jsp#clientLibrary
https://www.omnis.net/developers/resources/technotes/
https://www.omnis.net/developers/resources/technotes/


SQLite

This section contains theadditional information youneed to access a SQLitedatabase, a verypopular databasewhich is embedded
into a whole range of applications on desktop andmobile devices. The code for SQLite is in the public domain and is thus free for
use for any purpose, commercial or private.

SQLite implements a self-contained, server-less, zero-configuration, transactional SQL database engine. Unlike most other SQL
databases, SQLite does not have a separate server process. SQLite reads andwrites directly to a disk filewhich can containmultiple
tables, indices, triggers, and views. Formore information about SQLite and todownload it, pleasego to thewebsite: www.sqlite.org
(portions of this text are taken from the SQLite website).

This section contains the additional information you need to access a SQLite database, including server-specific programming,
trouble-shooting and data type mapping to and from the database. For additional information on changes to the SQLite DAM,
refer to the readme file which accompanies your Omnis download.

Server-specific Programming

Logging on to SQLite

To connect using the SQLite DAM, create an object variable of subtype “SQLITESESS”.

You connect to a SQLite data file using the $logon() method. The hostname parameter should be the full path to the data file.

SQLite does not require a username or password, but you can specify a session name that will appear in the SQL Browser and in
the Notation Inspector under $sessions.

SQLite expects a DOS-style pathname under Windows and an absolute POSIX-style path under macOS and Linux. For example:

Do mySession.$logon('C:\mydata\mydatafile.db','','','session1') Returns #F ## on Windows

Do mySession.$logon('/Users/MyUser/mydatafile.db','','','session1') Returns #F ## on macOS / Linux

Additionally, you can force SQLite to create the specifieddata file if it does not exist. To do this, set the $opencreate sessionproperty
to kTrue before logging on.

To open a read-only connection, set the $readonly session property to kTrue before logging on. (It is not possible to create a data
file if the connection is read-only).

If the hostname is “:memory:”, then a private, temporary in-memory database is created for the connection. This in-memory
databasewill be deletedwhen the database connection is closed. Filenames beginningwith “:” should be considered reserved for
future SQLite extensions and avoided to remove ambiguity. For in-memory databases, $versionwill be set to “:memory:” following
$logon().

If the hostname is an empty string, then a private, temporary on-disk database will be created. This private database will be
automatically deleted as soon as the database connection is closed. For temporary databases, $version will be set to “:temporary:”
following $logon().

For standard data file connections, $version is read directly from the file header information and reflects the file format version
that the data file supports.

Transaction Support

SQLite supports both automatic and manual SQL transactions.

To invoke manual transaction mode, the $transactionmode session property should be set to kSessionTranManual.

In this mode you must commence each transaction by calling the $begin() session method and terminating each transaction
either by calling $commit(), $rollback(), by switching back to kSessionTranAutomatic or by logging off.

The SQL text that is submitted each time $begin() is called may be augmented using the $transactiontype session property as
shown below. The different transaction types affect the way in which SQLite acquires row locks on tables:

$transactiontype Resulting SQL text Meaning

kSQLiteTranDeferred BEGIN No locks are acquired on the database until the database is first accessed
kSQLiteTranExclusive BEGIN EXCLUSIVE EXCLUSIVE locks are acquired on all databases as soon as the BEGIN command is executed
kSQLiteTranImmediate BEGIN IMMEDIATE RESERVED locks are acquired on all databases as soon as the BEGIN command is executed

The $commit() and $rollback() methods, invoke the COMMIT and ROLLBACK commands respectively.

311

http://www.sqlite.org


$commitmode and $rollbackmode are set to kSessionCommitClose and kSessionRollbackClose respectively for the SQLite DAM.
Statement objects are closed upon $commit() / $rollback(). Any pending result set is discarded and the statement is returned to
its prepared state ready for re-execution if desired.

Incremental BLOB I/O

SQLite supports incremental Input/Output to BLOB columns in database tables. This means that you effectively bind a place-
holder for the BLOB at bind time, then write the data to it later. Similarly, you can open a handle to a BLOB which already exists
in the database and read/modify its contents without the need to perform a SELECT statement.

To create a placeholder for a BLOB, you should bind the binary variable inside the SQL statement as normal, but set its contents
to #NULL. On execution, this creates a zero-blob of size $blobsize- bytes padded with zeros.

The session object provides several methods for accessing and modifying BLOBs:

• $blobopen()
Opens a handle to a BLOB column, identified by its database name, table name, column name and row number, optionally
as read-only

• $blobclose()
Closes a BLOB handle; you have to close any BLOB handles opened during the session, but any handles left open when the
session ends are closed automatically

• $blobcloseall()
Closes all BLOB handles

• $blobbytes()
Returns the size in bytes that was allocated to a BLOB column when it was created

• $blobhandles()
Returns a list of all open BLOB handles including the corresponding database, table name, column name and row number

• $blobreopen()
Moves a BLOB handle to a new row within the same table

• $blobwrite()
Writes binary data to a BLOB column

• $blobread()
Reads binary data from a BLOB column

See the Session Methods section for more details and syntax for these methods.

Calculated Columns, Functions and Sub-Queries

A column returned from SELECT statement that is the result of an expression or sub-query cannot be described automatically
by the DAM because there is no corresponding entry in the sqlite_master table. In this situation, you can provide a “hint” using a
column alias name containing the intended SQL data type, for example:

select ’2014-07-27’ as mydate from table
select substr(col1,1,2)||':'||substr(col1,3,2) as id_char from test
select 1 as boolval, col5+3 as intval from test

Other data types recognised include; “timestamp, time, national, tinyint, serial, sequence, dec, float”. When used the emulate
OmnisSQL, theDAMalso recognises variousOmnisSQL functionnames such as upper(), lower(), ascii(), charindex(), length(),mod(),
round(), cos(), sin(), etc. The DAM also recognises literal numeric and integer values, so there is no need to provide alias names for
such columns, e.g.

select 3.14159, 33*3, col3+6, sin(0.6), length(col1) from test

Note that there is currently no way to specify the data sub-type when using aliased column names, hence Character data will be
Character 100000000 andnumeric datawill beNumber floatingdp. If thedata typeof a calculated columncannotbedetermined,
it will be fetched as binary.

Similarly, result columns generated using operators have no SQLite “type affinity”. Using the UNION operator for example, it is
necessary to CAST the entire operation:

312



select CAST(amount as FLOAT) as myfloat from (select 2.35 as amount
UNION ALL
select 2.46 as amount)

To avoid using column alias names, you can pre-define the fetch list or table instance using a schema, in which case the fetched
data will be coersed into the required column types.

Additional Functions

In order to better support Omnis SQL emulation, the SQLite DAM supports the following scalar functions in addition to the SQLite
core functions:

Function Description Parameters

acos() Angle in radians, the cosine of which is the specified number number
ascii() ASCII character corresponding to an integer between 0 and 255, inclusive integer
asin() Angle in radians whose sine is the specified number number
atan() The angle in radians whose tangent is the specified number number
atan2() The angle in radians whose tangent is one number divided by another number number1, number2
charindex() The starting character position of one string in a second string index string, source string
chr() ASCII character corresponding to an integer between 0 and 255, inclusive integer
con() Returns the concatenation of zero or more string arguments. string1, string2,…
cos() Cosine of an angle number
dim() Increments a date string by some number of months date string, months
dtcy() A string containing the year and century of a date string date string
dtd() A string containing the day part of a date string or a number representing the day of the month, depending on

context
date string

dtm() A string containing the month part of a date string or a number representing the month of the year, depending
on context

date string

dtw() A string containing the day of the week part of a date string or a number representing the day of the week,
depending on context

date string

dty() A string containing the year part of a date string or a number representing the year, depending on context date string
exp() exponential value of a number number
Initcap() Transforms string by capitalizing the initial letter of each word in the string and lowercasing every other letter string
len() Synonym for length(). Number of characters in a string string
log() Natural logarithm of a number number
log10() Base 10 logarithm of number number
mod() Modulus of a number given another number number, modulo number
pos() Position of substring with a string substring, string
power() The value of a number raised to the power of another number number, power
sin() Sine of an angle number
sqrt() Square root of a number number
string() Concatenates some number of strings into a string. Synonym for con() string1, string2,…
tan() Tangent of an angle number
todate() Converts a date string or number to a date value using a format string. Refer to the corresponding Omnis

function for details.
date string/number, format
string

SQLite Encryption

As of Studio 8.0.3, the SQLite DAM supports native datafile encryption. When enabled, all data written to the SQLite datafile is
encrypted and can only be read and decrypted using the SQLite DAM with the appropriate encryption key.

Encryption is enabled by setting the session object $encryptkey property before logging on to the SQLite datafile. $encryptkey
accepts a string of hexadecimal characters. The string should be of even length and should be no longer than 32 characters. The
key value will be truncated if it does not meet either of these criteria. The accepted key value is then used to seed an internal
private key which is subsequently used by all statement objects belonging to that session object.

To create a new encrypted datafile, the $opencreate property should also be set to kTrue before logging on. For example:

Do sessObj.$opencreate.$assign(kTrue) ## create a new datafile if it does not exist
Do sessObj.$encryptkey.$assign('1a2b3c4d5e6f') Returns #F
Do sessObj.$logon('/Users/user1/Desktop/sqlite.db','','','session1') Returns #F

313

https://sqlite.org/lang_corefunc.html
https://sqlite.org/lang_corefunc.html


Once encrypted, $logon() will fail unless the correct $encryptkey is supplied. $encryptkey will be ignored (cleared) if the
DAM detects a connection to a non-encrypted datafile. Please note that you cannot change the $encryptkey property while
the DAM is logged on. Errors encountered during assignment of $encryptkey are written to session.$nativeerrorcode and
session.$nativeerrortext.

The DAM provides two session methods that facilitate encryption/decryption of existing SQLite datafiles:

• $encrypt(filename)
opens a non-encrypted datafile and encrypts it using the $encryptkey. A backup copy of the non-encrypted datafile is
created at the file location named filename.bak

• $decrypt(filename)
opens a previously encrypted datafile and decrypts it using the $encryptkey. A backup copy of the encrypted datafile is
created at the file location named filename.bak

$encrypt() and $decrypt() return kTrue on success but will fail, unless the DAM is logged off, if the process cannot get exclusive
read/write access to the specifieddatafile or if filename.bak already exists and cannot be overwritten. Once encrypted, connection
via third-party tools should be avoided as this may result in undefined behaviour and cause datafile corruption.

Important note: Your attention is drawn to the terms of the Omnis End User License Agreement and to the following excerpt
pertaining to the use of this encryption mechanism and subsequent loss of data and/or of the encryption key(s):

Omnis Software disclaims any responsibility for or liability related to the use of this software. IN NO EVENT WILL OMNIS
SOFTWARE BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES HOWEVER THEY
MAY ARISE AND EVEN IF OMNIS SOFTWARE HAS BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Session Properties

Property Description

$blobsize The default value for $blobsize is set at 32KB for the SQLite DAM since this property is used routinely
when creating empty BLOB columns for use with incremental input/output methods.

$encryptkey Enables encryption. Accepts a string of hexadecimal characters of even length and no longer than 32
chars. The key value is truncated if it does not meet either of these criteria

$nullbinary If kTrue, null-valued binary bind variables are inserted as NULL. If kFalse (the default) they are inserted
as zero-blobs of length $blobsize (see Incremental BLOB I/O above). (Studio 8.1.6 and later)

$opencreate If kTrue, the data file specified at $logon() will be created if it does not exist; in this case, the datafile is
encrypted. If kFalse (the default), an error will be generated if the data file is not found.

$readonly If kTrue, the connection will be opened in read-only mode. All attempts to write to the data file will fail
with an error. If kFalse (the default), read and write operations are permitted.

$transactiontype Specifies the locking behavior for manual transactions. This is one of the following
constants: kSQLiteTranImmediate, kSQLiteTranExclusive or kSQLiteTranDeferred (the default).

Session Methods

Method Description

$blobbytes() $blobbytes(iBlobHandle) returns the size in bytes that was allocated to a BLOB column when it was created
$blobclose() $blobclose(iBlobHandle) closes a BLOB handle. You should close any BLOB handles opened during the session. Any handles left

open when the session ends are closed automatically however. Always returns kTrue
$blobcloseall() $blobcloseall() closes all BLOB handles. This method always returns kTrue
$blobhandles() $blobhandles(lHandleList ) returns a list of all BLOB handles including their corresponding database, table names, column names

and row numbers. Aborted/invalid handles are shown with a row number set to zero. Returns kTrue on success, otherwise kFalse
$blobopen() $blobopen(cDatabase, cTable, cColumn, iRow [,bReadOnly]) opens a handle to a BLOB column, identified by its database name,

table name, column name and row number, optionally as read-only. Returns a BLOB handle on success or zero on failure. The
SQLite DAM numbers BLOB handles incrementally starting from 1001

$blobread() $blobread(iBlobHandle, xBinary [,iSize ,iOffset]) reads binary data from a BLOB column into the supplied binary variable. If iSize is
omitted, the value of $blobsize is assumed

$blobreopen() $blobreopen(iBlobHandle, iRow) moves a BLOB handle to a new row within the same table. If iRow exceeds the number of rows in
the table, this invalidates the handle. Only the row number can be modified. To change the database, table name or column name,
a new handle should be opened

$blobwrite() $blobwrite() writes binary data to a BLOB column
$encrypt() $encrypt(cFilename) opens a non-encrypted datafile and encrypts it using the $encryptkey. A backup copy of the non-encrypted

datafile is created at the file location named filename.bak

314



Method Description

$decrypt() $decrypt(cFilename) opens a previously encrypted datafile and decrypts it using the $encryptkey. A backup copy of the encrypted
datafile is created at the file location named filename.bak

$insert_list() $insert_list(cTable, lListData) inserts each row from lListData into cTable. The database must be logged-on and the table must
already exist. It is also assumed that the list definition is compatible with the table definition (Studio 10 and later)

$lastrowid() $lastrowid() returns the rowid of the most recent successful INSERT into the database from the current connection
$rowsmodified() $rowsmodified() returns the total number of database table rows that have been affected by INSERT, UPDATE and DELETE

operations since the connection was opened (includes all statement objects)

Data Type Mapping

Omnis to SQLite

The SQLite DAM creates custom data types in order to preserve information about Omnis subtypes, notably: DATE(n) as well as
PICTURE, LIST, ROW, OBJECT and OBJECTREF. There are also single mappings for Omnis Character and National data, implying
that CHAR(n) andNCHAR(n) can store up to themaximumfield length supportedbyOmnis (10000000 characters). This is contrary
to other relational databases which impose a fixed size on such columns.

Although this greatly improves compatibility between Omnis and SQLite, if portability of the data file is of concern, then it may be
preferable to avoid using $createnames() / $coltext() in favor of manual statements that use standard SQL types, e.g. VARCHAR(n),
DATE, TEXT and BLOB.

Omnis Data Type SQLite Data Type

CHARACTER
Character n CHAR(n)
National n NCHAR(n)
NUMBER
Integer 64 bit BIGINT
Integer 32 bit INTEGER
Short integer TINYINT UNSIGNED
Number 0..14dp NUMERIC(15, 0..14)
Short number 0/2dp NUMERIC(9, 0/2)
Number floating dp FLOAT
DATE/TIME
Short date 1900..1999 DATE(1900)
Short date 1980..2079 DATE(1980)
Short date 2000..2099 DATE(2000)
Short time TIME
Datetime (all subtypes) TIMESTAMP
OTHER
Boolean BIT
Sequence INTEGER PRIMARY KEY (auto increments when

inserted as NULL)
Picture PICTURE
List LIST
Row ROW
Object OBJECT
Object reference OBJECTREF
Binary / other BINARY

SQLite to Omnis

The SQLite DAM recognises several additional SQL data types in order to maximise compatibility with externally generated data
files as well as those generated by Omnis.

SQLite Data Type Omnis Data Type

NUMBER
TINYINT UNSIGNED Short integer 0..255
TINYINT, INT, SMALLINT, INTEGER Integer 32 bit
SEQUENCE, INT AUTO INCREMENT Sequence
BIGINT Integer 64 bit
FLOAT, REAL, DOUBLE Number floating dp

315



SQLite Data Type Omnis Data Type

NUMERIC(p,s), DEC(p,s), DECIMAL (p,s) Short number s dp (p <=9, s=0 or 2) Number s dp (p <=
15) Number floating dp (p > 15)

DATE/TIME
DATE(1900) Short date 1900..1999
DATE(1980) Short date 1980..2079
DATE(2000) Short date 2000..2099
DATE, TIMESTAMP, TIME Date Time (#FDT)
CHARACTER
CHAR, VARCHAR, TEXT, CLOB, Character
NCHAR, NVARCHAR, NATIONAL National
OTHERS
BOOLEAN, BOOL, BIT Boolean
PICTURE Picture
LIST List
ROW Row
OBJECT Object
OBJECTREF Object reference
BINARY / other Binary

Troubleshooting

The following points may help in resolving programming issues encountered using SQLite session and statement objects.

For additional updated troubleshooting issues, refer to the readme file which accompanies the installation media.

For a detailed explanation of the SQL syntax supported by SQLite, please refer the SQLite website: www.sqlite.org

• SQLite does not currently support dynamic creation of SQL stored procedures or functions. The associated methods;
$rpcprocedures(), $rpcparameters() & $rpc() therefore return kFalse.

• The SQLite API handles the transfer of binary data automatically. The $blobsize, $lobchunksize and $lobthreshold properties
are therefore ignored.

• For performance reasons, journaling mode is set to PERSIST for the SQLite DAM. For optimum performance, especially on
Linux it may be desirable to turn off journaling, (“PRAGMA journal_mode = OFF”). Note: in this mode however it will not be
possible to rollback manual transactions.

• You may experience slow performance during certain INSERT operations. Each INSERT and UPDATE operation is normally
committed to thediskdrive so as topreserve integrity of thedata in the event of a crashor power failure. Executing “PRAGMA
synchronous=OFF” tells SQLite not to wait for data to reach the disk surface between writes which results in much faster
performance. This risks data loss or corruption in the event of a crash however. Alternatively, you canusemanual transaction
mode (kSessionTranManual) to commit several INSERT operations at once.

• A column returned fromSELECT statement that is the result of an expressionor sub-querymay require anadditional column
name alias containing the intended data type. Refer to Calculated Columns and Sub-Queries above for further details.

Oracle

This section contains additional information you need to access an Oracle database, including server-specific programming,
PL/SQL, data type mapping to and from Oracle, as well as troubleshooting. For general information about logging on and man-
aging your database using the Omnis SQL Browser, refer to the earlier parts of this manual.

Properties and Methods

In addition to the “base” properties and methods described in the SQL Programming chapter, the Oracle DAM provides the
following additional features.

Session Methods

316

http://www.sqlite.org


Method Description

$proxyas() SessionObj.$proxyas(cUsername [,cPassword, lRoles]). Allows the supplied user to connect to Oracle through the
current connection, which must already be logged-on. The session then acquires the roles and privileges
associated with that user. An additional list of roles to be used with the proxy session can also be supplied if
required. The list should consist of a single column of type Character. The password should be supplied if the
proxy requires authentication by password. $proxyas() can be called repeatedly with different usernames if
required, in which case the current proxy is implicitly terminated before the new proxy is established.

$endproxy() SessionObj.$endproxy(). Explicitly tests for and terminates a proxy session if one exists, returning the session roles
and privileges back to those of the primary connection.

$getnames() SessionObj.$getnames(&list). Retrieves a list of TNS names defined in the local tnsnames.ora file together with
their connection attributes supplied as sub-rows. Returns kTrue on success or kFalse if the tnsnames.ora file
cannot be read or parsed (tnsnames.ora is located using the TNS_ADMIN environment variable). Requires Studio
10.2 revision 31232 or later.

Session Properties

Property Description

$authmode Oracle 8 or above: Specifies the authentication mode to be used with the connection. By default, kAuthDefault is used. If you have
sufficient privileges however, kAuthSysOper or kAuthSysDba can be supplied. $authmode must be set before executing $logon().

$binaryfloat If kTrue, Omnis Number floating dp columns are mapped to BINARY_FLOAT. If kFalse (the default); FLOAT is used.
$binarytoblob If set to kTrue, Omnis binary fields will be mapped to the BLOB data type. This affects inserts and updates as well as the text returned

by $createnames().When set to kFalse, the DAMmaps binary fields to the Oracle LONG RAW data type (Oracle7 behaviour). This
property is read-only for DAMORA7 and defaults to kTrue for DAMORA8.

$booltonum If set to kTrue, Omnis Boolean fields will be mapped to the Oracle NUMBER(1,0) data type. Bound kTrue and kFalse values will be
written as 1 and 0, respectively. $createnames() will return NUMBER(1,0) as opposed to VARCHAR2(3). When set to kFalse (default), the
old behavior is retained.

$credentials Specifies the type of credentials to be used for establishing the connection. Valid modes are:
-Authentication via username and password (kCredRDBMS) -Authentication using the Windows user account (kCredExt) To establish a
proxy connection, please refer to the $proxyas() method.

$datetype The Oracle data type used to map Omnis Datetime fields. Also used for input bind variables. The default value is “DATE”.
$emptyasnull When kTrue, empty Omnis strings are inserted as NULL. When kFalse, they are inserted as chr(0). $emptyasnull defaults to kTrue.
$internalcharmapping If set to kFalse, conversion of non-Unicode character data to and from the Omnis character set is disabled, even when

$charmap=kSessionCharMapOmnis or kSessionCharMapTable, thus allowing custom character maps to be used with native
characters if required. Default setting is kTrue.

$longchartoclob If set to kTrue, Omnis large character fields > $maxvarchar2 in length will be mapped to the CLOB data type. This affects inserts and
updates as well as the text returned by $createnames(). When set to kFalse, the DAMmaps long character fields to the Oracle LONG
data type (Oracle7 behaviour). This property is read-only for DAMORA7 and defaults to kTrue for DAMORA8.

$maxvarchar2 Default is 2000. Specifies the length above which Omnis character columns will be mapped to the LONG/CLOB data type in Oracle 7 &
8. The max value is 4000 for DAMORA8 and 2000 for DAMORA7. Setting $maxvarchar2 to zero forces all character data to be mapped
to the LONG/CLOB data type.

$nationaltonclob Oracle 8 or above: is used to alter the default mapping of Omnis Character and National types. By default, Omnis Character and
National fields with a subtype greater than $maxvarchar2 are mapped to the NCLOB data type. By setting $nationaltonclob to kTrue
only National fields with a subtype >$maxvarchar2 are mapped as NCLOBs. Character fields with subtype >maxvarchar2 are mapped
as non-Unicode CLOBs. Character fields mapped in this way are subject to data loss/truncation where such fields contain Unicode
characters.

$nationaltonvarchar Only available in the Unicode DAM, $nationaltonvarchar is used to alter the default mapping of Omnis Character and National types.
By default, Omnis Character and National fields with a subtype <= $maxvarchar2 are mapped to the NVARCHAR2 data type. By setting
$nationaltonvarchar to kTrue only National fields with a subtype <= $maxvarchar2 are mapped as NVARCHAR2. Character fields with
subtype <= $maxvarchar2 are mapped as non-Unicode VARCHAR2 columns. Character fields mapped in this way are subject to data
loss/truncation where such fields contain Unicode characters. Please note VARCHAR2 and NVARCHAR2 columns are limited to 4000
bytes. Hence NVARCHAR2 columns are limited to 2000 UTF-16 characters.

$nativewarncode A warning code issued by the clientware in response to the last session method to be executed.
$nativewarntext A warning message issued by the clientware in response to the last session method to be executed.
$newpassword If set, the DAM will attempt to change the password during $logon(). Intended to allow expired passwords to be changed but can also

be used in the general case.
If successful, the logon will proceed as normal, the $password property will be updated and $newpassword will be cleared. When
changing the password, the existing username and password should be passed via the $logon() method as normal.

$nullasempty Default value kFalse. If kTrue Null values are converted to empty values when fetched from the database.
$timezone Timezone used to modify incoming/outgoing timestamps that contain time zone attributes. $timezone is initialised from the local

session at logon.
$trailingspaces Default value kFalse. If kFalse is specified any trailing spaces on character data being inserted are stripped. If kTrue is specified, trailing

spaces are kept.

317



Property Description

$truetext & $falsetext Studio 5.0 and later. Contain the text that will be inserted for Boolean bind variables. Where these values where previously taken from
the Omnis localization datafile, these properties now permit localization-independent values to be inserted, e.g. ‘YES’ & ‘NO’. For
backwards compatibility, default values are taken from Omnisloc.df1. Affects the text returned by $createnames() and the size of
buffers used to insert data.

$querytimeout Studio 4.3.2/5.0.1 and later. This is the timeout in seconds for any statement executed via $execute() or $execdirect(). Designed to
detect Unix network hangs, this property has no effect for Win32 and macOS. When a timeout occurs, the connection is marked bad
and a re-connect is necessary. Default value is 10 seconds.

Statement Methods

Methods Description

$plsql() StatementObj.$plsql(cPLSQLtext[,iColNo…]). This function should be used instead of $prepare() when you want to call server
procedures that contain bound OUT or IN/OUT parameters.

$prepareforupdate() StatementObj.$prepareforupdate(vTableDef,cTablename[,cWhere]) creates and prepares a ‘select for update’ statement for
specific use with positioned updates and deletes. vTableDef is a row or list variable defined with columns to be selected.

$posdelete() StatementObj.$posdelete(oStatement) deletes a row positioned by the specified statement object. oStatement is a
statement object prepared previously using $prepareforupdate(), and executed.

$posupdate() StatementObj.$posupdate(oStatement,wRow) updates a row positioned by the specified statement object. oStatement is a
statement object prepared previously using $prepareforupdate(), and executed.

Statement Properties

Property Description

$nativewarncode A warning code issued by the clientware in response to the last statement method to be executed.
$nativewarntext A warning message issued by the clientware in response to the last statement method to be executed.
$plsqlarraysize When retrieving data into an Omnis list via PlSql, the number of rows that will be fetched is not known until the plsql executes.

Historically, the DAM reserved a pre-determined buffer size of 32512 bytes per list column to be fetched. If the actual number of
rows fetched * column size (in bytes) exceeds this limit for a given column, ORA-06513 is returned. The column buffer size is now set
according to $plsqlarraysize (default value 32512), thus the buffer size can be raised (or lowered) as required in order to
accommodate the entire result set.

Connecting to your Database

To connect to your database, you need to create a session object with a subtype ORACLE8SESS (or the legacy subtype: ORA-
CLE7SESS). In order to log on to the database using the SessObj.$logon() method, the hostnamemust contain a valid Oracle host
alias previously generated by the Oracle client tools.

Mixing Unicode and Non-Unicode Data Types

This section summarises recent changes made to the Unicode Oracle Object DAM designed to enable insertion and retrieval of
mixed ANSI and Unicode character types.

In the case of Oracle 8i and later, these data types are:

Data type Description

CHAR Fixed single-byte character data, limited to 2000 bytes.
NCHAR Fixed multi-byte character data, limited to 2000 bytes. (1000 UCS-2 encoded characters)
VARCHAR2 Varying length, single-byte character data, limited to 4000 bytes.
NVARCHAR2 Varying length, multi-byte character data, limited to 4000 bytes. (2000 UCS-2 encoded characters)
CLOB Character Large Object- single-byte character data.
NCLOB National Character Large Object- multi-byte character data.
LONG Varying length, single-byte character data, limited to 2GB. Supported for backward compatibility

only.

By default, the Unicode Oracle DAMmaps all Omnis character data to the NVARCHAR2 and NCLOB data types, dependent on the
field length of the Omnis bind variable. However, the Oracle DAM provides session properties which affect the Omnis to Oracle
data type mappings:

318



• $nationaltonvarchar
If set to kTrue, Character and National data types are treated differently when being inserted to VARCHAR2 / NVARCHAR2
columns.

• $nationaltonclob
If set to kTrue, large Character and National data types are treated differently when being inserted to CLOB / NCLOB
columns.

• $maxvarchar2
Sets thebyte limit abovewhichOmnis character fieldswill bemapped toCLOB/NCLOBdata types as opposed toVARCHAR2
/ NVARCHAR2 columns. The maximum value is 4000 bytes.

• $longchartoclob
If set to kTrue (the default), Omnis large character fields > $maxvarchar2 in byte length will bemapped to the CLOB/NCLOB
data type. If set to kFalse, the LONG data type is used.

Reading Unicode and Non-Unicode Data

The Oracle DAM automatically detects the data type of retrieved character columns and converts the data accordingly. There is
no need to modify any properties in order to retrieve mixed ANSI and/or Unicode Data.

Insertion/Update of CHAR and VARCHAR2 data

To write short character data to ANSI columns it is necessary to set $nationaltonvarchar to kTrue. In this mode, Omnis Character
fields will be mapped to VARCHAR2 and National fields will be mapped to NVARCHAR2.

When set to kFalse (the default), both Character and National types will be mapped to NVARCHAR2.

Insertion/Update of CLOB data

Where the Omnis field length exceeds $maxvarchar2, the DAMwill map to either CLOB, NCLOB or LONG dependent on the value
of the $nationaltonclob and $longchartoclob properties. To write long character data to ANSI CLOB columns, it is necessary to
set $nationaltonclob to kTrue. In this mode, Omnis Character fields will be mapped to CLOB and National fields will be mapped
to NCLOB. When set to kFalse (the default), both Character and National types with byte sizes exceeding $maxvarchar2 will be
mapped to NCLOB.

Note that where Omnis fields are mapped to NCLOB columns, $maxvarchar2 is interpreted as the length in bytes. Thus when set
to 4000, this mapping will be applied for Character and/or National fields with a field length > 2000 characters

Fetching Very Large Objects

The Oracle DAM has the ability to fetch very large objects (up to 2GB) directly to the local file system. Two new properties have
been added to the session object:

• $filethreshold
the file threshold which is initially set to 50MB

• $filedirectory
the directory to receive the file which is initially set from the USERPROFILE environment variable onWindows or HOME on
macOS and Linux

Any CLOB, NCLOB, BLOB or BFILE column which exceeds $filethreshold will now be fetched in chunks using $lobchunksize di-
rectly to $filedirectory. The filename used will conform to “colname_xxxxxx.BIN” where xxxxxx is a unique identifier (based on
#CT). Any character data written to file will be converted to UTF8, otherwise raw data will be written. For BFILEs this means that
changing the file extension later (e.g. from .BIN to .AVI) will result in a facsimile of the original file. When a VLOB is written to file,
its filename is returned into the result list column. Since the result column was previously described as binary it is necessary to
extract the filename using the utf8tochar() function, e.g. Calculate filename as utf8tochar(lResult.1.colLOB).

Using Worker objects to fetch VLOBs

Fetching VLOBs on themain thread can cause Omnis to pause while the data is being transferred. Therefore, for large transfers it
may be preferable to SELECT and FETCH each VLOB using an Oracle worker object. The main thread is then free to continue and
will be notified when the VLOB has been fetched.

319



Insertion/Update of LONG data

When $longchartoclob is set to kFalse, Omnis Character and National fields which would otherwise map to CLOB or NCLOB will
be mapped to the LONG data type. Since Oracle tables may contain only one column of type LONG, this may lead to problems if
not used judiciously.

PL/SQL

Prior to Studio 10.2, the Oracle DAM does not support the remote procedure call methods such as $rpc() which are described in
the SQL Programming chapter. Server procedures can be executed via PL/SQL. The Oracle DAM fully supports Oracle PL/SQL; a
procedural language that the server executes.

You create a PL/SQL script and send it to Oracle in a similar way as any SQL statement and the server executes it. The statement
object method $plsql() should be used instead of $prepare() when you want to call server procedures that contain bound OUT
or IN/OUT parameters. Any PL/SQL bind variables being passed to Oracle should be passed as Omnis bind variables i.e. @[Xvar].
When $plsql() is called with bind variables, the DAM will check to see whether any return values are present after execution and
will return them back into the Omnis variables. This does not happen after a $prepare(). If you are creating stored procedures or
executing a server procedure for which you do not expect a return value, $prepare() will be sufficient.

# lEmpId is local Integer 32-bit with initial value of 0
Do StatObj.$plsql("begin select empno into @[lEmpId] from scott.emp where ename = 'JONES'; end;")
Do StatObj.$execute()
If lEmpId <>7566
# Incorrect value returned from procedure

End If

After the PL/SQL executes, the Omnis variable lEmpId has the value associated with the column id from the row with the name
‘Jones’.

The Oracle DAM supports select tables returned through PL/SQL procedures. However Oracle can only return single column
tables (arrays). The statement object method, $plsql(), has optional parameters that follow the cPLSQLtext parameter. These are
necessary when calling server procedures that return single column tables. To bind a column of an Omnis list to the select table
being returned requires a list variable to be bound in the SQL statement and the list columnnumber to be passed as an additional
parameter. If more than one select table is being returned, multiple lists will need to be bound and a column number parameter
passed for each list, in the same order as the lists are bound. The bound lists do not have to be different lists, the same list can be
boundmore than once in thePL/SQL statement, but youmust take care to specify a different columnnumber for each occurrence
of the bound list. If no column number parameter is passed for a bound list, the first column of the list is used by default.

Consider the following example table and PL/SQL package:

Table: accounts

idNUMBER(3,0) nameNVARCHAR2(256) balanceNUMBER(16,2) limitNUMBER(16,2)

1 Bill 2000 2200
2 Sally 120 100
3 Bob 1000 190
4 John 1700 1500
5 Graham 3000 21087
6 Helen 2000 1860
7 Betty 9000 1490
8 Walter 25000 17200
9 Sarah 9100 10000

create or replace package test as
type account_name is table of accounts.name%TYPE index by binary_integer;
type account_balance is table of accounts.balance%TYPE index by binary_integer;

end test;
create or replace procedure credit(accnum IN number, amount IN number,pname out test.account_name, pbalance out test.account_balance)
is
cursor c1 is select name,balance from accounts where balance > limit;
row_count BINARY_INTEGER;

begin
row_count := 1;

320



update accounts set balance = balance + amount where id = accnum;
open c1;
LOOP

FETCH c1 INTO pname(row_count),pbalance(row_count);
row_count := row_count + 1;
exit when c1%NOTFOUND;

end LOOP;
close c1;

end;

# Local variables:
# lName=Character 256, lBalance=Number2dp, lCreaditList=List
Do SessObj.$blobsize.$assign(32767) ## Prevents ORA-06505
Do lCreditlist.$define(lName,lBalance)
Do StatObj.$plsql('begin credit(2,490,@[lCreditlist], @[lCreditlist]); end;',1,2) Returns #F
Do StatObj.$execute() Returns #F
If Creditlist.$linecount<>6
# Incorrect data returned from stored procedure

End If

In the above example, the same list has been bound twice, the first bind variable binds the first column of the list and the second
bind variable binds the second column as defined by the second and third parameters of the $plsql() method.

After the PL/SQL procedure executes, lCreditList should contain 6 rows as follows:

name balance

Sally 610.00
Bob 1000.00
John 1700.00
Helen 2000.00
Betty 9000.00
Walter 25000.00

The balance of account id 2 (Sally) has been increased by 490. The procedure returns details of those accounts where the balance
column is greater than the limit column.

$rpc() Support

As of Studio 10.2 (rev 30204), there is support for $rpcprocedures(), $rpcparameters(), $rpcdefine() and $rpc(). $rpc() basically
executes a PL/SQL begin… end statement block that calls the stored procedure or function. Operation is as described in the SQL
Programming chapter with one exception. When bindng single-column SELECT tables as in the previous example, it is necessary
to pass the required list column numbers along with the parameter definitions. To do this, the DAM uses column 5 of the list
returned by $rpcparameters(). For example:

Do cStat.$rpcparameters('credit') Returns #F
Do procList.$define()
Do cStat.$fetch(procList,kFetchAll) ## returns 4 rows
Do procList.3.5.$assign(1) ## Assign the list column number to 1

Do procList.4.5.$assign(2) ## Assign the list column number to 2
Do cSess.$rpcdefine('credit',procList) Returns #F

Do lCreditList.$define(lName,lBalance)
Do cStat.$rpc('credit',1,10,lCreditList,lCreditList) Returns #F

The additional values assigned to procList correspond to the column numbers that would otherwise be passed via the $plsql()
method in the previous example.

You can also call a stored function using the $rpc() method and the return value will be written to the statement object’s $rpcre-
turnvalue property. For example:

321

/developers/resources/onlinedocs/Programming/07sqlprog.html#remote-procedures
/developers/resources/onlinedocs/Programming/07sqlprog.html#remote-procedures


Begin statement
Sta: CREATE OR REPLACE FUNCTION test_function
Sta: RETURN VARCHAR2 IS
Sta: BEGIN
Sta: RETURN 'This is being returned from a function';
Sta: END test_function;
End statement

Do cStat.$execdirect() Returns #F
Do cStat.$rpcparameters('test_function') Returns #F
Do procList.$define()
Do cStat.$fetch(procList,kFetchAll)

Do cSess.$rpcdefine('test_function',procList) Returns #F
Do cStat.$rpc('test_function') Returns #F ## now check the value of $rpcreturnvalue

Alternatively, could can invoke functions in SQL statements. For example:

Do cStat.$execdirect('select test_function() from dual') Returns #F

Do cStat.$fetchinto(lCharVar)

$rpc() is limited to calling a single stored procedure or function. To execute more complex PL/SQL constructs, you can continue
to use the $plsql() method.

Positioned Updates and Deletes

You can use positioned updates and deletes to update and delete specific rows from the select table you are fetching. To enable
positioned updates and deletes the statement object method, $prepareforupdate(), should be used. This method creates and
prepares a ‘select for update’ statement for specific use with positioned updates and deletes. A ‘select for update’ SQL statement
can be prepared using the $prepare() method. However, it will not store the current ROWID in the statement object.

You can use $prepareforupdate() in conjunction with $posupdate() and $posdelete() to update or delete a row, which is deter-
mined by the current row in the specified statement. The ‘select for update’ statement is built based on the parameters passed.
The columns will be derived from the list or row passed as the first parameter. If the cTablename parameter is omitted, the name
of the list/row is assumed to be the name of the table. A SQL WHERE clause is appended to the select statement if it has been
specified. After this statement has been executed the last row fetched will be seen to be the current row. If the statement does
not perform a fetch, there will not be a current row.

Note: For all position update and delete functionality the transaction mode must be kSessionTranManual.

# lEmpSt,lEmpUpSt,lEmpDelSt are Statement Object instances derived from the same session
# lTableName is a Character(32) variable
# iTableList and lTempList are list variables defined from schema class scPos1
# lDataRow is a row defined from schema class scPos1
# Fetch the row
Calculate lTableName as $classes.scPos1.$servertablename()
Do lEmpSt.$prepareforupdate(iTableList,lTableName)
Do lEmpSt.$execute()
Do lEmpSt.$fetch(lDataRow,1)
# Update this row
Calculate lDataRow.vala as 5 ## change the value of one of the columns
Do lEmpUpSt.$posupdate(lEmpSt,lDataRow)
Do lEmpUpSt.$execute()
# Fetch the next row
Do lEmpSt.$fetch(lTempList,2)
# delete this row
Do lEmpDelSt.$posdelete(lEmpSt)

Do lEmpDelSt.$execute()

322



Oracle 8 Data types

The Oracle8 DAM (DAMORA8) supercedes the older Oracle7 DAM (DAMORA7, which is no longer in development). DAMORA8
has been specifically written to connect to Oracle8 (and later) databases but can be used against an Oracle7 server using the
recommended clientware. In this case, the DAMwill encounter restrictions as described below, mainly concerned with data type
mapping of large objects.

Large Objects (LOBS))

CLOBs, NCLOBs and BLOBs are data types introduced for Oracle 8 that deal with large objects. Internal LOBs (BLOBs, CLOBs,
NCLOBs) are stored in the database tablespaces in a way that optimizes space and provides efficient access. These LOBs have
the full transactional support of the database server. The maximum length of a LOB/FILE is 4 gigabytes. Internal LOBs have copy
semantics. Thus, if a LOB in one row is copied to a LOB in another row, the actual LOB value is copied, and a new LOB locator is
created for the copied LOB.

The Oracle8 DAM uses locators to point to the data of a LOB or FILE. These locators are invisible as the DAM performs operations
on the locator to insert, update, delete and fetch the values. This means that you are only ever dealing with the values of the LOBs
and not the locators.

You can work with the locators rather than just the values using PL/SQL in conjunction with the dbms_lob package. Further
information can be found in the Oracle8i Supplied Packages Reference.

External LOBs (FILEs) are large data objects stored in the server’s operating system files outside the database tablespace. FILE
functionality is read-only. Oracle currently supports only binary files (BFILEs). The Oracle8 DAM uses locators to point to the data
of a FILE. The FILE locator will be invisible, as theDAMwill return the value of the external file and not the locator when performing
transactions with the BFILE data type. Even though the BFILE data type is read-only you can insert a directory alias and filename
into the column. These values are assigned to a single Omnis binary variable and separated by the ‘&’ symbol. The DAM will
assign these values to the locator so that when a fetch is performed on the locator the binary representation of the external file
corresponding to the alias and filename will be returned. An example is shown below.

# A Directory alias needs to be created on the server that points
# to an OS folder
myStat.$execdirect("create or replace directory sound as 'c:\bfiles'")
# BFILE1 and BFILE2 are Omnis variables of type Binary.
# The variable is calculated as
# '<DirectoryAlias>&<Filename>'.
Calculate BFILE1 as 'sound&wav2.wav'
Calculate BFILE2 as 'sound&wav3.wav'
myStat.$execdirect('insert into bfiletest values(1,@[BFILE1],@[BFILE2])')
# You can now select the data back and this time you can receive the binary representation of the file.
myStat.$execdirect('select * from bfiletest')
myStat.$fetch(myRow)
# The values contained in col2 and col3 of myRow can now be
# written to the local drive using the Omnis Fileops commands.
Calculate File as 'c:\windows\desktop\wavtest.wav'
Do Fileops.$createfile(File) Returns lErr
Do Fileops.$openfile(File) Returns lErr
Do Fileops.$writefile(myRow.2) Returns lErr

Do Fileops.$closefile() Returns lErr

Ref Cursor Data Types

The REF CURSOR is an Oracle 8 data type that is used to point to a set of results from a multi-row query. When executing a
multi-row query, Oracle opens an unnamed work area that stores processing information. To access the information, you can use
a variable of type REF CURSOR, which points to the work area. To create cursor variables, you define a REF CURSOR type and then
declare cursor variables of that type.

A REF CURSOR type can be defined in an Oracle Package object. For example:

create or replace package OmnisPackage
as
type cursorType is ref cursor;
end;

323



This data type can be used in other Oracle objects, such as procedures and functions in order to process result sets. An example
of a Stored function follows:

create or replace function OmnisFunction return OmnisPackage.cursorType
as
l_cursor OmnisPackage.cursorType;
begin
open l_cursor for select * from scott.dept;
return l_cursor;
end;

An example of a stored procedure that uses the defined REF CURSOR type follows:

create or replace procedure OmnisProcedure
( p_cursor in out OmnisPackage.cursorType )
as
begin
open p_cursor for select ename, empno from scott.emp order by ename;
end;

Cursor variables are like pointers, which hold the memory location (address) of some item instead of the item itself. So, declaring
a cursor variable creates a pointer, not an item.

REF CURSOR data types can be returned in three different ways; via a PL/SQL block, anOracle Stored Function or anOracle Stored
Procedure. The REF CURSOR type is a pointer to a result set. The SQL statement that returns the REF CURSORmust be prepared
using the $plsql()method. TheOracle 8DAMmaps the REF CURSOR type to anOmnis Oracle8 StatementObject*. The statement
object will be created by the DAM and will belong to the same session object as the Statement object that prepared the initial
SQL. It will have a $state of kStatementStateExecuted and, assuming that there is data in the result set, will have $resultspending
set to kTrue. Therefore, the statement object will be in a ‘Ready-For Fetch’ state. Below are examples of the three ways to return
and use a REF CURSOR in Omnis. The connection code and the creation of initial Statement Object (myStatement) have been
removed for clarity.

*As of Studio 5.2, the Object variable used to return the REF CURSOR result set may instead be passed as an Object reference if
preferred.

PL/SQL Block

The PL/SQLmethod does not require any SQL objects created on the server. All the PL/SQL code can be encapsulated in anOmnis
Statement block.

# declare vars: cursor1 (Object), myList1 (List)
Begin statement
Sta: begin
Sta: OPEN @[cursor1] FOR SELECT * FROM scott.emp;
Sta: end;
End statement
If myStatement.$plsql()
If myStatement.$execute()

Do cursor1.$fetch(myList1,kFetchAll)
# myList1 will contain the rows of the result set.

Else
OK message Error {[ myStatement.$nativeerrortext]}

End If
Else
OK message Error {[ myStatement.$nativeerrortext]}

End If

Stored Functions

Returning a REF CURSOR from a Stored Function requires an Oracle Stored Function on the database. The Function must have
a return type that has been defined as a REF CURSOR. For this example we will assume that the example Oracle Stored Function
described above has been created on the server.

324



# declare vars: cursor2 (Object), myList2 (List)
If myStatement.$plsql('begin @[cursor2] := OmnisFunction; end;')
If myStatement.$execute()

Do cursor2.$fetch(myList2,kFetchAll)
# myList2 will contain the rows of the result set.

Else
OK message Error {[ myStatement.$nativeerrortext]}

End If
Else
OK message Error {[ myStatement.$nativeerrortext]}

End If

Stored Procedures

Returning a REF CURSOR from an OUT or IN OUT parameter of a Stored Procedure requires an Oracle Stored Procedure on the
database. The Proceduremust have an OUT or IN OUT parameter type that has been defined as a REF CURSOR. For this example
we will assume that the example Oracle Stored Procedure described above has been created on the server.

# declare vars: cursor3 (Object), MyList3 (List)
If myStatement.$plsql('begin getemps(@[cursor3]); end;')
If myStatement.$execute()

Do cursor3.$fetch(myList3,kFetchAll)
# myList3 will contain the rows of the result set.

Else
OK message Error {[ myStatement.$nativeerrortext]}

End If
Else
OK message Error {[ myStatement.$nativeerrortext]}

End If

Oracle 9i Data types

The Oracle 8 Object DAM includes support for data types added for Oracle 9i, namely the XML and URI data types. The XML data
type lets you store native XML documents directly in anOracle database and eliminates the need to parse the documents coming
into and out of the database. Server specific properties and methods have been added to the DAM to support these enhanced
database operations.

Oracle 9i also introduced several new Universal Resource Identifier (URI) types. These are used to identify resources such as Web
content anywhere on theWeb and can be used to point to data either internally or externally from the database itself. In addition
to support for URIs, the Oracle DAM includes support for querying and other abstract functions provided for the URI types.

These changes were introduced with Omnis Studio version 3.2. The old-style, single threaded DAM (DORACLE8) can connect to
Oracle 9i databases, but does not support the XML and URI data types.

XMLType

The XMLType is a systemdefined data typewith predefinedmember functions to access XML data. You can perform the following
tasks with XMLType:

• Create columns of XMLType and use XMLType member functions on instances of the type.

• Create PL/SQL functions and procedures, with XMLType as argument and return parameters.

• Store, index, and manipulate XML data in XMLType columns.

URIType

The URIType is an abstract object type that can store instances of HttpUriType or DBUriType. Universal Resource Indicator refer-
ences can point to XML, HTML and custom internet content which can be located either locally within the database, externally to
the database but local to the server or remotely across an internet or network connection.

DBUriType

The DBUriType can obtain data pointed to by a DataBaseUri-reference. A DBUri-Ref is a database relative URI that is a special case
of the Uri-ref mechanism, where ref is guaranteed to work inside the context of a database and session. This ref is not a global ref
like the HTTP URL, instead it is local ref (URL) within the database.

325



HttpUriType

The HttpUriType implements the HTTP protocol for accessing remote pages.

UriFactoryType

It is not possible to generate table columns using theUriFactoryType. Rather, this is a PL/SQLpackage containing factorymethods
that can be used to generate the appropriate instance of the Uri types without having to hard code the implementation in the
program. Custom URI types can be defined and registered using this package.

For further information on the application of these data types, refer to the Oracle9i Application Developer’s Guide – XML.

Retrieving XML and URI data

In Oracle9i version 9.1, it is not possible to directly SELECT data from columns defined using these types. Instead, the appropriate
accessor functions should be used.

XMLType provides the extract(), getClobVal(), getStringVal(), and getNumberVal() functions for data query and retrieval. The ex-
tract() function has to be used in conjunction with one of the data type conversion functions, since it returns an object of type
XMLType. The following example SQL statement can be used to extract an XML document from an XMLType column:

SELECT a.xmlcol.extract(‘*’).getStringVal() AS mycol FROM mytable a

If required, the XPath expression parameter to the extract() function can be supplied using a character bind variable. For further
information on the extract() function and the supported Xpath syntax, refer to the Oracle9i Application Developer’s Guide – XML.

URITYPE and its derivatives provide the getClob(), getUrl() and getExternalUrl() functions for data retrieval. When getClob() is
executed, the URL stored in the database column is read. The document pointed to by the URL is then accessed and returned as
CLOB data which can be read into Omnis:

SELECT a.myuri.getclob() AS mycol FROM mytable a

The getUrl() and getExternalUrl() functions return the URL contained in the database column. (getExternalUrl() differs fromgetUrl
in that it escapes the URL so that it better conforms to the URL specification):

SELECT a.myuri.geturl() AS myurl FROM uritest a

The getClob(), getUrl() and getExternalUrl() functions can be overridden when creating custom URI types as defined using the
UriFactoryType. For information on the UriFactoryType, refer to the Oracle9i Application Developer’s Guide – XML.

Inserting XML and URI data

To insert XML data into an XMLType column, the data must be a valid XML document or fragment. This is because XMLType
validates the XML before storing it. A simple insert statement would be of the form:

INSERT INTO xmltable VALUES(…,sys.XMLType.createXML (‘<DOC> </DOC>’),…)

If required, the XML text can be supplied using a character bind variable.

XML data can also be supplied as CLOB data by inlining a SELECT statement (or some other expression which returns a CLOB):

INSERT INTO xmltable SELECT id, sys.XMLType.createXML(myclob) FROM clobtable;

Inlining ensures that createXML() receives a CLOB field, which is not possible from Omnis since CLOBs are converted into Omnis
character strings when fetched.

To insert a URL into a URIType column or one of its derivatives, use the createUri() function. For example:

INSERT INTO uritest VALUES (…,sys.httpUriType.createUri(‘http://www.omnis.net’),…)

If required, the URL can be supplied using an Omnis character bind variable.

326



Updating XML and URI data

In version 9.1, Oracle9i stores XMLType internally using the CLOB data type. Updates on CLOBs have to be performed on the entire
column and for this reason, when updating an XMLType column, it is necessary to re-insert the XML data.

UPDATE xmltest
SET xmlcol = sys.XMLType.createXml(@[iXMLText]) WHERE IDcol = @[iRecordNum]
Similarly, with URITypes, updates are performed as follows:
UPDATE uritable
SET uricol = sys.httpUriType.createUri(@[iHTMLURL]) WHERE IDcol = @[iRecordNum]

Oracle Data Type Mapping

Omnis to Oracle

Omnis Data Type ORACLE8 Data Type

CHARACTER
[1]Character/National <= the value of $maxvarchar2 (default is 2000) NVARCHAR2(n)
[1]Character/National > the value of $maxvarchar2 (default is 2000) NCLOB
DATE/TIME
Short date (all subtypes) DATE
Short time DATE
Date time (#FDT) DATE
NUMBER
Short integer (0 to 255) NUMBER(3, 0)
Integer 64 bit NUMBER(19,0)
Integer 32 bit NUMBER(11, 0)
Short number 0dp NUMBER(10, 0)
Short number 2dp NUMBER(10, 2)
Number floating dp FLOAT
Number 0..14dp NUMBER(16, 0..14)
OTHER
Boolean [2]VARCHAR2(3)
Sequence NUMBER(11, 0)
Picture [3]BLOB
Binary [3]BLOB
List [3]BLOB
Row [3]BLOB
Object [3]BLOB
Item reference [3]BLOB

[1] Dependant on the values of $nationaltonvarchar, $nationaltonclob and $maxvarchar2
[2] Dependant on the value of $booltonum
[3] Dependant on the value of $binarytoblob

Oracle to Omnis

Omnis Data Type ORACLE8 Data Type

CHARACTER / BINARY
CHAR / NCHAR Character
VARCHAR2 / NVARCHAR2 Character
CLOB / NCLOB Character
BLOB Binary
BFILE Binary
LONG Character
RAW Binary
LONG RAW Binary
DATE/TIME
DATE Date time (#FDT)
NUMBER
NUMBER(p,0) p>10 Integer 64 bit[1]

327



Omnis Data Type ORACLE8 Data Type

NUMBER(p,s) p<=10 or s>0 Number floating dp
NUMBER ( NUMBER(0,0) ) Number floating dp
FLOAT Number floating dp

[1] $fetch64bitints must be kTrue

Oracle Troubleshooting

• When performing transactions that use the new LOB data types the transaction mode must be set to either kSessionTra-
nAutomatic or kSessionTranManual. This is because LOB and file locators cannot be used across transactions. The DAMper-
forms functionality on these locators and when the transaction mode is either automatic or manual, the DAM can control
when to commit the command, which would be after all the LOB functionality has been performed. When the transaction
mode is server, Oracle commits (or rollbacks) after every statement and any LOB functionality performed by theDAMwould
result in an error.

• Oracle has a client character set and a server character set. If the two are not the same character set, Oracle will convert
between the two. If a character in the client character set also exists in the server character set, Oraclewill store that character
on the server. If the character doesn’t exist in the server character set, Oracle will do one of two things. Firstly, Oracle will see
if there is a close-fit character. For example, if you are trying to insert the character ‘à’, but that particular character is not in
the server character set, Oracle will store that character as an ‘a’ as it is a close-fit. If there is not a close-fit character, Oracle
will store that character as an ‘unknown’ character on the server. This ‘unknown’ character is usually ‘¿’. If the client character
set is the same as the server character set, no conversion takes place and all ASCII values of characters are preserved. On
retrieval of characters Oraclewill again convert but this time from the characters stored in theOracle database to the client’s
character set being used to retrieve the text.

• As with inserting Oracle will convert a character in the server character set to the same character in the client character set
if it exists. If not, it will try a ‘best fit’ solution before returning its ‘unknown’ character. To guarantee that Oracle doesn’t
convert the data in the database, the client character set should be the same as the server character set. It is possible to
use Omnis’ character maps to change some of the characters which aren’t correct to ones that are preferred (Non-Unicode
session objects only). This is useful when Oracle returns a ‘best fit’ character and not the original character.

Further troubleshooting notes, “how-tos” and tips can be found on the Omnis website at:

Sybase

This section contains the additional information you need to access a Sybase database, including server-specific programming,
data typemapping to and from Sybase, as well as troubleshooting. For general information about logging on andmanaging your
database using the Omnis SQL Browser, refer to the earlier parts of this manual.

Properties and Methods

In addition to the “base” properties and methods documented in the SQL Programming chapter, the Sybase DAM provides the
following additional features.

Session Properties

Property Description

$programname The program name that is registered by Sybase at logon. The default is $clib().$name.
$logontimeout The timeout in seconds for a logon. The default is 60 seconds. Set this to 0 for no timeout. Note that a timeout is ignored if

$failtimeout is kFalse.
$querytimeout Timeout in seconds for a query. The default is 0 for no timeout. Note that a timeout is ignored if $failtimeout is kFalse.
$failtimeout Set to kTrue to raise an error if a timeout occurs. If kTrue and a timeout occurs the connection is marked as dead and the session

is logged off.
$encryptpassword Set to kTrue to use password encryption when logging on. The default is kFalse.
$cterrorlayer Layer at which the current session client error occurred. Read only.
$cterrororigin Origin of current session client error. Read only.
$cterrorseverity Severity of current session client error. Read only.
$cterrornumber Error number of current session client error. Read only.

328



Property Description

$moneydps This property determines the number of decimal places used to store and display data retrieved fromMONEY columns. It is also
used when creating schemas- provided that this property is set before dragging the table into the library. $moneydps defaults to
4 for backward compatibility but can be set to 0, 1, 2, 3, 4, 5, 6, 8, 10, 12 or 14.

$locale The locale name that will be used by the connection. This is initially set to the default locale contained in the Sybase locales.dat
file. $locale may be set to a different value provided that the DAM is not logged on. Valid locale strings include locale names or
language-character set pairs contained in the locales.dat file for which the corresponding language modules are installed.
Assignment fails if the locale information specified cannot be found or is not installed.

$nativewarntext Information or warning text generated by the last operation (read-only)
$nationaltounichar Studio 5.1. When this property is set to kTrue, Omnis National fields will be mapped to Sybase NVARCHAR and Character fields will

be mapped to VARCHAR. Also affects the text returned by $createnames(). When kFalse (the default), all Character fields are
mapped to VARCHAR columns (supporting the UTF-8 encoding).

$sdbsocket Studio 8.0.2. Server-side TCP socket being used by a data bridge connection (read-only)

Session Methods

Method Description

$setremotepassword() SessObj.$setremotepassword(cServerName, cPassword). Set a password for a remote server connection.
This will fail if the session is logged on. If cServerName is NULL, the password is used as a universal
password for all servers with no specified password.

$clearremotepasswords() SessObj.$clearremotepasswords(). Clear all passwords for remote server connections.
$getnames() SessObj.$getnames(&list). Retrieves a list of directory service names contained in the local

sql.ini/interfaces/freetds.conf file together with their connection attributes supplied as sub-rows.
Returns kTrue on success or kFalse if the file cannot be opened or parsed. Uses the SYBASE &
FREETDSCONF environment variables to locate the configuration file. Requires Studio 10.2 revision
31237 or later.

Statement Properties

Property Description

$cterrorlayer Layer at which the current session client error occurred. Read only.
$cterrororigin Origin of current session client error. Read only.
$cterrorseverity Severity of current session client error. Read only.
$cterrornumber Error number of current session client error. Read only.
$rpcparamspending If kTrue this denotes that an rpc parameter result set is pending.
$bindshort0dpassmallint If kTrue, Short number 0dp parameters are bound to the server as SMALLINTs. Otherwise the default

mapping is used- NUMERIC(9,0).
$emptystringisblank When set to kTrue, the DAM inserts empty character strings into VARCHAR columns as single space

characters. When set to kFalse, a NULL or chr(0) is inserted. $emptystringisblank defaults to kTrue.
$emptystringisblank does not affect Omnis character strings >255 characters which map to TEXT
columns. Empty TEXT values are always inserted as single space characters.

Statement Methods

Method Description

$cancelresultset() StatementObj.$cancelresultset(). Cancel the current result set. This will allow any further result sets to be processed. If the
statement is using a cursor, the cursor is closed and its results are discarded.

$writelob() StatementObj.$writelob(vVariable, cTablename, cColumnname [,cWHERE-clause, bUselog = kTrue]). Updates a single image or
text column with the value of vVariable. The cTablename, cColumnname and optional WHERE clause identify the table column
to be updated. If bUselog is kTrue, changes may be rolled back

Connecting to your Database

To connect to your database, you need to create a session object with a subtype of SYBASESESS. In order to log on to the database
using the SessObj.$logon() method, the hostname must contain a valid Sybase host alias previously generated by the Sybase
client tools (see your Sybase documentation for more details).

329



Multiple Select Tables

create proc multi_select as
SELECT firstName, lastName FROM Agents
SELECT id, name FROM Customers

To execute this from an Omnis method and to fetch the results:

Do tStatement.$execdirect('exec multi_select') Returns #F
Do My_List1.$define()
Do tStatement.$fetch(My_List1,kFetchAll) Returns #1
If #1=kFetchFinished & tStatement.$resultspending=kTrue
Do My_List1.$define()
Do tStatement.$fetch(My_List1,kFetchAll) Returns #1

End If

The Sybase DAM reports the select tables exactly as Open Client reports them. If a select result set has no rows, $fetch() will return
kFetchFinished the first time it is invoked for that set.

Program Name

The Sybase sysprocesses table (in the master database) has a program_name column that stores a separate name for each con-
nection to the server. The session $programname property lets you put a name into this column for the current session so that
you can use it to distinguish multiple sessions.

The default name is the name of the current library, i.e. $clib().$name If you wish to change this youmust set this property before
logging on to the server, because the value gets set at logon. If the value is set after logon it does not take effect until the session
is logged on again. The value persists across logons and logoffs, and $clear() does not reset it.

If the string assigned to the property is too long, the DAM truncates it without reporting an error. The DAM can store amaximum
of 255 characters but the program_name field in the sysprocesses table currently only allows 16.

Error Handling

If an error is raised on either a Sybase session or statement object, the $errorcode and $errortext properties associated with the
object will provide the generic error code and error text. If there is an associated native Sybase server or client error this will be
returned in the $nativeerrorcode and $nativeerrortext properties associated with the object.

It is possible for an Omnis command to generate multiple Sybase server and client error messages. If this is the case, the ob-
ject’s $nativeerrorpending property will be set to kTrue. To retrieve the next set of error information the application can use the
$nextnativeerror() method. The DAM will return server errors and then client errors in the order in which they were generated.
Any informational messages returned from Sybase are ignored.

If a new Sybase DAM command is issued or a Sybase property is set, the current error information for that object is cleared. The
error set for the session is shared between the session and all statements in that session. If a session or statement clears the
current error set, any other statement with multiple errors pending will only be able to retrieve the last cached error since the
error set will have been cleared.

You should be aware that the Sybase server and client errors reported may have codes and messages that sometimes differ
between the macOS andWindows Sybase clients.

The Sybase DAM defines several of its own internal error codes. These are returned in the $nativeerrorcode and $nativeerrortext
properties of the session and statement.

Error Code Description

20000 The Omnis bind variable could not be mapped to an equivalent Sybase type.
20005 The session must not be logged on.
20010 The login timeout value must be >= 0.
20011 The query timeout value must be >= 0.
20030 Sybase TEXT and IMAGE columns cannot be bound as part of an RPC call.
20050 The Omnis field cannot be null or empty.
20051 The table namemust be a character string which is not null or empty
20052 The column namemust be a character string which is not null or empty

330



Error Code Description

20053 The WHERE-clause must be a character string
20054 The column to be updated was not a TEXT or IMAGE column
20055 A memory allocation error occurred during the $writelob command

If a Sybase session or statement object generates an Open Client error, the error code is decoded into the $cterrorlayer, $cter-
rorseverity, $cterrororigin and $cterrornumber. Sybase Open Client errors use these 4 error components to provide more detail
about the error raised.

If a timeout error occurs and the session’s $failtimeout property is kTrue, a timeout error will be raised, the connection will be
marked as dead and the session will be logged off. If the $failtimeout is set to kFalse (the default) the connection or query will be
re-tried.

Large Objects (LOBs)

The Sybase Object DAM can send and retrieve text and image fields which are referred to as LOBs or “large objects”. You can
insert, update and fetch the fields using the standard SQL objectmethods or you can use the $writelob() method to update a text
or image field on the DBMS, with the implicit functionality to retrieve a large text or image field.

Transferring BLOBs is very memory-intensive, since each layer of software has a copy of at least part of the blob. Thus, sending
a simple 40K picture can demand several times that amount of RAM before it gets passed over to the DBMS. Therefore an appli-
cation must have sufficient memory resources to transfer large text and image data. The built in chunking mechanism can be
used to reduce the amount of memory Omnis requires to transfer a LOB value. For example, the default settings for the session’s
$lobthreshold and $chunksize properties ensure that data greater than 32K is sent in chunks no greater than 32K. The chunksize
and threshold can be altered to suit the resources available. If a system has more memory, the threshold and chunksize can be
increased to send fewer, larger chunks.

There are no limitations, aside frommemory concerns, on sending or retrieving multiple LOBs in one SQL statement.

You should not forget to set the textsize parameter on the server. This parameter tells the server to truncate all outgoing values to
this setting (see your Sybase documentation for more details). Therefore, if you set the textsize parameter to the default of 32,767
and select a 500K image, you get a 32,767 byte value in Omnis.

Do tStatement.$execdirect('set textsize 123456')
# this sets the textsize parameter, for this session, to about 123K

This setting is for fetching values only. When fetching LOBs under Mac Classic using the standard commands, you should not
set this parameter to its largest value. Increasing this also causes Open Client to allocate more memory to deal with the larger
LOBs. Therefore, setting it too small will truncate your fetched data while setting it too large may cause Open Client to kill your
connection. If you are retrieving a variety of LOBs, you should try to set it as closely as you can to the size of the largest LOB; you
can set this for each SQL statement sent. You can also use the Sybase datalength() function to find out how long the value is that
you want to retrieve, and use this to set the textsize parameter.

The Sybase DAM provides a faster and more memory efficient way to update a text or image column through the use of the
statement method $writelob(). To use the $writelob() method you must already have the row in the database and the column
value that is being updated must have non-NULL data in it.. You would usually create the row with a blank (‘ ’) in the column, for
instance, use the $writelob() method to update the value with the LOB data.

Do tStatement.$execdirect ("insert into mytable (x, mycol) values (2, ' ')")
Do tStatement.$writelob(LOB_DATA,'mytable','mycol','where x=2',kTrue)

This command places the value of the Omnis field LOB_DATA into the columnmycol of the table mytable in the row where x has
the value of 2. Thus, the method places a single LOB value into a location that you specify.

The method is defined as:

StatementObj.$writelob(vVariable, cTablename, cColumnname [,cWHERE-clause, bUselog = kTrue])

The vVariable parameter is the Omnis variable containing the data to be sent to the server, in the example this is LOB_DATA. This
variable cannot be NULL or empty.

The cTablename and cColumnname parameters identify the table and column to update. These cannot be NULL or empty.

331



The cWHERE-clause parameter supplies an optional WHERE clause for a SQL SELECT statement, including the word ‘WHERE’.
If your WHERE clause is ambiguous Omnis updates the first LOB value it finds, so the value updated may not be the one you
intended. Make sure your clause specifies a unique row.

The bUseLog parameter denotes whether to log this action in the transaction log. If you do not log the action, you cannot roll it
back. The default is kTrue to log the update. Setting this parameter to kFalse requires that the select into/bulkcopy option be set
to true with the systemprocedure sp_dboption for the database on the DBMS. If you do not wish to log updates, youmust consult
your documentation and system administrator as this may have significant ramifications on being able to backup and recover
your database.

The $writelob() method sets the flag false and sets error information in the same way as a standard statement method.

Sybase recommend that data should be updated using the $writelob() method if the data size exceeds 100K.

Remote Procedure Calls

The Sybase DAM supports the use of the session method $rpcdefine() to define a remote procedure and the statement method
$rpc() to call a procedure. The DAM does not support the statement methods $rpcprocedures() and $rpcparameters().

An applicationmust generate theparameter list passed to $rpcdefine() to describe theparameters in the Sybaseprocedure. When
a $rpc() call invokes the procedure the parameters passed are mapped from their Omnis type definition to the equivalent Sybase
type in the sameway as standard Omnis bind variables. A $rpc() call will fail if a parameter definition includes an Omnis character
or binary field larger than 255 since the parameter will map to a text or image field which are not valid for use as parameters in
Sybase stored procedures.

If an rpc definition defines parameters of type kParameterInputOutput, these are treated as output parameters since Sybase does
not support updateable input parameters. The DAM cannot update output parameters directly. If the procedure uses output
parameters these must still be specified in the call to $rpc() and are returned as a parameter result set which is available when
the statement property $rpcparamspending is kTrue. They must be processed by the application in the same way as a normal
result set. Any result sets generated by the stored procedure must be processed before the parameter results become available.
The return status should not be included in the call to $rpc() as this will be set in the statement $rpcreturnvalue property which
is set after the stored procedure results are processed.

The following creates a Sybase stored procedure which takes 2 input parameters and 1 output parameter. This procedure returns
two result sets.

Do tStatement.$execdirect(\
'create procedure Test_SYBRPC @parm1 varchar(30), \
@parm2 varchar(30), @parm3 varchar(60) \
OUTPUT AS SELECT @parm3 = @parm1+@parm2 \
SELECT * from sys execute sp_who RETURN 12345')

A list is used to define this procedure in the Sybase session.

Do #L1.$define(#1,#2,#3,#4) Returns #F
Do #L1.$add(kInteger,kLongint,0,kParameterReturnValue)
Do #L1.$add(kCharacter,kSimplechar,30,kParameterInput)
Do #L1.$add(kCharacter,kSimplechar,30,kParameterInput)
Do #L1.$add(kCharacter,kSimplechar,30,kParameterOutput)
Do tSession.$rpcdefine('Test_SYBRPC',#L1) Returns #F

The procedure can then be called.

Calculate Parm1 as 'Hello ' ## Character 30
Calculate Parm2 as ' There' ## Character 30
Calculate Parm3 as ## Character 60
Do tStatement.$rpc('Test_SYBRPC',Parm1,Parm2,Parm3) Returns #F

Since the stored procedure generates two result sets these must be processed first.

This will fetch the results from the sysusers and sp_who queries.

If tStatement.$resultspending=kTrue
Do #L1.$define()
Do tStatement.$fetch(#L1,kFetchAll) Returns #1

332



End If
If tStatement.$resultspending=kTrue
Do #L1.$define()
Do tStatement.$fetch(#L1,kFetchAll) Returns #1

End If

The stored procedure return status is placed in the statement’s $rpcreturnvalue property and the parameter result set is then
available.

Calculate #1 as tStatement.$rpcreturnvalue ## will set #1 to 12345
If tStatement.$rpcparamspending=kTrue
Do #L1.$define()
Do tStatement.$fetch(#L1) Returns #1

End If

Calculate Parm3 as #L1.1.1 ## will set Parm3 to 'Hello There'

Multiple Cursors

If a statement is issued without using a cursor, i.e. $usecursor is set to kFalse, any results generated will block the connection and
no other operation on any other statement can be performed until the blocking result set is completely fetched or cancelled. To
avoid blocking the connectionwith pending results, use a statementwhich has the $usecursor set to kTrue. Note that a statement
using a Sybase cursor must have a unique statement name and only allows SQL SELECT and EXECUTE procedure commands to
be issued.

Meta-Data Queries

As of Studio 5.1.1, the $indexes() meta datamethod returns additional information via the DamInfoRow column. The DamInfoRow
will be defined with the following columns (as returned by the sp_statistics stored procedure):

Column Description

TableName Character column containing the table name passed previously.
IndexQualifier Character column indicating the index owner. For Sybase, this is usually the same as TableName.
IndexType Character column indicating the index type, e.g. “Clustered” or “Non-Clustered”.
Collation Character column indicating the collation type, either “Ascending” or “Descending”.
Cardinality Integer column containing the number of indexed or unique rows.
Pages Integer column containing the number of pages used to store the index.

Logon Problems using the SYBASEDAM

In the event of connection problems, there are a number of Technotes available on the Omnis website (https://www.omnis.net/
developers/resources/technotes/) which discuss Sybase connection issues in greater detail.

Possible causes:

• The $SYBASE/interfaces file is missing or the contents are invalid- follow the installation tasks outlined above.

• The logon hostname does not match the name contained in the $SYBASE/interfaces file- check the contents of the inter-
faces file, paying attention to upper and lower case characters.

• The supplied username and/or password were incorrect- check at the server.

• The xcomp:ini:sybasedam.ini file was not found or one or more of the environment variables are set to incorrect values.
Review this file.

• TheDAMdoes not load. The dynamic linkermay be unable to locate the required Sybase client libraries. Check environment
variables (DYLD_LIBRARY_PATH for macOS, LD_LIBRARY_PATH for Linux)

333

https://www.omnis.net/developers/resources/technotes/
https://www.omnis.net/developers/resources/technotes/


Sybase Troubleshooting

• Sybase is a case-sensitive RDBMS. Check the case of the table or column names if you can see a table but cannot select
anything out of it

• Sybase defaults to NOT NULL columns; you must initialize columns to a specific value while inserting data, or insertion will
fail

• Any number with no digits after the decimal point, that is > +/- 231 will generate an error and not be inserted. This is because
Sybase tries to parse numbers without decimal points as integers

• Sybase does not support binding a NULL Boolean field in Omnis to a Sybase bit field

• Sybase does some character mapping where required, but you may need to do character conversion explicitly using the
Omnis character mapping tables.

• Sybase interprets empty strings as single spaces.

• Fetching pictures fromSybase stored there by other applications, even in standard formats, is likely to cause problems, since
Omnis stores all pictures in a special format. This occurs even in platform-specific graphics formats such as PICT or BMP.

• The $tables() sessionmethod can only report information about tables in the current database and does not return system
tables.

• The $columns() sessionmethod can only report information about tables ownedby the current user in the current database.

• The $indexes() session method can only report information about indexes on tables in the current database.

• Sybase does not allow DDL statements to be issued within a user defined transaction, i.e. do not use statements such as
CREATE, DROP and ALTER when the session’s transactionmode is kSessionTranManual. Do not use the $indexes() method
using kSessionTranManual since this method creates a table.

• Sybase automatically strips spaces from character data returned to Omnis.

• “Data buffers could not be allocated” error following a logon attempt:
This error normally occurs if the Sybase environment variables; SYBASE, SYBASE_OCS and/or LANG/LC_ALL are not correct.
Check the sybinit.err file (in the Omnis folder) for more details about the error.

Further troubleshooting notes, “how-tos” and tips can be found on the Omnis website at: https://www.omnis.net/developers/
resources/technotes/

Sybase Data Type Mapping

Omnis to Sybase

Omnis Data Type Sybase Data Type

CHARACTER
Character/National 0 varchar(1)
Character/National 1 <= n <= 255 varchar(n)
Character/National > 255 text
DATE/TIME
Short date (all subtypes) datetime
Short time datetime
Date time (#FDT) datetime
NUMBER
Short integer (0 to 255) tinyint
Integer 32 bit int
Integer 64 bit bigint
Short number 0dp numeric(9,0)
Short number 2dp numeric(9,2)
Number floating dp double precision
Number 0..14dp numeric(15,0..14)
OTHER
Boolean bit
Sequence int
Binary/Picture/List/Row/Object/Item reference where $blobsize <= 255 varbinary($blobsize)

334

https://www.omnis.net/developers/resources/technotes/
https://www.omnis.net/developers/resources/technotes/


Omnis Data Type Sybase Data Type

Binary/Picture/List/Row/Object/Item reference where $blobsize > 255 image

Sybase to Omnis

Sybase Data Type Omnis Data Type

CHARACTER
char(n) Character n
varchar(n) Character n
nchar(n) Character n
nvarchar(n) Character n
text Character 10,000,000
DATE/TIME
datetime Date time (#FDT)
smalldatetime Date time (#FDT)
NUMBER
tinyint Short integer (0 to 255)
smallint Short number 0dp
int Integer 32 bit
bigint Integer 64 bit
numeric(p,n) Number (n)dp
decimal(p,n) Number (n)dp
real Number floating dp
float Number floating dp
double precision Number floating dp
money Number 4dp
smallmoney Number 4dp
OTHER
bit Boolean
binary(n) Binary
varbinary(n) Binary
image Binary

DB2

This section contains the additional information you need to access a DB2 Universal Server database, including server-specific
programming, data type mapping to and from DB2, as well as troubleshooting. For general information about logging on and
managing your database using the Omnis SQL Browser, refer to the earlier parts of this manual.

Properties and Methods

Session Properties

Property Description

$datetimeformat This stores an Omnis date format string used to map a Date time (#FDT) bind variable to the correct server representation. This is necessary as
DB2 supports different regional timestamp formats. The date is stored on the server in an internal binary representation. The default format is
‘y-M-D H:N:S’ This method is equivalent to the old-style keyword.

$drivername The name of the session driver.
$driverodbcversion The version number of the session driver.

Session Methods

Method Description

$getdatasources() SessionObj.$getdatasources(lListOrRow) populates the list with the name and description of the data sources defined on the client
machine. The list is redefined as having two columns- DataSourceName and Description. DataSourceName is defined as Character
32. Description is defined as Character 255. This method is equivalent to the old-style <GET_DATASOURCES> keyword.

335



Statement Properties

Property Description

$erroronnodata If set to kTrue (default), $execute() and $execdirect() will fail if execution returns SQL_NO_DATA, i.e. if a row addressed by the SQL
statement could not be found. If set to kFalse, SQL_NO_DATA errors are ignored to be consistent with other databases. $erroronnodata
does not affect SELECT statements.

Connecting to your Database

To connect to your database, you need to create a session object with a subtype of DB2SESS. In order to log on to the database
using the SessObj.$logon() method, the hostname must contain the catalog database name entered using the DB2 Command
Line Processor or using the Client Configuration Assistant if installed. The user name and password should contain the values
required by the database. For example:

Do SessObj.$logon('MyDatabase','UserID','Password','MySession') Returns #F

In the event of connection failure, the DAM will timeout as dictated by any timeout policy in use by the server. Logon failures are
usually reported immediately.

Transactions

Generally, using manual transaction mode results in increased performance because the session object does not force a commit
after each statement.

If you do not have a results set pending, the DB2 session object will commit each statement if the transactionmode is automatic.
If the transaction mode is server, the server commits the statement automatically.

Dates

The session property $defaultdate allows default values to be added to date values mapped to the server where the Omnis date
value does not contain complete information, e.g. when a Short time is mapped to a server DATETIME. The date stored in this
property is in a generic format, i.e. it is compatible with any regional date format that the server may be using.

Boolean Type

DB2 does not include a specific type for storing single bit data. The Omnis Boolean type is therefore converted to a CHAR(3) value
and stored as ‘YES’ or ’NO’ in the server table. The string representation can then be mapped back to an Omnis Boolean type
when the data is retrieved.

BLOB Type

The session property $blobsize can be used to specify the size argument for columns of type BLOB generated when the $create-
names and $coltext methods are used.

Values range from 1 to 10000000. The default value for $blobsize is 10000000 which is also the maximum size of an Omnis binary
variable.

This property is equivalent to the old-style <SETBLOBSIZE> keyword.

Meta-Data Queries

The meta-data statement methods $columns(), $indexes() and $tables() allow you to receive information about the objects in
your database. The $tables() method takes an optional owner name as a parameter. The $indexes() and $columns() methods
optionally take the database and/or owner name with the table name parameter. See SQL Programming for more information
on these methods.

When a database, owner or table name is specified, the result set is constrained by those schemas whichmeet the filter criterion,
i.e. to return column information about the “addressbk” table owned by “robert” in database “acc_db” the following can be issued.

Do tStatement.$columns(‘acc_db.robert.addressbk’) Returns #F

336



DB2 Troubleshooting

Reserved Words

This section covers the DB2 specific reserved words.

The following schema names are reserved: SYSCAT, SYSFUN, SYSIBM & SYSSTAT.

In addition, it is strongly recommended that schema names never begin with the SYS prefix, as SYS is by convention used to
indicate an area reserved by the system.

There are no words that are specifically reserved words in DB2. Keywords can be used as ordinary identifiers, except in a context
where they could also be interpreted as SQL keywords. In such cases, the word must be specified as a delimited identifier. For
example, COUNT cannot be used as a column name in a SELECT statement unless it is delimited.

IBM SQL and ISO/ANSI SQL92 include reservedwords, these reservedwords are not enforced by DB2Universal Database, however
it is recommended that they not be used as ordinary identifiers, since this reduces portability. Please see the final chapter in this
manual which lists the SQL reserved words.

Further troubleshooting notes, “how-tos” and tips can be found on the Omnis website at: https://www.omnis.net/developers/
resources/technotes/

DB2 Data Type Mapping

The following table describes the data type mapping for Omnis to DB2 connections. This mapping is predefined and is based on
the best fit for each of the Omnis data types.

Omnis to DB2 UDB

Omnis data type Server data type

CHARACTER
Character/National(n) <= 4000 VARCHAR(n)
4000 < Character/National(n) <= 32,700 LONG VARCHAR(n)
Character/National(n) > 32,700 CLOB(n)
DATE/TIME
Short date (all subtypes) DATE
Short time TIME
Date time (#FDT) DATETIME
NUMBER
Short integer SMALLINT
Integer 32 bit INTEGER
Integer 64 bit BIGINT
Short number 0 dp DOUBLE
Short number 2 dp DOUBLE
Number 0..14 dp DOUBLE
OTHER
Boolean CHAR (3)
Sequence INTEGER
Picture BLOB($blobsize)
Binary BLOB($blobsize)
List BLOB($blobsize)
Row BLOB($blobsize)
Object BLOB($blobsize)
Item reference N/A

DB2 UDB to Omnis

Server Data Type Omnis Data Type

NUMBER
SMALLINT Integer 32 bit
INTEGER Integer 32 bit
BIGINT Integer 64 bit
DECIMAL(p,s) Number (s)dp
NUMERIC(p,s) Number (s)dp

337

https://www.omnis.net/developers/resources/technotes/
https://www.omnis.net/developers/resources/technotes/


Server Data Type Omnis Data Type

FLOAT Number floating dp
REAL Number floating dp
DOUBLE Number floating dp
CHARACTER
CHAR(n) Character (n)
VARCHAR(n) Character (n)
LONG VARCHAR(n) Character (n)
CLOB(n) Character (n)
DATE/TIME
DATE Short date
TIME Short time
TIMESTAMP Date time (#FDT)
BINARY
BINARY Binary
VARBINARY Binary
LONGVARBINARY Binary
BLOB Binary
EXTENDERS
IMAGE Binary
AUDIO Binary
VIDEO Binary
TEXT Binary

MySQL

This section contains the additional information you need to access a MySQL database, including server-specific programming,
data typemapping to and fromMySQL, as well as troubleshooting. For general information about logging on andmanaging your
database using the Omnis SQL Browser, refer to the earlier parts of this manual.

Properties and Methods

Session Properties

Property Description

$clientflags SessObj.$clientflags sets the optional client flags logon parameter before executing $logon(), (The value can consist of several values
added together if required). Their use is beyond the scope of this text and the default value of zero should be suitable for most
purposes. Client flags are discussed further in the MySQL C API reference under mysql_real_connect().

$database SessObj.$database sets the additional database logon parameter before executing $logon(). Once logged on however, assigning a
new value to this property causes the current database to change. When the session is created, a default value of “mysql” is assigned
to this property.

$defaultdateisempty If kTrue, fetched datetimes matching $defaultdate are treated as empty values. (Studio 8.0.2)
$hostinfo SessObj.$hostinfo describes the type of connection in use, including the server host name. (Read-only)
$logontimeout The number of seconds before a connection attempt times out. SessObj.$connectoption() can also be used to set a logon timeout if

required.
$port SessObj.$port sets the additional port logon parameter before executing $logon(). This will be the port number for a TCP/IP

connection. The default port number is 3306.
$protoversion SessObj.$protoversion is the version of the protocol in use by the current connection. (Read-only)
$socket SessObj.$socket is the socket or named pipe that should be used for the connection, applicable to non-TCP/IP connections only.
$sslcipher SessObj.$sslcipher returns the name of the SSL cipher being used for the current SSL connection or empty for a non-SSL connection.
$threadid SessObj.$threadid is the thread ID of the current connection. (Read-only)
$threadsafe SessObj.$threadsafe is kTrue if the client library was compiled as thread-safe. (Read-only)

Session Methods

Method Description

$changeuser() SessObj.$changeuser({cUsername,cPassword}) changes the current user. The new user will be connected to the database
identified by the $database property.

$characterset() SessObj.$characterset() returns the name of the default character set for the current connection.

338



Method Description

$connectoption() SessObj.$connectoption({iOption,vArgument}) specifies extra connect options and affects the behavior of a connection. This
method may be called multiple times to set several options. Available option constants can be found in the Catalog (F9)
under MYSQLDAM-ConnectOptions. For further details, refer to the MySQL C API documentation for mysql_options(). As of
Studio 8.0.2, $connectoption() can also be called with named connection attributes, e.g. Do
sessObj.$connectoption(‘program_name’,’My Program’)

$getdatatypemapping() SessObj.$getdatatypemapping({lMappings}) retrieves a list of Omnis-to-MySQL data type mappings currently in use by the
session. This list is formatted as described in the section below and is suitable for re-assignment to the session via the
$setdatatypemapping() method if required. On successful retrieval of the list, $getdata typemapping() returns kTrue,
otherwise kFalse is returned. $getdatatypemapping() can be called either before or after the session has logged on.

$insertid() SessObj.$insertid() returns the ID of an AUTO_INCREMENT column generated by the most recently executed query. Use this
function after you have performed an INSERT query into a table that contains an AUTO_INCREMENT field. $insertid() returns
zero if the previous query did not generate an AUTO_INCREMENT value, or was not an INSERT/UPDATE

$ping() SessObj.$ping() checks whether the connection to the server is working. If it has gone down, an automatic reconnection is
attempted. $ping() returns kTrue if the connection is alive.

$query() SessObj.$query(cSqlText) allows SQL statements not supported by the MySQL prepared statement protocol to be executed
directly on the connection. At the time of writing, such statements include the following administrative commands: GRANT,
DROP DATABASE/USER, HANDLER, TRUNCATE, ALTER DATABASE/INDEX/USER, CREATE DATABASE/INDEX/USER, USE, LOCK
TABLES, UNLOCK TABLES, SAVEPOINT, ROLLBACK TO SAVEPOINT, FLUSH, CACHE INDEX, LOAD INDEX INTO CACHE, KILL
CONNECTION/QUERY, RESET. cSqlText can be either a single SQL statement or multiple statements and can contain square
bracket notation if required. Bind variables are not supported; this functionality is provided by the statement object. $query()
returns kTrue on success, otherwise kFalse. Error messages are returned via the session object.

$queryinfo() SessObj.$queryinfo() retrieves a string providing information about the most recently executed query for any statement
derived from the session, but only for certain INSERT, UPDATE and ALTER statements. For further information, refer to the
MySQL C API documentation for mysql_info().

$queryresult() SessObj.$queryresult(lResult) allows the result set generated by a previous call to $query() to be returned. lResult is a list
variable which is cleared and redefined from the columns of the result set. The entire result set is placed into lResult and
returned via a single call to $queryresult(). $queryresult() performs limited data type conversion on the various data types,
recognising binary, integer and decimal numbers, defaulting to Character for all other types. This method has no effect if
there is no result set pending on the session object. As of Studio 10.1 $queryresult() can be called repeatedly to return multiple
result sets. $queryresult() returns kFalse when there are no more result sets to return.

$serverdebuginfo() SessObj.$serverdebuginfo() instructs the server to write some debug information to its error log. For this to work, the
connected user must have the SUPER privilege. The log file name can be specified when the server is started by specifying
–log-error[=filename] on the command line.

$servershutdown() SessObj.$servershutdown() asks the database server to shut down. The connected user must have SHUTDOWN privileges.
Note: no further confirmation is sought before severing the connection and shutting the server down. Returns kTrue if the
server was successfully shutdown.

$serverstatus() SessObj.$serverstatus({cInfo}) returns information about the server’s current status, including the uptime in seconds and the
number of running threads, questions, reloads, and open tables.

$setdatatypemapping() SessObj.$setdatatypemapping({lMappings}) sets the Omnis-to-MySQL data type mappings for the session. The supplied list
contains a prioritised list of mappings for Omnis data types and subtypes to their intended MySQL server data types. See the
section below on the format of the mapping list. $setdata typemapping() can be used to map certain data type/subtypes to
customMySQL data types, e.g. SET and ENUM types. This is also explained in the section below. On successful execution of
$setdatatypemapping() kTrue is returned, otherwise kFalse is returned. SessObj.$setdata typemapping() can be called either
before or after the session has logged on.

$sslset SessObj.$sslset([cKey, cCert, cCA, cCAPath, cCipher]) is used for establishing a secure connection using SSL. It must be called
before $logon(). cKey is the path name to the key file. cCert is the path name to the certificate file. cCa is the path name to the
certificate authority file. cCAPath is the path name to a directory that contains trusted SSL CA certificates in pem format.
cCipher is a list of permissible ciphers to use for SSL encryption. Any unused SSL parameters will be treated as NULL.

Statement Methods

Method Description

$columns() StatObj.$columns({cTableName}). Returns information describing the columns of the supplied table name. cTableName can be qualified
with an optional database name; [database.]tablename if required. The DamInfoRow column returned by $columns() contains additional
information for each column described. The row is defined with the following columns: UniqueKey: kTrue if col is a unique index -
MultipleKey kTrue if col is part of a compound index Unsigned: kTrue if col has the UNSIGNED attribute ZeroFill: kTrue if col has the
ZEROFILL attribute Binary: kTrue if col contains binary (BLOB/TEXT) data AutoIncrement: kTrue if col has the AUTO_INCREMENT attribute
Number: kTrue if col contains numeric data DefaultValue: Returns the default value for col as char data

339



Method Description

$rpcprocedures() StatObj.$rpcprocedures([cOwner]) generates a result set containing the names of stored procedures and functions which (optionally) were
created by the named user. The DamInfoRow column returned by $rpcprocedures() contains additional information for each procedure
described. The row is defined with the following columns: Type: Specifies whether the row describes a procedure or function Specific
Name The specific name of the procedure. Language: The programming language contained within the procedure. SQL Data Access:
Describes data usage characteristics of the procedure. Deterministic: kTrue if the procedure is ‘deterministic’, i.e. always produces the
same result for the same input parameters. Security Type: Describes the permissions used when executing the procedure. Param List:
Contains a comma separated list of input/output parameters. Returns: Describes the data type returned by a function. Body: Returns the
text content of the procedure. Created: The date and time when the procedure was created. Modified: The date and time when the
procedure was last modified. SQL Mode: Describes the SQL syntax supported by the procedure. Comment: User comment added when
the procedure was created. Stored procedures and functions are not supported in versions of MySQL prior to 5.0.

Logging on to MySQL

The MySQL DAM interfaces directly with the MySQL client library, therefore the way the DAM logs on to the server is slightly
different to the other Object DAMs.

Specifically, the $logon() hostname parameter is taken as the server hostname or IP address. The username and password pa-
rameters are supplied as normal.

Aswell as theparameters supplied to $logon(), there are someadditional parameterswhich you can set using the following session
properties:

• $port - The port number of the MySQL server

• $database - The database name

• $clientflags - Sets additional behavior for the logon

• $socket - Specified if you do not want to use a TCP/IP connection

When logging on using the SQL Browser, default values are used when the Port and Database fields are left blank.

Transactions

If you require transaction support withMySQL, your server needs to support BDB or InnoDB table types. Manual transactionsmay
only be made on tables of these types.

When creating tables, you need to specify the table type required if you do not want the default type (MyISAM).

The following properties and methods apply to transactions. Use of these properties or methods is equivalent to executing the
SQL statements shown:

Method/Property Description

$begin() SessObj.$begin() = Begin
$commit() SessObj.$commit() = Commit
$rollback() SessObj.$rollback() = Rollback
$transactionmode SessObj.$transactionmode.$assign(SessionMode) kSessionTranAutomatic:

Autocommit = 1 (the default) kSessionTranServer: Autocommit =
1 kSessionTranManual: Autocommit = 0

If you are not using InnoDB or BDB table types, you can achieve table locking using the MySQL lock tables or unlock tables SQL
commands. Refer to the MySQL language reference for further details.

Using LOAD DATA

The MySQL DAM supports use of the LOAD DATA INFILE SQL syntax via the sessionobject.$query() method. You need to set the
kMySqlOptLocalInifile connect option to enable local files to be loaded. The default command syntax will load the contents of a
tab-delimited text file into the specified table, for example:

340



Do cSess.$connectoption(kMySqlOptLocalInifile,1) Returns #F
Do cSess.$logon('192.168.00.100','myUser','myPass','session1') Returns #F
Do cSess.$newstatement() Returns cStat
Do cStat.$execdirect('create table loadtest(col1 int, col2 varchar(32), col3 date, col4 numeric(9,2))') Returns #F

# Now load the data into the table..

Do cSess.$query("load data local infile 'C:/Users/myUser/Desktop/data.txt' into table loadtest") Returns #F

Example text file contents (tab-separated values):

1 One 2020-08-26 1.23
2 Two 2020-07-31 2.45
3 Three 2019-06-06 33.75
4 Four 2018-01-30 127.0
5 Five 1999-10-02 32.333

Please refer to the MySQL documentation for further details on the LOAD DATA statement.

MySQL Data Type Mapping

Omnis to MySQL

The default data type mappings from Omnis to MySQL are shown below.

Omnis Date Type MySQL Data Type

CHARACTER
Character n (n<=255) VARCHAR(n)
National n (n<=255) NATIONAL VARCHAR(n)
Character/National n (n<=65534) TEXT
Character/National n (65534<n<=10000000) MEDIUMTEXT
NUMBER
Integer 64 bit BIGINT
Integer 32 bit INT
Short integer TINYINT UNSIGNED
Number 0..14dp DECIMAL(15,0..14)
Number floating dp DOUBLE
Short number 0/2dp DECIMAL(9,0/2)
DATE/TIME
Short date (all subtypes) DATE
Short time TIME
Datetime (#FDT) DATETIME
OTHER
Boolean BOOL
Picture MEDIUMBLOB
List MEDIUMBLOB
Row MEDIUMBLOB
Object MEDIUMBLOB
Binary MEDIUMBLOB
Item reference TINYBLOB
Sequence INT UNSIGNED AUTO_INCREMENT PRIMARY KEY

Note that this is equivalent to the list returned by a call to $getdatatypemapping() on a newly created session object:

OmnisType OmnisSubtype Parameter MySqlType

char simple 255 VARCHAR($)
char national 255 NATIONAL VARCHAR($)
char national 65534 TEXT
char national 10000000 MEDIUMTEXT
integer 64 bit 0 BIGINT
integer 32 bit 0 INT

341

https://dev.mysql.com/doc/refman/8.0/en/load-data.html


OmnisType OmnisSubtype Parameter MySqlType

integer shortint 0 TINYINT UNSIGNED
number 14dp 0 DECIMAL(15,$)
number float 0 DOUBLE
number 2dpShortnum 0 DECIMAL(9,$)
boolean 0 BOOL
date date2000 0 DATE
date time 0 TIME
date datetime 0 DATETIME
picture 0 MEDIUMBLOB
list 0 MEDIUMBLOB
row 0 MEDIUMBLOB
object 0 MEDIUMBLOB
binary 0 MEDIUMBLOB
itemref 0 TINYBLOB

Assigning a new mapping table using $setdatatypemapping()

If you need tomake a change to the default Omnis to MySQL data typemappings, you should probably base your newmappings
on the default mappings obtainable by calling $getdatatypemapping() and add/remove lines to the returned list as required
before calling $setdatatypemapping() to install the newmapping table.

There are a number of points to note regarding the format and processing of the list used by these methods and these are
discussed below.

Omnis subtype precedence

Note that where multiple occurrences of Omnis types appear in the list, the Omnis subtype(s) should be specified in ascending
numerical order, especially if you intend a mapping to apply to all Omnis subtypes <= the supplied value. This is because when
searching for amatch, the list is processed in order from the first entry to last- the search ends at the first matching entry. The full
list of acceptable data subtypes can be found in theOmnis catalog (F9) and their text equivalents are shown in theOmnisSubtype
column, as summarised below:

Omnis constant Numeric value (precedence) Character equivalent (OmnisSubtype)

Character subtypes
kSimplechar 0 simple
kNatchar 1 national
Integer subtypes
k32bitint 0 32 bit integer
kShortint 32 shortint
k64bitint 64 64 bit integer
Number subtypes
k0dp 0 0dp
k1dp 1 1dp
k2dp 2 2dp
k3dp 3 3dp
k4dp 4 4dp
k5dp 5 5dp
k6dp 6 6dp
k8dp 8 8dp
k10dp 10 10dp
k12dp 12 12dp
k14dp 14 14dp
kFloatdp 24 float
k0dpShortnum 32 0dpShortnum
k2dpShortnum 34 2dpShortnumv
Datetime subtypes
kDate1900 0 date1900
kDate1980 1 date1980
kDate2000 2 date2000
kTime 6 time
kDatetime 1000 Datetime

Note that where an Omnis type does not have a subtype (e.g. Binary), it is acceptable to leave the subtype column blank.

342



Parameter column

The ‘Parameter’ value in the data type mapping list specifies the maximum length or size of data to which the mapping will
apply, e.g. a value of 255 specified for a character data type signifies that that mapping will apply to Omnis character data with a
length of <= 255 characters. You should therefore ensure that where there are multiple occurrences of the same Omnis data type
and subtype, these are entered in ascending order of parameter value. The maximum size of an Omnis character/binary field is
10,000,000 bytes.

MySqlType column

The MySqlType value specifies the string which will be returned by session.$createnames() when that row matches the supplied
Omnis data type & subtype. This can be (but is not restricted to) any string which constitutes a valid MySQL column type, e.g.

SET(‘One’,‘Two’,‘Three’,‘Four’)

Where a ‘$’ character is used as part of the MySQL type, the appropriate length or scale attribute will be substituted when $creat-
enames() is called.

For valid MySQL data type assignments, the DAM also uses the data type mapping table to map outgoing bind variables to their
corresponding MySQL column types.

Example applications of $setdatatypemapping()

The intended use of $setdatatypemapping() is to allow schema columns to conditionally map to custom MySQL data types, not
implemented by default, e.g. the SET, ENUM, GEOMETRY and YEAR types and also to allow extra type qualifiers to be added, such
as UNSIGNED, PRIMARY KEY, AUTO_INCREMENT, etc.

To get $createnames() to return one of these types, you might for example isolate a specific character string length and add a
data type mapping for your new type.

Then whenever $createnames() encounters a string of that specific length, the mapping to your new type will occur. If you want
to implement the SET data type, you could insert a new mapping entry between the first and second default entries, adjusting
the length parameters as shown below:

char simple 254 VARCHAR($)
char simple 255 SET(‘One’,’Two’,’Three’,’Four’)
char national 255 NATIONAL VARCHAR($)

Alternatively, you coulddedicate the ‘national’ character subtype for your customdata types, leaving the ‘simple’ character subtype
for standard character mappings.

MySQL to Omnis

The following mappings are hard-coded and cannot be altered.

MySQL Column Type Range OmnisType/Subtype

NUMBER
BIT/BOOL/TINYINT(1) Boolean
TINYINT (-128..+127) Integer 32 bit
SMALLINT 2^16 (-32768..+32767) Integer 32 bit
MEDIUMINT 2^24 (-8388608..+8388607) Integer 32 bit
INT/INTEGER 2^32 (-2147483648..+2147483647) Integer 32 bit
BIGINT 2^64 (-2^63..+2^63-1) Integer 64 bit
FLOAT Num floating dp
DOUBLE/REAL Num floating dp
DEC/DECIMAL/NUMERIC (precision<=9 & scale<=2) ShortNum 0..2dp
DEC/DECIMAL/NUMERIC (precision>9 or scale>2) Num 0..14dp
DATE/TIME
DATE Datetime (#FDT)
DATETIME Datetime (#FDT)
TIMESTAMP Datetime (#FDT)
TIME Datetime (#FDT)
YEAR Integer 32 bit
CHARACTER
CHAR 1 to 255 bytes fixed Character
VARCHAR 0 to 255 bytes varying Character

343



MySQL Column Type Range OmnisType/Subtype

TINYTEXT 255 (2^8 – 1) bytes Character
TEXT 65535 (2^16 – 1) bytes Character
MEDIUMTEXT 16777215 (2^24 – 1) bytes Character
LONGTEXT 4294967295 (2^32 – 1) bytes Character
ENUM Character
SET Character
BINARY
TINYBLOB 255 (2^8 – 1) bytes Binary
BLOB 65535 (2^16 – 1) bytes Binary
MEDIUMBLOB 16777215 (2^24 – 1) bytes Binary
LONGBLOB 4294967295 (2^32 – 1) bytes Binary

MySQL Troubleshooting

The following points may help in resolving programming issues encountered using MySQL session and statement objects. For
additional updated trouble shooting issues, refer to the readme file which accompanies your Omnis download

• $sqlstripspaces has no effect for MySQL sessions. MySQL automatically strips trailing spaces from data inserted into CHAR
and VARCHAR columns. Character data returned from the server will already be stripped of trailing spaces.

• MySQL 4.1 does not support chunking of fetched (output) LOB data (TEXT and BLOB types). Chunking of input LOB data is
supported.

• $rowcount will be –1 following execution of a SELECT, SHOW or EXPLAIN statement. This is because MySQL cannot deter-
mine this value until the final row has been fetched.

• The MySQL DAM is compatible with MySQL Server version 4.1 and later. Prior to Omnis Studio version 4.1, connection is only
possible to a commercial version of MySQL Server (i.e. MySQL “pro” or “classic”). Later versions of Studio do not have this
restriction.

• Authentication plug-in “caching_sha2_password” cannot be loaded. This error occurs attempting to connect to MySQL
server 8.0 and later using an imcompatible client library. In Studio 10.2 and later, refer to technote TNSQ0039 for details on
applying an external MySQL client library.

Further troubleshooting notes, “how-tos” and tips can be found on the Omnis website at: https://www.omnis.net/developers/
resources/technotes/

ODBC

This section contains the additional information you need to access a database usingODBCmiddleware, including server-specific
programming, data type mapping, as well as troubleshooting. For general information about logging on and managing your
database using the Omnis SQL Browser, refer to the earlier parts of this manual.

Properties and Methods

In addition to the “base” properties and methods documented in the SQL Programming chapter, the ODBC DAM provides the
following additional features.

Session Properties

Property Description

$dbmsname Once a session has been established this is the name of the database that the object is connected to. This defaults after a
$logoff. (Read only)

$dbmsversion Once a session has been established this is the version of the database that the object is connected to. This defaults after a
$logoff. (Read only)

$defaultdatabase When set, the session will attempt to log on to the database specified. A change to $defaultdatabase must be made before
logging on, otherwise the change will not take effect until the session is re-used. To stop using a default database for the
session, set $defaultdatabase to an empty string (the default value). This propertymay not be supported by all DBMS vendors.

344

https://www.omnis.net/developers/resources/technotes/tnsq0039.jsp
https://www.omnis.net/developers/resources/technotes/
https://www.omnis.net/developers/resources/technotes/


Property Description

$drivername Once a session has been established this is the name of the ODBC driver that the object is using. This defaults after a $logoff.
(Read only)

$driverversion Once a session has been established this is the version of the ODBC driver that the object is using. This defaults after a $logoff.
(Read only)

$driverodbcversion Once a session has been established this is the version of the ODBC API that the driver supports. This defaults after a $logoff.
(Read only)

$fetchnumericaschar If kTrue, NUMERIC & DECIMAL columns are defined and fetched as CHAR(64). Use this property to resolve ODBC
driver-specific issues when fetching numeric values.

$infoaserror If kTrue (the default), execution results that report SQL_SUCCESS_WITH_INFO are reported as errors. If kFalse, the DAM treats
this the same as SQL_SUCCESS and ignores the accompanying message. Studio 5.2 and later.

$logontimeout The timeout in seconds for a $logon() call. The default is 15 seconds. A value of 0 represents no timeout. A value of –1 can also
be specified to indicate that the DAM should not attempt to set a timeout value.

$mode macOS and Linux only. A kODBCMode…value used to select the ODBC driver manager library for non-standard ODBC
connections, e.g. SAP SQL Anywhere.

$odbencrypt If kTrue (the default) ODBC Bridge connections use end-to-end encryption. Improved network performance can be achieved
by disabling encryption. The ODBC Bridge uses the value that is in effect when $logon() is called, i.e. if kTrue when $logon() is
called, fetch results will still be encrypted for the duration of the connection even if $odbencrypt is subsequently cleared.

$programname The name to be registered at the server for the process associated with the session. By default, $programname is set to the
current library name. This property may not be supported by all DBMS vendors: see the $useprogramname property.

$querytimeout The timeout in seconds for a query. A value of 0 represents no timeout, which is the default.
$savefile Used in conjunction with $usefiledsn. If kTrue, invokes the SAVEFILE ODBC connection attribute which writes updated

connection details back to the specified File DSN.
$timezone The local timezone offset relative to GMT. The initial value is read from the OS when the session object is created and will be of

the form “+/-HH:MM”. See $usetimezone.
$trustedconnection Supported values are kODBCIgnoreTrusted (the default,) kODBCUseTrusted and kODBCNotTrusted. When a value of

kODBCUseTrusted is specified, the session attempts to log on to the DBMS using a server trusted connection, for which the
$username and $password will be ignored. When a value of kODBCNotTrusted is specified, the session attempts to log on to
the DBMS with an explicitly non-trusted connection. This property may not be supported by all DBMS vendors. Note that to
enforce trusted connections, it may be necessary to disable server prompting by setting $uselogonprompt to kFalse.

$usefiledsn If kTrue, the hostname specified at logon will be treated as a file DSN. The default is kFalse. Not all drivers support the use of
file DSNs.

$uselogonprompt Governs the use of logon prompts where there is insufficient information to connect Can also used to force the ODBC
Administrator library to display a configuration dialogue when connecting to File DSNs. $uselogonprompt accepts constant
values of: kODBCPromptNever (0), kODBCPromptComplete (1), kODBCPromptAlways (2). And kODBCPromptDsnLess (3).
Not all drivers can support this feature.

$useprogramname If kTrue, the session attempts to register $programname as the process name when logging on to the server. This property
may not be supported by all DBMS vendors. Hence the default value for $useprogramname is kFalse. For SQLServer, the
program name can be found in the sysprocesses table of the master database.

$usequalifiers When set to kTrue, the DAM treats qualified table names as owner.tablename. To prevent this, for instance when using a text
file driver, set $usequalifiers to kFalse. This property affects the behaviour of the $columns(), $tables(), $indexes() & $results()
session methods. $usequalifiers is ignored until the session logs on, at which time the default value is determined and
$usequalifiers is overwritten.

$usescale If kTrue, Omnis number dp columns are bound using a precision of 15 + the dp value. If kFalse (the default), number dp
columns are bound using a precision of 15. Also affects $createnames(). Studio 8.1.5 and later.

$usetimezone If kTrue, $timezone will be applied to values inserted and fetched from TIME & TIMESTAMP columns, that is; datetime values
are subject to modification by comparing the local timezone with the server’s timezone. Applies to MS-SQL Server
connections only.

$usevarcharmax If kTrue, Character columns > 4000 map to VARCHAR(MAX) / NVARCHAR(MAX) dependent on the value of $unicode. If kFalse,
they map to TEXT / NTEXT. Assumes the connection is to MS SQL Server.

$nationaltowchar Available only with the Unicode DAM. By default, Omnis Character and National fields are mapped to the SQL_WCHAR,
SQL_WVARCHAR and SQL_WLONGVARCHAR data types. By setting $nationaltowchar to kTrue only National fields will be
mapped to these types (to the equivalent server data types) and Character fields will be mapped to SQL_CHAR,
SQL_VARCHAR and SQL_LONGVARCHAR as determined by the Omnis field length. Character fields mapped in this way are
subject to data loss/truncation where such fields contain Unicode characters. When setting this property, please note that
Unicode data types usually have precision limits half that of their corresponding ANSI data types. For example, this is 8000 for
the SQL Server VARCHAR() data type but 4000 for NVARCHAR(). $nationaltowchar affects both the text returned by the
$createnames() method and the binding of input parameters.

$datesecdp The $datesecdp property specifies the number of decimal places used for server date columns. For use with Microsoft SQL
Server 2008 TIME and DATETIMEOFFSET data types which include a scale parameter. $datesecdp affects the string returned
by $createnames() as well as input binding. Defaults to 2 but valid values are in the range 0 to 7. The property is set to zero for
a MyODBC connection to allow correct type mapping to DATETIME.

345



Property Description

$defaultschema For use with Microsoft SQL Server 2005 and later. $defaultschema returns the schema name which owns tables created by
the current user. This should be used in place of username in methods such as $tables(). Assigning to this property invokes an
ALTER USER statement which changes the default schema for the user.

A number of additional session properties have been added to the ODBC DAM in Studio 4.3.1 to facilitate better understanding
and control of cursors and transactions. Use of these properties assumes that the session is logged-on and has been placed in
manual transaction mode (kSessionTranManual):

Property Description

$autobegintran (Read Only). This property always returns kTrue for DAMODBC because the ODBC API implicitly starts transactions,
even in manual transaction mode.

$cursorsensitivity (Read Only). This property returns kTrue if SQL cursors are sensitive to changes made by other cursors within the same
transaction. kFalse is returned if results returned by cursors are not sensitive to changes made by other cursors in the
same transaction.

$txncapability (Read Only). Returns one of the constant values listed in the Catalog under ODBCDAM-Transaction Types. Certain
drivers only support use of DML statements within transaction blocks (SELECT, INSERT, UPDATE, DELETE). Others may
ignore or permit use of DDL statements (CREATE TABLE, DROP INDEX, and so on) but may require the transaction
block to be committed immediately. kODBCTxnAll specifies that transactions can contain DDL statements and DML
statements in any order.

$multipletransactions (Read Only). Returns kTrue if the driver supports more than one active transaction at the same time, kFalse if only one
transaction can be active at any time.

$multipleresultsets (Read Only). Returns kTrue if the data source supports multiple result sets, kFalse if it does not.
$isolationoptions (Read Only). Returns a bitmask value representing the transaction isolation levels supported by the driver. The bit

positions correspond to the constant values listed in the Catalog under ODBCDAM-Isolation Levels.
$isolationlevel Returns the current transaction isolation level in use by the session. To change the isolation level, assign one of the

constants listed in the Catalog under ODBCDAM-Isolation Levels. The isolation level must be one the levels advertised
by $isolationoptions. Changing the isolation level implicitly invokes a $commit().

Session Methods

Method Description

$getdrivers() SessObj.$getdrivers(lResult) retrieves a list of all ODBC drivers installed on the system. lResult is populated with the list of drivers
installed and is defined with the following character columns: DriverName The alternate driver name (i.e. the descriptive name) Version
The version string reported by the driver CompanyName The Company name embedded within the driver file FileName The physical
path and file name of the driver CompanyName is only obtainable for Win32 and will return as empty for other platforms. DriverName
is obtainable directly from the driver only for Win32. Other platforms require each driver to be loaded and called in order to obtain the
version string. Hence, there will be a commensurate delay when calling this method. Example: Do
sessObj.$getdrivers(iDriverList) Returns #F

$getdatasources() SessObj.$getdatasources(lResult, kDSNMode) retrieves a list of ODBC DSNs of type specified by kDSNMode which should be passed as
either kODBCSystemDSN or kODBCUserDSN. $getdatasources() does not support File DSNs (see below). On return, lResult is defined
with two character columns: DSNName The User assigned name for the data source Driver The alternate name of the driver associated
with the data source Example: Do sessObj.$getdatasources(iDSNList,kODBCSystemDSN) Returns #F

$getinfo() $getinfo(lResult, cDSNName, kDSNMode) retrieves the information defined for the specified data source or driver as a list of
keyword-value pairs. kDSNMode should be passed as either kODBCSystemDSN, kODBCUserDSN or kODBCDriverInfo. $getinfo() does
not support File DSNs for which standard FileOps methods can be used to read/modify as required. On return lResult is defined with
the following character columns: KeyWord The name of the DSN/driver attribute Value The value of the DSN/driver attribute Example:
Do sessObj.$getinfo(iDSNinfo,’myDsn’,kODBCUserDSN) Returns #F

$setinfo() $setinfo(cDSNName, kDSNMode, lData) writes the information contained in lData to the specified Data source or Driver key in the
system information. lData should be defined with Keyword and Value columns as returned by $getinfo().If kDSNMode is
kODBCDriverInfo, this has the effect of modifying system information for the specified driver. cDSNName should contain the
descriptive name of the ODBC Driver as opposed to the physical file name. If kDSNMode is kODBCSystemDSN or kODBCUserDSN, this
has the effect of modifying the specified data source. $setinfo() does not register a new data source or driver although it will write data
to the DSN as though it already exists. To properly create a data source; use the $configdsn() method instead. To properly register a
driver, you should refer to the vendor’s installation program. Example: Do sessObj.$setinfo(‘myDsn’,kODBCUserDSN,iDSNinfo)
Returns #F

346



Method Description

$configdsn() $configdsn(kDSNMode, kRequestType, cDriverName, lAttributes) allows the specified datasource to be created, modified or removed.
kDSNMode should be either kODBCSystemDSN or kODBCUserDSN. $configdsn() does not support configuration of File DSNs- for
which an alternative strategy is provided. kRequestType should be passed as either kODBCAddDSN, kODBCModifyDSN or
kODBCRemoveDSN. cDriverName should correspond with the descriptive name of the driver (i.e. not the physical file name).
lAttributes should be defined with two character columns and is used to pass keyword-value pairs to the driver manager sufficient to
perform the required action. Usually this involves adding a single line to the list to identify the DSN to be created/modified/removed,
e.g. KeyWord Value DSN dsnname but can also include other keywords that are allowed by the driver. When $uselogonprompt is set
to kODBCPromptNever, this prevents $configdsn() from opening setup dialogues. The DSN is created/modified silently using values
read from the attribute list instead. Example: Do sessObj.$configdsn(kODBCUserDSN,kODBCAddDSN, ’SQL
Server’,lAttribList) Returns #F

$getoption() $getoption(kOption, cAttribute) allows the value of an ODBC configuration attribute to be retrieved. kOption should be passed as one
of the following constants:kODBCTrace Requests the TRACE on/off flag kODBCTraceLib Requests the name and path to the ODBC
trace library kODBCTraceFile Requests the name and path to the ODBC trace log kODBCFileDSNDir Requests the default directory
containing file DSNs kODBCPerfMon Requests the Performance monitoring on/off flag kODBCRetryWait Requests the connection
pool RetryWait timeout On return, cAttribute contains the value of the requested option as a character string. Example: Do
sessObj.$getoption(kODBCFileDSNDir,iFileDSNDir) Returns #F

$setoption() $setoption(kOption, cAttribute) allows the value of an ODBC configuration attribute to be modified. kOption should be either
kODBCTrace, kODBCTraceLib, kODBCTraceFile, kODBCFileDSNDir, kODBCPerfMon or kODBCRetryWait. cAttribute should contain a
character string representing the new value for the specified configuration option. Example: Do
sessObj.$setoption(kODBCTraceFile,iTraceFile) Returns #F

Connecting to your Database

Do SessObj.$logon('MyDataSource', , , 'MySession') Returns #F

When the session property $usefiledsn is set to kTrue, this specifies that the hostname parameter is to be treated as a file data
source name by the driver manager.

When the session property $uselogonprompt is set to kODBCPromptComplete, this specifies that the driver will prompt for miss-
ing logon information. Note that not all drivers support prompting and this may result in the logon failing.

Making a DSN-less Connection

Tomake a connection without using an ODBC DSN, all of the information necessary to make a connection needs to be passed as
an ODBC connection string and the session $uselogonprompt property needs to set to kODBCPromptDsnLess.

The connection string is passed to the $logon() method via the hostname parameter. The username and password parameters
are left blank.

ODBC connection strings consist of keyword-value pairs separated by semi-colons and are database specific. Examples of such
strings include:

For SQL Server:

Driver=SQL Server; Server=192.168.0.10; Database=accounts; Uid=fred; Pwd=secret

For the Omnis ODBC Driver:

Driver=Omnis ODBC Driver; DataFilePath=c:\TRAVEL.DF1; Username=myuser; Password=mypassword

For specific details on connection strings, please refer to the documentation supplied with the RDBMS or with the ODBC driver.

Connecting using the ODBC Databridge

For macOS and Linux in particular, or to make an ODBC connection in the absence of a platform-specific ODBC driver or driver
manager, you can “bridge” an ODBC connection across to a Windows PC which hosts the required ODBC driver necessary to
complete the connection.

This process is described more fully in the ODBC Databridge documentation.
However, to make connection using the ODBC Databridge, you should use a URL of the form:

Do SessObj.$logon('odbc://192.168.0.22:8063/dsnName','user1','pwd') Returns #F

The above example assumes that the ODBC Databrige is running on the specified IP address using the default port, and that
there is a User or System DSN named ‘dsnName’ defined on that machine.

347

https://www.omnis.net/developers/resources/download/tools/databridge.jsp


Transactions

Generally, using manual transaction mode results in increased performance because the session object does not force a commit
after each statement.

If you do not have a result set pending, ODBC session objects will commit each statement if the transaction mode is automatic.
If the transaction mode is server, the session may be committed depending on the behavior of the ODBC driver.

Dates

The session property $defaultdate allows default values to be added to date values mapped to the server where the Omnis date
value does not contain complete information, e.g. a Short time mapped to a server date time.

Multiple cursors

To allowmultiple select cursors when connecting to Microsoft SQLServer the statement issuing the SELECT must have the $use-
cursor property set to kTrue before the statement is executed. If a statement is issued when $usecursor is kFalse and this state-
ment returns a result set, this will prevent all other statements in the same session from returning data. The blocking results
must be completely processed or cleared before another result set can be generated. If a commit or rollback is performed on the
session, all the session’s statement cursors will be closed and all pending results will be lost. Note that a SQLServer cursor only
allows SQL SELECT and EXECUTE procedure commands to be issued.

SQL Server 2000 Data Types

The following new types were introduced with Microsoft SQLServer2000:

SQL_BIGINT

Values fetched into Omnis from BIGINT columns are converted into the Character 20 type. This is necessary since BIGINTs are
stored in 64 bits, giving them a range of ±263 or

-9223372036854775808 to 9223372036854775807. The largest numeric value which can be stored using the Integer 32 bit type is
±231 or –2147483648 to 2147483647.

Omnis Character variables can be input into BIGINT columns provided that the character length (precision) does not exceed 19.

Note: Hash variables such as #S1 cannot be bound as input variables for BIGINT columns since their length is preset to 10,000,000.

SQL_VARIANT

Values fetched from SQL_VARIANT columns are converted into the Binary type so they can be preserved in their raw format.

Since the data type, precision and scale are not known prior to fetching, it may be necessary to pre-process the table before
retrieving the variant data. This is done using the SQL_VARIANT_PROPERTY() function to build a list of variant types contained in
a specified column.

Do myStatement.$execdirect('select cast(SQL_VARIANT_PROPERTY(col3,'BaseType') as char(32)) from mytable') returns #F

When fetching the data into Omnis, the CAST() function can then be used inside the SELECT statement to ensure that the incom-
ing data gets converted to the proper Omnis types.

Do myStatement.$execdirect('select CAST(col3 as smalldatetime) from mytable') returns #F

For this reason, tables containing SQL_VARIANTs are probably best used in tandem with an index column, which is used to asso-
ciate a cast type with each row. Since there is no variant type in Omnis, there is no systematic way of reading a whole column of
variants.

Note: text, ntext, image & timestamp types are not supported by SQL_VARIANT.

Custom Data Types

When custom data types are fetched from SQL Server their base type is abstracted from the custom type and returned to Omnis.
For example, if a custom data type is created using;

Do myStatement.$execdirect('EXEC sp_addtype birthday, datetime, 'NOT NULL') returns #F

Do myStatement.$execdirect('create table test(col1 integer,col2 birthday)') returns #F

348



Then, a $columns() performed on the table, describes col2 as DATETIME

If a custom data type is specified when creating or altering a table, this is passed straight through the DAM.

TABLE

The TABLE data type can be used in two ways.

The first is as a local variable in a user SQL function. Local variables are defined as type table and can be used to temporarily store
the result of a query. This usage is beyond the scope of Omnis however.

The second is as the return value from a user-defined function. For example, the following function defines a table as it’s return
value. (The table must be defined in the RETURNS section.):

CREATE FUNCTION Function1 ( @Param integer )
RETURNS @myTable TABLE
(

col1 integer, col2 char(32)
)

AS
BEGIN
INSERT @myTable

SELECT * FROM valuetest WHERE col1 > @Param
RETURN

END

Omnis can then call the function to obtain the table results, e.g.:

Do mylist.$define(col1,col2)
Do myStatement.$execdirect('select * from Function1(50)') returns #F

Do myStatement.$fetch(myList,kFetchAll)
ODBC Administration

ODBC Administration

The $getdrivers(), $getdatasources(), $getinfo(), $setinfo(), $configdsn(), $getoption() and $setoption() session methods (docu-
mented above) allow the ODBC DAM to be used to add, modify and remove ODBC Data Source Names (DSNs) as well as to
retrieve and modify information about ODBC drivers and general ODBC administration attributes.

The $uselogonprompt property has been modified to allow driver prompting to be forced if required.

All of these methods return a boolean value to indicate successful operation. Errors generated by these methods are returned as
normal via the session object’s $nativeerrorcode and $nativeerrortext properties.

Configuration of File DSNs

Using $getoption() to retrieve the default directory for file DSNs allows the FileOps component to be used together with other
4GL techniques in configuring File datasources.

To create a File DSN, you should prompt for the new filename (the DSN Name) and use FileOps to create the new file. One or
more KeyWord-value pairs should also be written to the file, e.g. DRIVER=drivername- the minimum requirement for a File DSN.
To complete the setup of the new DSN, you should follow the procedure for modifying/testing the File DSN.

To modify or test a File DSN, use the following procedure:

• Set $usefiledsn to kTrue

• Set $savefile to kTrue

• Set $uselogonprompt to kODBCPromptAlways

• Execute $logon() with the name of the File DSN as the hostname.

Under Win32, this prompts the ODBC Administrator library to display the driver specific logon dialogue which prompts for infor-
mation necessary to make the connection. If the DAM is successful in logging on (and $savefile is set to kTrue), the Administrator
library writes the additional information back to the File DSN, hence modifying the datasource.

To remove a File DSN, you should use the FileOps component to manually delete the specified filename.

349



macOS and Linux Considerations

Under Unix, the DAM locates user DSN information (odbc.ini) using the value of the ODBCINI environment variable if is set. If
ODBCINI is not set, the DAM attempts to use the “.odbc.ini” (hidden file) in your user’s home directory or failing that, it defaults to
“/Library/ODBC/odbc.ini”.

TheDAM locates systemDSN information using the value of theODBCSYSINI environment variable if it is set. If ODBCSYSINI is not
set, the DAM attempts to locate the system driver information using the value of ODBCINSTINI instead. If ODBCSYSINI is set, this
location is also assumed for the location of the driver information file (odbcinst.ini). Note that if set, ODBCSYSINI should identify
a folder only- not a file name.

The ODBC Driver manager used on your systemmust support the necessary API calls in order to perform certain administration
functions (editing and modifying DSN information, for example). If the required API calls are missing, these functions will not be
available.

ODBC Troubleshooting

The following points may help in resolving issues in programming applications that use ODBC session objects.

• ODBC does not support any extended ORACLE cursor operations such as positioned update and delete.

• You must specify literals in SQL statements with single quotes (’), not double quotes (“).

• Some data sources may strip trailing spaces prior to sending it to the session object. SQL Server behaves in this way.

Further troubleshooting notes, “how-tos” and tips can be found on the Omnis website at: https://www.omnis.net/developers/
resources/technotes/

ODBC Data Type Mapping

The following table describes the data type mapping for Omnis to ODBC connections.

TheOmnis toODBCmappingwill attempt to pick the bestmatch based on the types the driver supports in the order listed. For ex-
ample, if the driver supports SQL_VARCHAR and SQL_CHAR data up to amaximum column size of 255, but SQL_LONGVARCHAR
data up to 2 GB, an Omnis Character(1000) will map to whatever the associated server native type is for SQL_LONGVARCHAR,
e.g. TEXT.

Omnis to ODBC

Omnis Data Type ODBC Data Type

CHARACTER
Character(n) National(n) [1]SQL_VARCHAR(n) [1]SQL_CHAR(n)

[1]SQL_LONGVARCHAR(n) SQL_CLOB(n) (DB2 only)
DATE/TIME
Short date (all subtypes) SQL_DATE SQL_TYPE_DATE SQL_TIMESTAMP

SQL_TYPE_TIMESTAMP
Short time SQL_TIME SQL_TYPE_TIME SQL_TIMESTAMP

SQL_TYPE_TIMESTAMP
Date time (#FDT) SQL_TIMESTAMP SQL_TYPE_TIMESTAMP
NUMBER
Short integer (0 to 255) SQL_TINYINT (unsigned) SQL_SMALLINT
Integer 64 bit SQL_BIGINT SQL_CHAR(20)
Integer 32 bit SQL_INTEGER
Sequence SQL_NUMERIC(10,0) SQL_DECIMAL(10,0) SQL_FLOAT

SQL_DOUBLE
Short number 0-2dp [2]SQL_NUMERIC(p,s)
Number floating dp, 0..14 dp [2]SQL_DECIMAL(p,s) SQL_FLOAT SQL_DOUBLE
OTHER
Boolean SQL_BIT SQL_TINYINT SQL_SMALLINT SQL_NUMERIC(1,0)

SQL_DECIMAL(1,0) SQL_CHAR(1) SQL_VARCHAR(1)
SQL_FLOAT

350

https://www.omnis.net/developers/resources/technotes/
https://www.omnis.net/developers/resources/technotes/


Omnis Data Type ODBC Data Type

Picture, Binary, List, Row, Object, Item reference SQL_VARBINARY(blobsize) SQL_BINARY(blobsize)
SQL_LONGVARBINARY(blobsize) SQL_BLOB(blobsize) (DB2
only) Where blobsize is SessObj.$blobsize

[1] Refer to the $nationaltowchar property for use with the Unicode version of Omnis Studio
[2] As of Studio 8.1.5, $usescale can be used to calculate p as 15 + s. E.g. In this mode a Number 14dp will map to NUMERIC(29,14)
giving 15 scalar digits plus 14 mantissa digits.

ODBC to Omnis

ODBC Data Type Omnis Data Type

CHARACTER
SQL_CHAR(n) SQL_VARCHAR(n)
SQL_LONGVARCHAR(n) SQL_WCHAR(n)
SQL_WVARCHAR(n)
SQL_WLONGVARCHAR(n) SQL_CLOB(n)

Character(n)

DATE/TIME
SQL_DATE SQL_TYPE_DATE Short date 1980
SQL_TIME SQL_TYPE_TIME Short time
SQL_TIMESTAMP SQL_TYPE_TIMESTAMP Date time (#FDT)
NUMBER
SQL_DECIMAL(p,s) Number (s)dp (p<=15)
SQL_NUMERIC(p,s) Number floating dp (p>15)
SQL_SMALLINT Integer 32 bit
SQL_TINYINT (unsigned) Short integer
SQL_TINYINT (signed) Integer 32 bit
SQL_INTEGER Integer 32 bit
SQL_BIGINT Integer 64 bit
SQL_REAL SQL_FLOAT SQL_DOUBLE Number floating dp
SQL_BIGINT Character 20
OTHER
SQL_BIT Boolean
SQL_BINARY SQL_VARBINARY
SQL_LONGVARBINARY SQL_BLOB
SQL_GUID SQL_VARIANT

Binary

Custom Data Types N/A
Table Type N/A

Amazon SimpleDB

The Amazon DAM (DAMAZON) allows you to access the SimpleDB from Amazon Web Services LLC. According to Amazon, “Sim-
pleDB is a highly available, scalable, and flexible non-relational data store that offloads thework of database administration. Devel-
opers simply store and query data items via web services requests, and Amazon SimpleDB does the rest.” For further information
about Amazon SimpleDB, please refer to the Amazon SimpleDB website:

• General information
http://aws.amazon.com/simpledb

• Developers Guide

http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/

This section also discusses various topics which differentiate cloud-based connectivity from traditional RDBMSs and the impact
this has on the various properties and methods.

351

http://aws.amazon.com/simpledb
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/


Dependencies

The Amazon DAM has runtime dependencies on several other dynamic libraries which must be present on your system’s library
search path before the DAM can be used. When a DAMAZON session object is created, the DAM attempts to locate and resolve
the symbols it needs from each of the external libraries.

If one or more symbol references cannot be resolved, these are reported to the Omnis trace log as warnings, $logon() is disabled
and you should not attempt to call session or statement methods, otherwise a crash may occur.

The additional files required by the Amazon DAM for each platform are as follows:

Windows

libcurl.dll (requires msvcr90.dll)

libeay32.dll (requires msvcrt.dll)

libxml2.dll (requires iconv.dll & zlib1.dll)

macOS

libcurl.dylib (where libcurl.dylib -> /usr/lib/libcurl.4.dylib, for example)

libcrypto.dylib (where libcrypto.dylib -> /usr/lib/libcrypto.0.9.7.dylib, for example)

libxml2.dylib (where libxml2.dylib -> /usr/lib/libxml2.2.dylib, for example)

Linux

libcurl.so (/usr/lib/libcurl.so)

libcrypto.so (/usr/lib/libcrypto.so)

libxml2.so (/usr/lib/libxml2.so)

If these libraries are not present on your system, the appropriate package(s) may need to be installed or alternatively, downloaded
and compiled from source. The principal libraries shown are all available under open source licence agreements.

For developers interested in downloading and compiling client libraries from source, information about each of the projects can
be obtained from:

libcurl: http://curl.haxx.se/

libxml2: http://xmlsoft.org/

libcrypto/libeay32 : http://www.openssl.org/ (Links accurate at time of publishing)

Binary releases of these libraries may also be available to download from these and other sources.

Logging on to SimpleDB

To connect to SimpleDB, the endpoint required is supplied via the $logon() hostnameparameter. In the case of AmazonSimpleDB,
the endpoint is “sdb.amazonaws.com” or “sdb.eu-west-1.amazonaws.com” in Europe.

Your access key id and secret are supplied via the username and password parameters, for example:

Do SessObj.$logon('sdb.amazonaws.com',' AGIBJ5LOYFITD3BR7',' H/z6t3ARzuJL26uIE07 GTS1AkK+p5') Returns #F

For other databases, the endpoint may be specified using http syntax, for example:

Do SessObj.$logon('http://www.remoteserver.com/?','user_1','password') Returns #F

If the hostname parameter is omitted, i.e. substituted with a comma, the DAM uses sdb.amazonaws.com by default.

Meta Data

SimpleDB does not provide information about tables, columns and indexes in the same way as traditional relational databases.
Instead, domains can be likened to tables, items can be likened to rows and attributes can be likened to columns. This has an
impact on the behavior of the following meta-data methods:

352

http://curl.haxx.se/
http://xmlsoft.org/
http://www.openssl.org/


Method Description

$tables() StatObj.$tables() returns a list of available domain names in the TableOrView column of the result set. Other result columns can be ignored as
SimpleDB does not support views.

$columns() StatObj.$columns(cDomain) returns meta data information about the specified domain. This information is specific to SimpleDB and is returned
via the DamInfoRow column of the result set. Other result columns can be ignored.

$indexes() StatObj.$indexes() is not implemented since SimpleDB handles indexing automatically.

The information returned by $columns() for a domain is summarised as follows:

Column Description

Timestamp The date and time when metadata was calculated in Epoch (UNIX) time.
ItemCount The number of all items in the domain.
AttributeNameCount The number of unique attribute names in the domain.
AttributeValueCount The number of all attribute name/value pairs in the domain.
ItemNamesSizeBytes The total size of all item names in the domain, in bytes.
AttributesValuesSizeBytes The total size of all attribute values, in bytes.
AttributeNamesSizeBytes The total size of all unique attribute names, in bytes.

SimpleDB Attributes and Multi-Values

Unlike Relational databases, SimpleDB attributes support multiple values. For example:

Domain Item Attribute Value

Suits Gents Formal Suit Colour Navy
Suits Gents Formal Suit Colour Black
Suits Gents Formal Suit Colour Grey

In addition, SimpleDB effectively supports only a single data type: Character. All data inserted into and retrieved from SimpleDB
will be character data optionally encoded as UTF-8 bytes. Once fetched into Omnis, data can be assigned to typed variables as
required. Such data will be automatically converted to the appropriate data type where possible.

Each item fetched from SimpleDB can potentially have a different number of attributes and attribute names. This prevents the
use of Omnis Schema classes with SimpleDB since these require rigid column names and types. When dragging a schema class
onto a SimpleDB session in theOmnis SQL Browser, all that can sensibly be achieved is to create a domainwith the supplied table
name.

SimpleDB does not support SQL in the traditional sense. You cannot use $prepare() & $execute() or $execdirect() to execute
INSERT, UPDATE or DELETE statements as these are not supported. Instead, these statement methods can be used only to
execute SELECT statements conforming to the SimpleDB SELECT syntax.

Creating a Domain

To manually create a domain (analogous to a table), use the StatObj.$createdomain() method. For example:

Do StatObj.$createdomain('Project810') Returns #F

Inserting Data

To insert items and attributes into SimpleDB, use the StatObj.$putattrib() method.

Each call to $putattrib() inserts a new attribute-value pair into the specified domain item. (There is no need to create the item
before inserting an attribute, the item is created implicitly). Since SimpleDB supports multiple attribute values, you can assign
several different values to the same attribute if required. Duplicate values are ignored. For example:

Do StatObj.$putattrib('Project810','Materials','Tools','13mm Wrench') Returns #F
Do StatObj.$putattrib('Project810','Materials','Tools','Quick release clamps') Returns #F

If many attributes are to be inserted, it may be preferable to assign the domain name to the StatObj.$domain property and the
item name to the StatObj.$item property. These parameters can subsequently be omitted in calls to $putattrib()- and any of the
other statement methods discussed below. The above example becomes:

353



Do StatObj.$domain.$assign('Project810')
Do StatObj.$item.$assign('Materials')
Do StatObj.$putattrib(, ,'Tools','13mm Wrench') Returns #F
Do StatObj.$putattrib(, ,'Tools','Quick release clamps') Returns #F

Deleting Data

To delete items, attributes and values from SimpleDB, use the StatObj.$delete() method.

Deleting Values

To delete a specific attribute value, the domain, item, attribute name and value should be specified. For Example:

Do StatObj.$delete('Project810','Materials','Timber','50x50x2.4m pse') Returns #F

Deleting Attributes

To delete an attribute including all of its values, the domain, item and attribute name only should be specified. For example:

Do StatObj.$delete('Project810','Materials','Timber') Returns #F

Deleting Items

To delete an entire item including all its attributes and values, the domain and item name only should be specified. For example:

Do StatObj.$delete('Project810','Materials') Returns #F

Deleting a Domain

StatObj.$delete() cannot be used to delete a domain. To do this- use StatObj.$deletedomain(). This method should be used with
caution as it will permanently delete all items, attributes and values contained in the domain before removing the domain itself.
For example:

Do StatObj.$deletedomain('Project810') Returns #F

Replacing Data

Whereas $putattrib() is used to append new attributes and values, StatObj.$replaceattrib() is used to replace all values for a speci-
fied attribute with the supplied single value. For example:

Do StatObj.$replaceattrib('Suits','Gents Formal Suit','Colour','Navy only') Returns #F

Fetching Data

The Amazon DAM uses Amazon SELECT statements to fetch multiple items. These are issued using the statement object’s $pre-
pare(), $execute() and $execdirect() methods in a similar way to traditional SQL SELECT statements. The general form of a Sim-
pleDB SELECT statement is as follows:

select output_list from domain_name [where expression] [sort_instructions][limit limit]

The output_list can be:

• * (all attributes)

• itemName() (the item names only)

• count(*)

• An explicit list of attributes (attribute1,…, attributeN)

354



For further information on the SELECT statement syntax, please refer to Amazon SimpleDB Developer Guide.

Items in the result set are returnedone row-at-a-time. StatObj.$resultspending indicateswhether there is a further itemeach time
a call to StatObj.$fetch() is made and StatObj.$itemcount is initially set to the number of items in the response. The destination
list or row variable is automatically redefined each time $fetch() is called. For example:

Do StatObj.$execdirect('select * from Suits where stocklevel > 1') Returns #F
Repeat
Do StatObj.$fetch(lvRow)
…

Until StatObj.$resultspending = kFalse

Retrieving an Item

You can retrieve all attributes for a specific item using the StatObj.$getall() method. The result set (a single row) generated by this
call is returned using $fetch(). For example:

Do StatObj.$getall('Suits','Gents Suits') Returns #F
Do StatObj.$fetch(lvRow)

Retrieving Item Names

You can retrieve the names of items contained within a domain by calling the StatObj.$getitems() method. The result is returned
as a single item containing a single attribute. The item names will be returned either as a comma-separated list or as a single
column list- as dictated by the $attribcsv property.
A SELECTwhere-clausemay be optionally specified if required, in which case only the names of itemswhich satisfy the expression
will be returned. For example:

Do StatObj.$getitems( ,"where Colour like 'Red%'") Returns #F
Do StatObj.$fetch(lvItems)

Retrieving an Attribute

You can retrieve the contents of a specific attribute using the StatObj.$getattrib() method. The result set (a single row containing
a single column) generated by this call is also returned using $fetch(). For example:

Do StatObj.$getattrib('Project810','Materials','Tools') Returns #F
Do StatObj.$fetch(lvRow)

Handling Multiple Values

When fetching data, each row returned to Omnis represents one item from the specified domain. Item attributes containing
multiple values are handled in one of two ways; either as single-column lists or as comma-separated values as dictated by the
StatObj.$attribcsv property.

When $attribcsv is set to kTrue (the default), rows fetched from SimpleDB will be defined with Character columns. Attributes
(columns) with multiple values will be returned as a string of comma-separated values.

When $attribcsv is set to kFalse, rows fetched fromSimpleDBwill contain single-column lists in each column. Each single-column
list will contain one row for each attribute value.

Handling Multiple Attributes

You can put, delete and replace several attribute values at once using the StatObj.$putmany(), StatObj.$deletemany() and Sta-
tObj.$replacemany() methods. The attribute-value pairs to be processed are supplied via a list variable definedwith two character
columns. Column 1 contains the attribute names, column 2 contains the corresponding values. For example:

Do myList.$define(lvChar1, lvChar2)
Do myList.$add('Tools','Posidrive screwdriver')
Do myList.$add('Tools','Metal hammer')
Do myList.$add('Charges','1½ hours labour')
Do StatObj.$putmany( , , myList) Returns #F

355



You can retrieve the values of multiple attributes using the StatObj.$getmany() method. The attribute names to be retrieved are
supplied via a single-column list, for example:

Do myList.$define(lvChar1)
Do myList.$add('Tools')
Do myList.$add('Materials)
Do myList.$add('Charges')
Do StatObj.$getmany( , , myList) Returns #F

Each subsequent call to $fetch() returns a row containing separate attribute- either as a comma-separated-value or as a single
column list, as dictated by $attribcsv.

Handling Multiple Items

When executing queries, the StatObj.$itemcount property is set to the number of items in the response- implying that each call
to $fetch() retrieves one item.

When the response contains only attribute values, $itemcount will be set to zero.

Handling Multiple Requests

The SimpleDB DAM uses the transaction management features of the DAM interface to allow multiple requests to be executed
as a combined batch of requests. To enable multiple-execution, the SessObj.$transactionmode property should set to kSession-
TranManual.

In this mode, actions such as $createdomain(), $putattrib(), $getattrib(), $replacemany() and $execdirect() are accepted uncondi-
tionally into a queue. Nothing is sent to or received from the database until a SessObj.$commit() is executed, at which point each
request is submitted in turn.

Unlike single request execution, every multiple request generates a response. Although actions to put, create, replace and delete
attributes will return empty responses, this enables any errors and execution information associated with each action to be re-
turned. For example:

Do cSess.$begin()
Do cStat.$putattrib(,,'Materials','White Paint') Returns #F
Do cStat.$putattrib(,,'Materials','Cement 25Kg') Returns #F
Do cStat.$replacemany(,,lvAttribList) Returns #F
Do cStat.$execdirect('select * from Project810') Returns #F
Do cSess.$commit() Returns #F

Handling Multiple Responses

When in manual transaction mode, each call to $commit() generates one or more responses. The number of responses available
is returned via the SessObj.$responses property.

When $commit() is executed, StatObj.$itemcount and StatObj.$columncount are set to reflect the number of items and attributes
in the initial response.

Items/attributes from the response are then retrieved using one or more calls to $fetch(). When all items/attributes from the cur-
rent response have been retrieved, the StatObj.$endofresponse property is set to kTrue at which point, $itemcount and $colum-
ncount are also set to reflect the next response.

When fetching an empty response, note that $endofresponse will effectively remain set to kTrue. If the corresponding action
generated an error, then StatObj.$nativeerrorcode and StatObj.$nativeerrortext will be set accordingly. Otherwise, the empty
response (and empty row) can be discarded.

When all responses have been retrieved, the $resultspending property is set to kFalse, otherwise $resultspending remains set the
kTrue while there are still responses waiting.

It is safe to abandon and/or replace multiple requests before executing them by simply calling SessObj.$begin() or changing the
transaction mode back to kSessionTranAutomatic. You can also discard pending responses in this way.

$rollback() is not supported by the SimpleDB DAM- this has no effect.

356



Machine Utilization

AmazonSimpleDBmeasuresusageof remote resources (andhence the charge it imposes on theend-user) in termsof “boxusage”.
Each action sent to the database incurs a box usage- quoted as a decimal fraction of one hour. StatObj.$boxusage returns the
box usage for each action which generates a response.

The session object also has a $boxusage property which accumulates a total box usage for the open connection. When retrieving
multiple responses, the box usage for each response is received (and added) in turn.

$boxusage may not be supported by all Simple databases in which case, the value remains set to zero.

Read Consistency

Amazon SimpleDB supports two types of read consistency, defined as follows:

• Eventually Consistent Reads
the eventual consistency optionmaximizes your read performance (in terms of low latency and high throughput). However,
an eventually consistent read (using Select or GetAttributes) might not reflect the results of a recently completed write
(using PutAttributes, BatchPutAttributes, DeleteAttributes). Consistency across all copies of data is usually reached within
a second; repeating a read after a short time should return the updated data.

• Consistent Reads
in addition to eventual consistency, Amazon SimpleDB also gives you the flexibility and control to request a consistent
read if your application, or an element of your application, requires it. A consistent read (using Select or GetAttributes with
ConsistentRead=true) returns a result that reflects all writes that received a successful response prior to the read.

The Amazon DAM implements this functionality using the $consistentread session property. When set to kFalse (the default
setting), the eventual consistency option is used. When set to kTrue, all $getattrib() and SELECT statement results are fetched
using consistent reads.

Conditional Puts and Deletes

The PutAttributes andDeleteAttributes API calls used by Amazon SimpleDB support conditional put and delete operations which
enable you to insert, replace or delete values for one or more attributes of an item if the existing value of an attribute matches
the value you specify. If the value does not match or is not present, the update is rejected. Conditional Puts/Deletes are useful for
preventing lost updates when different sources write concurrently to the same item.

The AmazonDAM implements this functionality using the $whereclause statement property. This property affects all put, replace
and delete attribute calls and accepts a SQL-style where clause of the form:

“where <name> [= <value>] [exists|does not exist]”

<name> and <value> can be literal values; in which case they must be double-quoted, or bind variables. Double quotes inside
literal values should be escaped using \”. For example:

Do cStat.$whereclause.$assign('where "Color" = "Light Brown"')
Do cStat.$whereclause.$assign('where "Undo" does not exist')
Do cStat.$whereclause.$assign('where "Project \"X\"" = @[lvChar]')

Once bound, variable values should be assigned before each call to $putattrib(), $delete(), etc:

Do cStat.$whereclause.$assign('where "Name" = @[lvChar]')
Calculate lvChar as "Brookes"
Do cStat.$putattrib('StockDB','Supplier1','Frequency','Daily') Returns #F
Calculate lvChar as "Robinson"
Do cStat.$delete('StockDB','Supplier2','Frequency') Returns #F

Currently, the exists condition may only be specified if both <name> and <value> attributes are also specified. To use does not
exist, only the <name> attribute should be specified.

Subsequent calls to put, replace or delete attributes return kFalse if the condition is not met.

$whereclause is not affected by $clear(). To remove the where condition for a statement object; assign $whereclause to an empty
string.

357



Session Properties

Property Description

$boxusage Returns the cumulative total of remote machine resources consumed since the session connected. Collects
box-usages from statement methods as well as box-usages frommultiple actions (manual transactions). Read-only.

$consistentread If set to kTrue, all read operations (e.g. $getattrib() & $fetch()) are executed guaranteeing that the results of recent
updates are seen immediately. If set to kFalse, the default (faster) eventual consistency option is used.

$responses Returns the number of responses generated by the last call to $commit(). Applies to manual transaction mode only.
Read-only.

$transactionmode Used to implement multiple request processing. When set to kSessionTranAutomatic each request is sent to the
database immediately. When set to kSessionTranManual, requests and queued until a $commit() is called.

Session Methods

Method Description

$begin() Initialises/clears multiple responses in preparation for execution of a new batch of requests. Manual transaction mode
only.

$commit() Executes a batch of statements and retrieves multiple responses from the database. Manual transaction mode only.

Statement Properties

Property Description

$attribcsv If set to kTrue (the default), attributes with multiple values are returned as comma-separated values, i.e. the fetched
row will be defined with character columns. If set to kFalse, attributes will be returned as single column lists, i.e. the
fetched row will contain a single column list in each column.

$boxusage For statement methods which generate a response from the database, $boxusage returns the portion of a machine
hour used to complete a particular request. See SessObj.$boxusage. Read-only.

$domain The current domain name. $domain will be used with various statement methods if set. Statement methods which
require a domain parameter will assume this value if the method parameter is omitted.

$endofresponse Returns kTrue if the last item/attribute of the current response has been fetched in which case, $boxcount,
$itemcount and $columncount are set to reflect the next response. Read-only.

$item The current item name. As with $domain, $item will be used with various statement methods if set. Statement
methods which require an item name will assume this value if the method parameter is omitted. When retrieving
an item list from the database, $item is also set to the name of the last item to be fetched.

$itemcount Returns the number of items in the current response. Returns zero if the response contains only attribute
information. Read-only.

$resultspending Returns kTrue while there are still items/attributes waiting to be fetched from one or more responses. Read-only.
$whereclause Affects all put, replace and delete attribute methods. This property accepts a SQL-style where clause of the form:

“where <name> [= <value>] [exists|does not exist]” <name> and <value> can be literal values; in which case they
must be double-quoted, or bind variables. Double quotes inside literal values should be escaped using \”

Statement Methods

Method Description

$createdomain() StatObj.$createdomain([cDomainName]) creates a domain with the specified name. $createdomain() uses the value of
StatObj.$domain if the parameter is omitted in which case, $domain must be predefined. Returns kTrue on success, kFalse
otherwise.

$delete() StatObj.$delete([cDomain],[cItem],[cAttrib],[cValue]) deletes an item, attribute or value from the specified domain. If cDomain or
cItem are omitted, the values of StatObj.$domain and StatObj.$item are assumed in which case, $domain and $itemmust be
predefined. If cAttrib and cValue are omitted, the entire item is deleted.If cValue is omitted, the specified attribute is deleted.
Otherwise, the specified value only is deleted from the attribute. Returns kTrue on success, kFalse otherwise.

$deletedomain() StatObj.$deletedomain([cDomain]) deletes the specified domain and all associated items/attributes. Warning: no further
confirmation is sought before the domain is permanently deleted. Returns kTrue on success, kFalse otherwise.

$deletemany() StatObj.$deletemany([cDomain],[cItem],lAttribs) deletes one or more values from the domain item. The attribute-value pairs are
supplied via lAttribs, which should be defined with two character columns. Column 1 contains the attribute name, Column 2
contains the corresponding value to be removed. Returns kTrue on success, kFalse otherwise.

358



Method Description

$getall() StatObj.$getall([cDomain],[cItem]) executes a query to return all attributes belonging to the specified item. The result of the query is
retrieved by calling StatObj.$fetch(). Returns kTrue on success, kFalse otherwise.

$getattrib() StatObj.$getattrib([cDomain],[cItem],cAttrib) executes a query to retrieve the value(s) associated with the specified attribute. The
result of the query is retrieved by calling StatObj.$fetch(). Returns kTrue on success, kFalse otherwise.

$getitems() StatObj.$getitems([cDomain],[cWhere]) executes a query to retrieve the item names contained within the specified domain. If
cWhere is specified, the text is appended to the SELECT statement. The result of the query is obtained by calling StatObj.$fetch().
Returns kTrue on success, kFalse otherwise. $getitems() is not supported by all database vendors.

$getmany() StatObj.$getmany([cDomain],[cItem],lAttribs) executes a query to retrieve one or more named attributes from the domain item. The
attribute names are supplied via lAttribs, which should be defined with a single character column. The result of the query is
retrieved by calling StatObj.$fetch(). Returns kTrue on success, kFalse otherwise.

$putattrib() StatObj.$putattrib([cDomain],[cItem],cAttrib,cValue) inserts a new attribute. If cAttrib already exists, the new value is appended to
the existing value(s), otherwise a new attribute-value pair is created. Returns kTrue on success, kFalse otherwise.

$putmany() StatObj.$putmany([cDomain],[cItem],lAttribs) inserts one or more values into the domain item. The attribute-value pairs are
supplied via lAttribs, which should be defined with two character columns. Column 1 contains the attribute name, Column 2
contains the corresponding value. Returns kTrue on success, kFalse otherwise.

$replaceattrib() StatObj.$replaceattrib([cDomain],[cItem],cAttrib,cValue) replaces all values for the specified attribute with the specified value.
Existing values are deleted. Returns kTrue on success, kFalse otherwise.

$replacemany() StatObj.$replacemany([cDomain],[cItem],lAttribs) replaces one or more attributes in the domain item. The attribute-value pairs are
supplied via lAttribs, which should be defined with two character columns. Column 1 contains the attribute name, Column 2
contains the new value. Existing values are deleted. Returns kTrue on success, kFalse otherwise.

Implementation Notes

Bind Variables

Queries issued using $execute() and $execdirect() may contain bind variables- for example in the where clause of the SELECT
statement. The DAM inlines variable values into the SQL text each time $execute() is called, placing single quotes around each
value. Values containing single quotes are escaped by adding a second single quote for each occurrence. For example:

Calculate lVar as "Katharine O'Hara"
Do StatObj.$execdirect("select * from Customers where Name = @[lVar]") Returns #F

becomes

select * from Customers where Name = ‘Katharine O’’Hara’

Multiple Statement Objects

The SimpleDB API does not facilitate statement isolation- only session isolation. This means that each session object may spawn
only one statement object.

An attempt to spawn a second statement object will result in an error.

Remote Procedures

SimpleDB does not support remote procedures, views or triggers. These are features of traditional relational databases.

Binary Data

SimpleDB attributes support only character data of maximum length 1024 bytes and are not suitable for storing binary data
directly. A better approach (the intended approach) is that attribute values be used to store URLs or unique identifiers for pictures,
files and other media which exist externally to the database.

OmnisSQL DAM

The OmnisSQL DAM provides an object-oriented interface to the Omnis data manager. As such the OmnisSQL DAM is a wrapper
around the single-threaded Omnis DML engine.

Note theOmnisSQLDAM is only provided for backwards compatibility with legacy apps only; Omnis Datafiles and theOmnisSQL
DAM should not be used for new apps.

359



Server-specific Programming

Logging on to an Omnis Data File

To connect to a data file using the OmnisSQL DAM, create an object variable of subtype “OMSQLSESS”.

You connect to a data file using the $logon() method. The hostname parameter should be the full path to the data file.

OmnisSQL does not require a username or password, but you can specify a session name that will appear in the SQL Browser and
in the Notation Inspector under $sessions.

OmnisSQL expects a DOS-style pathname under Windows and an absolute POSIX-style path under macOS and Linux. For exam-
ple:

Do mySession.$logon('C:\mydata\mydatafile.df1','','','session1') Returns #F ## on Windows
Do mySession.$logon('/Users/MyUser/mydatafile.df1','','','session1') Returns #F ## on macOS / Linux

Using the Omnis Databridge (ODB)

To logon to a data file being hosted by the Omnis Databridge, the hostname parameter should consist of an ODBURL of the form
odb://, for example:

Do mySession.$logon('odb://192.168.0.150:5913:osxlocking','','','session1') Returns #F

Although analogous to theOpen data file command, note that there is no internal-nameparameterwhen using $logon(). Instead,
use the session name (parameter 4).

Omnis SQL Language Definition

Note: The following sections contain legacy information and have been reproduced from the deprecated Omnis_SQL_v2api.pdf
document.

The following sections show the grammar of Omnis SQL using BNF (Backus-Naur Form) diagrams, using the conventions from
the ANSI standard. Each statement includes a note specifying what parts, if any, of the statement depart from the ANSI 1989
standard for SQL.

SQL Statement

SQL_statement ::=
create_table_statement

| create_index_statement
| delete_statement_searched
| drop_index_statement
| drop_table_statement
| insert_statement
| select_statement
| update_statement_searched
| update_statement_positioned
| alter_table_statement

The SQL statement is the text that goes in the DAM’s $prepare() or $execdirect() methods or in a statetement block starting with
Begin statement. The rest of the grammar depends on this main element.

ANSI SQLhas the following statements thatOmnis does not implement. Most statements involve cursors, andOmnis implements
these as commands rather than as SQL statements.

• close_statement
closes a cursor (see the Close cursor, Quit cursor, and Reset cursors commands).

• commit_statement
commits a transaction (see the Commit current session command).

• declare_cursor
declares a cursor (see the Declare cursor command).

360

/developers/resources/onlinedocs/CommandRef/Commands_A-Z/open_data_file.html#open-data-file
https://www.omnis.net/developers/resources/download/manuals/Omnis_SQL_v2api.pdf


• delete_statement_positioned
deletes a row based on current cursor position.

• fetch_statement
fetches a row using the current cursor (see the Fetch commands).

• open_statement
opens a cursor (see the Open cursor command)

• create_schema_statement
creates a schema containing tables and views; Omnis SQL does not support schemas.

• create_view_statement
creates a view; Omnis SQL does not support views.

• grant_privilege
grants an access privilege on an object to a user; Omnis SQL does not implement any SQL security.

CREATE TABLE

create_table_statement ::=
CREATE TABLE table ( table_element_comma_list )
CONNECTIONS ( table_comma_list )

The CONNECTIONS clause is an Omnis extension to the ANSI standard that lets you specify a list of file classes to which to connect
a file class. Connections are parent-child relationships between file classes.

table_element ::=
column_definition | UNIQUE ( column_comma_list )

Youcandefineafile class using theSQLCREATETABLE statement. The fields in the format come fromthe list of columndefinitions.
You can also specify that the values for a group of columns are unique, taken together, with the UNIQUE constraint. You can have
more than one UNIQUE constraint. All the columns in a UNIQUE constraint must be defined with the NOT NULL qualifier (see
below).

The ANSI standard contains several other table constraints, namely PRIMARYKEY, FOREIGNKEY andCHECK thatOmnis SQL does
not implement.

column_definition ::=
column_data [ [ NOT ] NULL ]

The NOT NULL constraint specifies that when you insert a row, the value for this columnmust not be NULL.

The ANSI standard specifies a default clause that lets you define a default value for the column. It also lets you specify that the
column is UNIQUE, REFERENCES a primary key in another table, or satisfies a CHECK constraint. Omnis SQL does not implement
any of these features.

column_data ::=
column_name data_type

data_type ::=
[ LONG ] VARBINARY
| BIT
| VARCHAR ( NUMBER )
| CHAR ( NUMBER )
| NATIONAL CHAR[ACTER] VARYING (NUMBER)
| NCHAR VARYING ( NUMBER )
| SEQUENCE_TYPE
| DATE [ ( { 1900..1999 | 1980..2079| 2000..2099 } ) ]
| TIME
| TIMESTAMP
| TINYINT
| SMALLINT
| INTEGER
| NUMERIC ( number, integer)
| DEC[IMAL] ( number, integer)

361



| FLOAT_TYPE [ ( integer ) ]
| REAL
| LIST
| PICTURE

ANSI data types include CHARACTER, NUMERIC, DECIMAL, INTEGER, INT, SMALLINT, FLOAT, REAL, and DOUBLE PRECISION. Om-
nis does not implement FLOAT and DOUBLE PRECISION directly, though FLOAT_TYPE is similar to FLOAT.

The other data types are Omnis specific. The integer value in the NUMERIC, DECIMAL, and FLOAT_TYPE types corresponds to the
Omnis subtypes for numbers; 0-8, 10, 12, and 14 are the possible values.

ALTER TABLE

alter_table_statement ::= ALTER TABLE table ADD
{ column_data | ( column_data_comma_list ) }

The ALTER TABLE statement lets you add a column to an already existing table using the same syntax as in CREATE TABLE.

The ALTER TABLE statement does not exist in the 1989 ANSI standard.

DROP TABLE

drop table statement ::= DROP TABLE table_name

The DROP TABLE statement removes a file slot and any data for that slot from an Omnis datafile.

The DROP TABLE statement does not exist in the 1989 ANSI standard.

CREATE INDEX

create_index_statement ::=
CREATE [CASE SENSITIVE] [UNIQUE] INDEX index
ON table ( index_column_comma_list )

index_column ::=
column_reference [ ASC ]

The CREATE INDEX statement lets you create an index on anOmnis database column. You canmake the index UNIQUE, asserting
that no two rows of the database have the same value for this combination of columns. You can also make the index CASE
SENSITIVE, this will usually result in more efficient queries. The index column list contains columns from the table, and the table
must already exist. You can also specify ASC on an individual column to sort it in ascending, as opposed to descending, order.

The CREATE INDEX statement does not exist in the 1989 ANSI standard.

DROP INDEX

drop_index_statement ::= DROP INDEX index

The DROP INDEX statement removes the named index, which must already exist.

The DROP INDEX statement does not exist in the 1989 ANSI standard.

SELECT

select_statement ::=
SELECT [ ALL | DISTINCT ] { value_expression_comma_list | * }
from_clause
[ where_clause ]
[ group_by_clause ]
[order_by_clause ]
[FOR UPDATE ]

362



The SELECT statement is the basic query statement in Omnis SQL. It largely matches the ANSI standard, one exception being the
having clause, which in Omnis SQL is part of the group by clause instead of being a separate clause in the select statement. That
is, in Omnis SQL you cannot have a HAVING clause separate from the GROUP BY clause. The FOR UPDATE clause initiates special
locking for the records in the query. When you fetch a row from a cursor containing a SELECT statement with a FOR UPDATE
clause, Omnis locks the row for update. One of three things can then happen:

• You update the record with an UPDATE … WHERE CURRENT OF cursor_name (see below), which on completion unlocks
the row

• You fetch another row, which releases the lock on the previous row and locks the current one

• You terminate the transaction, which releases all locks

The order_by clause is separated out in ANSI SQL so that there is only one ordering for a query. Since Omnis SQL does not have
any set operators, such as UNION, there is no need to separate out the ordering clause.

The ANSI 1989 standard has no for_update clause. This comes from embedded SQL, the syntax there is FOR UPDATE OF col-
umn_name_list.

Value Expression

value_expression ::=
term
| value_expression { + | - } term

term ::=
factor
| term { * | / } factor

factor ::=
[ { + | - } ] primary

primary ::=
literal
| column_reference
| function_reference
| ( value_expression )

A value expression is a key element of SQL that lets you calculate a value using an arithmetic expression language. You build
an expression out of literal numbers and strings, references to columns, or parenthesized, nested expressions. You can combine
expressions with any of the four arithmetic operators. The grammar above expresses the precedence relationships between the
operators: unary + and - take precedence over * and /, all of which take precedence over binary + and -.

Column and Table References

column_reference ::=
[ table . ] column_name
| [ alias . ] column_name

The column name corresponds to a field in a file class.

table ::=
[ library_name . ] table_name

The table name corresponds to a file class or to a table alias in the same SELECT statement, and the library name corresponds to
a library. The table must belong to the library.

Omnis SQL does not support the ANSI standard syntax alias.*, meaning all the columns from the table to which the alias refers.
Also, if you use something other than a library name, or a name that Omnis cannot recognize as a library name, you will get a
syntax error.

Function Reference

function_reference ::=
scalar_function
| aggregate_function

363



A function reference is either a scalar function or an aggregate function. Scalar functions operate on each row of data in the select;
aggregate functions operate on groups of rows.

The ANSI SQL standard has no scalar functions.

scalar_function ::=
scalar_function_name ( value_expression_comma_list )

There are a number of scalar functions, summarized below.

Function Purpose Parameters

ABS absolute value of a number number
ACOS angle in radians, the cosine of which is a

specified number
number

ASCII ASCII character corresponding to an integer
between 0 and 255, inclusive

integer

ASIN angle in radians whose sine is the specified
number

number

ATAN the angle in radians whose tangent is the
specified number

number

ATAN2 the angle in radians whose tangent is one
number divided by another number

number 1, number 2

CHARINDEX the starting character position of one string in a
second string

index string, source string

CHR ASCII character corresponding to an integer
between 0 and 255, inclusive

integer

COS cosine of a number number
TODATE converts a date string or number to a date value

using a format string
date string/number, format
string

DIM increments a date string by some number of
months

date string, months

DTCY a string containing the year and century of a
date string

date string

DTD a string containing the day part of a date string
or a number representing the day of the month,
depending on context

date string

DTM a string containing the month part of a date
string or a number representing the month of
the year, depending on context

date string

DTW a string containing the day of the week part of a
date string or a number representing the day of
the week, depending on context

date string

DTY a string containing the year part of a date string
or a number representing the year, depending
on context

date string

EXP exponential value of a number number
INITCAP transforms string by capitalizing the initial letter

of each word in the string and lowercasing every
other letter

string

LENGTH number of characters in a string string
LOG natural logarithm of a number number
LOG10 base 10 logarithm of number number
LOWER transforms string by lower-casing all letters string
MOD modulus of a number given another number number, modulo number
POWER the value of a number raised to the power of

another number
number, power

ROUND rounds a number to an integer number of
significant digits

number, significant digits

SIN sine of a number number
SQRT square root of a number number
STRING concatenates some number of strings into a

string
string[, string, …]

SUBSTRING extracts part of a string starting at a given index
and moving a certain number of characters

string, start index, length

364



Function Purpose Parameters

TAN tangent of a number number
UPPER transforms a string by upper-casing all letters string

aggregate function ::=
COUNT(*)
| aggregate function name ( DISTINCT column reference )
| aggregate function name ( [ ALL ] value expression

aggregate_function_name ::=
AVG | MAX | MIN | SUM | COUNT

There are some departures from the ANSI standard for DISTINCT aggregates: you can use only one such function in a given SQL
statement, and you cannot use aggregate functions in expressions in a GROUP BY clause or WHERE clause.

FROM Clause

from_clause ::=
FROM table_reference_comma_list

table_reference ::=
table_name [ AS ] [ alias ]

The FROM clause lets you specify the table to input into the SQL statement. Multiple tables in the list indicate a join, and the
WHERE clause specifies the join condition. Each table reference can have an optional alias that lets you refer to the table in other
parts of the SQL statement by the alias. You can use this to abbreviate references to the table in the other clauses.

The ANSI standard does not have the optional AS keyword.

WHERE Clause

where_clause ::=
WHERE search_condition

search_condition ::=
boolean_term | search_condition OR boolean_term

boolean_term ::=
boolean_factor | boolean_term AND boolean_factor

boolean_factor ::=
[ NOT ] boolean_primary

boolean_primary ::=
predicate | ( search_condition )

TheWHERE clause lets you select a subset of the input rows using a logical predicate. The above grammar defines the precedence
of the logical operators AND, OR, and NOT.

predicate ::=
comparison_predicate

| between_predicate
| in_predicate
| like_predicate
| relation_predicate
| null_predicate

The ANSI standard has, in addition to the above predicates, the quantified and exists predicates (nested selects), which Omnis
does not support. The relation_predicate is an Omnis extension to the standard that lets you use Omnis connections; see below.

comparison_predicate ::=
value_expression comparison_operator value_expression

comparison_operator ::=
< | > | = | <> | != | >= | <= | *= | =*

365



The standard comparison predicate involves one of the relational operators (greater than, less than, and so on).

ANSI SQL also allows you to use a nested select statement in place of the right-hand

value_expression; Omnis SQL does not support that. Omnis adds the !=, *=, and =* operators (not equal, left outer join, and right
outer join, respectively) to the ANSI standard operators.

An outer join is a join that includes all the rows in the tables regardless of the matching of the rows. The *= operator includes all
rows from the table on the left that satisfy the rest of the WHERE clause. The =* operator includes all rows from the table on the
right that satisfy the WHERE clause. Rows from the other table (right and left, respectively, contribute values if there is a match
and NULLs if not. This syntax is similar to the SYBASE outer join syntax.

between_predicate ::=
value_expression [ NOT ] BETWEEN value_expression AND value_expression

in_predicate ::=
value_expression [ NOT ] IN ( literal_comma_list )

The ANSI standard lets you use a subquery (a nested select) as well as a literal list; Omnis does not.

like_predicate ::=
column_reference [ NOT ] LIKE literal

The ANSI standard adds an ESCAPE clause to the like_predicate to let you specify an escape character so you can match a % or _;
Omnis does not implement this.

null_predicate ::=
column_reference IS [ NOT ] NULL

relation_predicate ::=
{ CHILD | PARENT } OF table

The relation_predicate lets you test the current row as being either a child or a parent of rows in the specified table.

GROUP BY Clause

group_by_clause ::=
GROUP BY column_reference_comma_list [ HAVING search_condition ]

The group_by_clause lets you group the input rows into groups according to a set of columns. The HAVING clause lets you select
the groups, as opposed to the WHERE clause, which selects the rows going into the groups.

ANSI SQL has no ordering dependency between GROUP BY and HAVING, and you can have a HAVING clause without an accom-
panying GROUP BY. Omnis does not allow this.

Omnis SQL does not support the use of functions in a GROUP BY clause.

ORDER BY Clause

order_by_clause ::=
ORDER BY order_column_comma_list

order_column ::=
column_reference [ ASC | DESC ]

The order_by_clause lets you sort the output rows of the SQL statement using columns from the input tables.

The ANSI standard lets you sort by value_expressions in the select list by specifying the number of the expression; Omnis does
not.

366



INSERT

insert statement ::=
INSERT INTO table [ ( column_reference_comma_list ) ] { VALUES ( insert_value_comma_list ) | select_statement }

The INSERT statement inserts rows into an Omnis table. The first list of columns names the columns you are creating; this exists
to let you reorder the list to match your list of values or select statement.

There are two alternative ways to supply values to the INSERT statement. You can supply actual values through a VALUES clause
that contains a list of values, or you can give a SELECT statement that creates a table of data matching the insert list. See the
SELECT statement section above for details on SELECT.

insert_value ::=
literal | NULL

An insert value is a literal value or the NULL value specified by the string ìNULLî.

UPDATE

update_statement_searched ::=
UPDATE table SET assignment_comma_list [ where_clause ]

assignment ::=
column_reference = { value_expression | NULL }

The searched update statement updates all rows that satisfy the predicate in theWHERE clause by assigning the indicated value
or NULL to the column.

Omnis SQL will let you preface the column name in the assignment with the library and table names, which extends the ANSI
standard. There is no need to specify the additional names, but you can do so for clarity if you wish. Specifying a table other than
the table in the UPDATE table clause, generates an error.

update_statement_positioned ::=
UPDATE table SET assignment_comma_list WHERE CURRENT OF cursor

The positioned update statement updates the current row, the row to which the current cursor points. See the description of
the Declare cursor command in the Omnis Help. TheWHERE CURRENT OF cursor clause works with the SELECT … FOR UPDATE
statement to update rows locked for update.

DELETE

delete_statement_searched ::=
DELETE FROM table [ where_clause ]

The DELETE statement deletes rows from the Omnis database based on the predicate in the WHERE clause. Omnis deletes all
rows that satisfy the predicate.

JDBC

Note that support for JDBC has been removed in Studio 10 and above, but the supporting files can be obtained by contacting
Omnis Support.

This section contains the information you need to access a database using the JDBC object DAM and JDBC drivers (plus their
associated middleware where applicable), including server-specific programming, data type mapping and troubleshooting. For
general information about loggingon andmanaging your databaseusing the SQLBrowser, refer to the earlier parts of thismanual.

Minimum Requirements

To use the JDBCSESS object the client machine must have the Java Runtime Environment v1.4 or higher installed. In addition,
the JDBCSESS object will only support JDBC 2.x certified drivers. The JDBC DAM utilises the Omnis Java Engine (OJE), so it is
important that the requirements for the OJE are also met. In particular a JVM_PATH environment variable must be set to the
path of the JVM library in order for the OJE to start the Java Virtual Machine.

367



Properties and Methods

In addition to the “base” properties and methods documented in the SQL Programming chapter, the ODBC DAM provides the
following additional features.

Session Properties

Property Description

$dbmsname Once a session has been established this is the type of database that the object is connected to. This defaults after a $logoff.
(Read only)

$dbmsversion Once a session has been established this is the version of the database software that the object is connected to. This defaults after
a $logoff. (Read only)

$drivername Prior to a session being established this should be set to the name of the JDBC driver that the object wishes to use in order to
establish a connection. This can also be set using the $setdriver() method.

$driverversion Once a session has been established this is the version of the JDBC driver that the object is connected to. This defaults after a
$logoff. (Read only)

$logontimeout The timeout in seconds for a $logon call. The default is 15 seconds. A value of 0 represents no timeout.

Session Methods

Property Description

$setdriver() $setdriver(‘drivername’) sets the JDBC driver that the session object should use to establish a connection. This is the same as
assigning a name to $drivername.

Connecting to your Database

Do SessObj.$setdriver('sun.jdbc.odbc.JdbcOdbcDriver')

Failure to perform this step will cause the $logon() to fail. In order for the specified JDBC driver to be successfully loaded, it must
exist in the system CLASSPATH environment variable.

To log on to the database using the SessObj.$logon() method, the hostname must contain the database URL required by the
specified driver. The user name and password should contain the values required by the database.

Transactions

Generally, using manual transaction mode results in increased performance because the session object does not force a commit
after each statement.

If you do not have a result set pending, JDBC session objects will commit each statement if the transaction mode is automatic. If
the transaction mode is server, the session may be committed depending on the behavior of the JDBC driver.

Dates

The session property $defaultdate allows default values to be added to date values mapped to the server where the Omnis date
value does not contain complete information, e.g. a Short time mapped to a server date time.

Multiple cursors

To allowmultiple select cursors when connecting to Microsoft SQLServer, the statement issuing the SELECTmust have the $use-
cursor property set to kTrue before the statement is executed. If a statement is issued when $usecursor is kFalse and this state-
ment returns a result set, this will prevent all other statements in the same session from returning data. The blocking results
must be completely processed or cleared before another result set can be generated. If a commit or rollback is performed on the
session, all the session’s statement cursors will be closed and all pending results will be lost.

368



JDBC Data Type Mapping

The following table describes the data type mapping for Omnis to JDBC connections. The Omnis to JDBCmapping will attempt
to pick the best match based on the types the driver supports in the order listed. For example, if the driver supports VARCHAR
and CHAR data up to amaximum column size of 255, but LONGVARCHAR data up to 2 gig, an Omnis Character(1000) will map to
whatever the associated server native type is for LONGVARCHAR, e.g. TEXT.

Omnis to JDBC

Omnis Data Type JDBC Data Type

CHARACTER
Character(n) National(n) VARCHAR(n) CHAR(n) LONGVARCHAR(n) CLOB(n)
DATE/TIME
Short date (all subtypes) DATE TIMESTAMP
Short time TIME TIMESTAMP
Date time (#FDT) TIMESTAMP
NUMBER
Short integer (0 to 255) SMALLINT
Sequence Integer 32 bit INTEGER NUMERIC(10,0) DECIMAL(10,0) < br>FLOAT DOUBLE
Integer 64 bit BIGINT
Short number 0-2dp Number floating dp, 0..14 dp FLOAT DOUBLE
OTHER
Boolean BIT SMALLINT NUMERIC(1,0) DECIMAL(1,0) CHAR(1) VARCHAR(1)

FLOAT
Picture, Binary, List, Row, Object, Item reference VARBINARY(blobsize) BINARY(blobsize)

LONGVARBINARY(blobsize) BLOB(blobsize) Where blobsize is
SessObj.$blobsize

JDBC to Omnis

JDBC Data Type - Omnis Data Type

CHARACTER
CHAR(n) VARCHAR(n)
LONGVARCHAR(n) CLOB(n)

Character(n)

DATE/TIME
DATE Short date 1980
TIME Short time
TIMESTAMP Date time (#FDT)
NUMBER
SMALLINT INTEGER Integer 32 bit
BIGINT Integer 64 bit
DECIMAL(p,s) NUMERIC(p,s) REAL
FLOAT DOUBLE

Number floating dp

OTHER
BIT Boolean
BINARY VARBINARY
LONGVARBINARY BLOB

Binary

Chapter 10—Report Programming

You can create many different types of report using a template or wizard, each with very different layouts and data handling
capabilities. With reports you can print out all or a subset of your data and collect up data from different sources and print it on
a single report. Each type of report in your application is defined as a Report class. This chapter describes Report classes and
Report sections and their properties. Reports can contain data fields, pictures, text, and graphics. You can also place graphs on
your reports, or base a report on the data contained in an Omnis list.

For web and mobile apps, you can print a report class to a PDF and display it in the end user’s web or mobile browser using the
‘showpdf’ and ‘assignpdf’ client commands, or you can allow the end user to download the report file to their device. You can use

369



the PDF Device to print a report to a PDF file: see PDF Printing. This chapter describes how you can create a report class, which
you will need to be able to print a report in web and mobile apps, but some sections only apply to creating and printing reports
on desktop apps.

For desktop apps, you can print reports to a number of destinations, including a Page preview that is displayed on the end user’s
screen, the current Printer, a File, a Port, or the Clipboard; this and all aspects of printing reports in desktop apps are covered in
this chapter.

Report Fields and Sections

You use report fields (report entry fields) and sections to build all types of report. You can use standard data fields that can contain
data from your server or Omnis database. You can use picture fields to display picture data. You place sections, or horizontal
dividers, across your report class that structure and position the data in the printed output. You can create subtotals, totals,
header and footer sections for most types of reports. By setting the appropriate properties in a report class you can print labels
as well. Furthermore, you can add methods to a report class and the fields and section markers on the report.

Report Object Limit

You cannot place an unlimited number of objects on a Report class. The object limit is 8191 for a Report class, although in practice
the limit is likely to be less due to platform limitations (the limit was 3000 in versions prior to Studio 11).

You are advised to split large reports (containing a large number of report fields) into a number of sub-reports, and print them to
either the Printer or PDF using the Begin and End print job commands.

Report Field Types

The following fields or components are available in the Component Store for report classes:

Group Component

Entry Fields Entry Field
Graphs Graph2
Labels Label String Label for multi language support Text
Lists Data Grid Wrapping List
Media HTML HTML Link Objects incl Text, Icon, Picture HTML Raw Text JPEG Picture Rtf Viewer
Other Calendar Page Count
Sections Report Positioning Bar
Shapes 3d Rectangle (see Report Shapes) Line Oval Rectangle Rounded Rectangle

Report Entry Fields

Entry fields display the data from your database. The $dataname for an entry field specifies the instance variable or database
column name to be displayed or printed in the report.

The $tooltip property allows you to add a tooltip to a report entry field, to be displayed in a Page Preview or PDF report.

The $linkaddress property can be a URL link address used by the Preview and PDF report destinations to provide a hyperlink; this
provides similar functionality to the $address property of HTML Link objects.

The omnisPreviewURLPrefix item in the ‘defaults’ section of config.json allows you to set the report preview URL prefix for the
$linkaddress property for report class Entry fields. The item defaults to ‘omnis:‘ if empty.

Wrapping Lists and Data Grids

TheWrapping List and Data Grid report fields support the use of styled text, provided their $::styledtext property is enabled. You
can insert styling characters or “text escapes” into text objects and other fields in Omnis reports using the style() function.

HTML Link Objects

Hyperlinks are supported in PDF and Page Preview report destinations. To add a hyperlink to a report, you can use one of the
HTML Link objects, found under theMedia group in the Component Store, including:

370

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#pdf-printing-1
/developers/resources/onlinedocs/ExtendingOmnis/08graph2.html#using-graphs-in-reports
/developers/resources/onlinedocs/Programming/14localization.html#chapter-14localization


• HTML Icon (Link)
adds a link behind an icon, specified in the $::iconid property

• HTML Picture (Link)
adds a link behind a picture; the image can be from a variable specified in $dataname or from a calculation specified in
$text.

• HTML Data Text (Link)
adds a link behind some data bound text; the text can be from a variable specified in $dataname or from a calculation
specified in $text.

• HTML Text (Link)
adds a link behind some static text specified in the $::text property.

To add the hyperlink to the HTML Link Objects you need to set the $address property to the target of the link, which can be a URL
or mailto, for example:

https://omnis.net
mailto:bob.smith@omnis.net

The $tooltip property can contain a tooltip used for the link specified in the $address property. It can contain expressions including
square bracket notation.

For Page Preview reports only (ignored for PDF reports), you can create a special custom HTML link using the syntax:

omnis:p1,p2,p3,p4

where the data after omnis: is a comma separated list of parameter values, which can be integer or character, and must not
contain ” (double quotes).

In the latter case, when the user clicks the omnis: link, Omnis looks for amethod called $previewurlclicked. Firstly, if the report has
been sent to awindowfield, Omnis looks for themethod in thewindow instance containing the screen report field, otherwise if the
first test fails, Omnis looks for themethod in the task that printed the report. If Omnis finds themethod, it calls $previewurlclicked
passing it the following parameters:

• An item reference to the report instance.

• The ident of the report object.

• A row created by adding a column for each comma delimited item in the data after omnis: in the link.

You can create a method called $previewurlclicked in either the window or task, as above, and react to the parameters passed.

Aspect Ratio for Icons and Images

For the image related report objects, such as HTML Icon (Link) and JPEG controls, you may need to set the $keepaspectratio
property to kTrue for the icon or image to draw with the correct aspect ratio. If this property is kFalse (the default), the icon or
imagemay not draw correctly. In addition, some of the report image controls have the $noscale property; if set to True, the control
will not scale the image.

JPEG Report Control

The JPEG control allows you to place a JPEG image on a report. The image can be from a variable specified in $dataname or from
a calculation specified in $text. Alternatively, you can specify the path to the JPEG image in $path.

Picture Report Control

The Picture control allows you to place an image on a report. The image can be from a variable specified in $dataname or from a
calculation specified in $text.

Rtf Viewer Control

The Rtf Viewer control allows you to embed an RTF document into a report. The RTF file can be from a variable specified in
$dataname or froma calculation specified in $text. Alternatively, you can specify the full pathname to the RTF file in the $filename
property.

371



Report Labels

You can use the Label or Text report objects in your report classes to label report fields and so on. In addition, you can use the
String Label object which allows you providemulti-language labels on your reports: for information about the use of String Labels
and String tables, see the Localization chapter.

Report Shapes

You can add various graphical shapes to your reports using the objects in the Shapes group in the Component Store including 3d
Rectangle, Line, Oval, Rectangle, and Rounded Rectangle. You can control the appearance of these shapes under the Appear-
ance tab in the Property Manager, includng the border, line styles, and colors, as appropriate.

Report Wizard

The SQL report wizard lets you create a report that contains fields that map directly to a SQL class in your library, which lets you
print data on your SQL server database. Before you can use report wizards youmust create the schema or query classes necessary
for SQL (for legacy apps you can use an Omnis file class).

For SQL reports you need to select the Session to be associatedwith the new report. The SQL report wizard creates a report based
on a schema or query class; each separate field on the new report maps to a schema column, which in turn maps to your server
database

To create a new report using a wizard

• Select your library in the Studio Browser

• Click on the Class Wizard option, then click on the Report option

• Select the report SQL Report wizard and click on the Create button

When you finish in the Report Wizard the new report class is opened ready for you to modify or print. To modify your report, you
need to edit its properties. You can also add new report objects from the Component Store, and you can add methods to the
report class or the objects on the report.

(Note there is an “Omnis ReportWizard” which creates a report based on anOmnis file class, but this should only be used in legacy
apps that use Omnis datafiles, and not for new applications.)

Report Tools

The toolbar at the top of the report editor lets you set the page size, preview the report on screen, and show or hide connections
between the different sections of the report as shown down the left-hand side of the report editor. In addition, you set the sort
levels in your report from this toolbar. Position your mouse over each tool to see what it does.

Some of the options in the report editor toolbar are available using the report context menu by Right-clicking on the report
background.

The Narrow Sections option displays the section markers as narrow lines which shows you how the report will look when you
print it. The Show $ident option displays the ident numbers for the fields and sectionmarkers in the report. The Field List option
displays a list of fields and section markers in the report class. You can expand the tree in the Field list to show the fields within
each report section.

The Class Methods option lets you add methods to the report class, and the Properties option shows the properties for the class.
The Page Setup option or toolbar button opens the Page Setup dialog in which you can select the printer, and set the page size
and orientation. This dialog will vary greatly across the different operating systems.

Zoom In/Out

The report class editor toolbar has Zoom In and ZoomOut buttons which control the DPI value used to convert report coordinates
to and from pixels, and the DPI value used to create fonts used in the editor. “Zoom in” increases the DPI value, “Zoom out”
decreases it. Note this is for design mode only, and you can zoom through a limited set of DPIs:

• 72 – objects displayed at standard resolution for macOS

• 96 – objects displayed at standard resolution for Windows (with default system scaling of 100%)

372

/developers/resources/onlinedocs/Programming/14localization.html#chapter-14localization


Figure 133:

• 144 – objects displayed at 2x resolution for macOS

• 192 – objects displayed at 2x resolution for Windows

In addition, if Windows is using a different scaling value, the editor inserts the system DPI into this list at the appropriate point.

These values correspond to the design coordinate system used in Omnis, so on HD displays 96 DPI maps to 192 physical pixels.

You can use Ctrl+ and Ctrl- (Cmnd+/Cmnd- onmacOs) to zoom in and zoom out respectively. The current zoom level is saved with
the window setup by the save window setup context menu item.

Note that the section bars and the text in the left panel do not increase in height when you zoom. Note also, that zoom does not
affect the size of lines drawn in fields on the report - only the text, and in some cases images will scale.

The Modify Report field has a new runtime property, $dpi, that can be assigned to one of the values above.

External Components

If you create external components for reports then you will need to make some changes to draw text at the correct DPI. Typically,
if the component just displays its name or dataname using the standard interface, you won’t need to do anything, as the text DPI
will be handled by the Omnis core. Where components that can be placed on reports draw custom text, there are some changes
to make in the component:

• There is a new callback ECOgetFontDpi(HWND) that returns the current DPI to use to create fonts - this will return zero
unless the component is on a report design window, in which case it will return one of the above values.

• There is a new class GDIfontCreator, that you constructwith theHDC for drawing, and the return value fromECOgetFontDpi.
This has amethodcreateFont that you thenuse to create the font rather thancallingGDIcreateFont. Whenyouhavefinished
with the font, call GDIdeleteObject as usual. You cannot cache the HFONT generated by createFont in your component.

• If you require font or textmetrics, use theHDC versions of GDIfontHeight, GDIfontPart, GDItextWidth etc, with a font created
using GDIfontCreator.

• In addition, for more advance use there are classes GDIhdcFontCacheHelper which removes all fonts cached by the Omnis
font cache for a particular HDC at the end of the block and GDIoverrideHDCDPI which means that all fonts created for a
specific HDC are created at a specified DPI while GDIoverrideHDCDPI is in scope. You need to use GDIoverrideHDCDPI if
you are drawing styled text, as styled text drawingmay create new fonts. In addition, when drawing styled text, you need to
set mFontHdc in the GDIdrawTextStruct, in order for fonts to be created at the correct DPI.

• You can also call GDIcreateDcFont with a DPI parameter to manage fonts yourself.

373



Report Sections

Sections are horizontalmarkers or dividers across the report class that structure and position the data when your report is printed.
To create a complex report with headers, footers, subtotals, and totals, such as an invoice or catalog listing, you have to place the
appropriate sections in your report class in the right order. When you enable the various sections in your report using the Property
Manager, their position and order is handled for you automatically.

There are two sections that you must have in a report:

• the Record section indicates the start of the display of records or rows of data, and

• the End of report section indicates the end of the report.

These sections appear automatically in every new report class. The following section types are available:

Section type Description

Report heading defines the area at the start of the report, which prints only once; you can use this to create a report title page
Page header defines an area at the top of each page below the top margin, printed at the top of each new page
Subtotal heading prints before each subtotals section; it would normally contain column headings for your subtotal sections
Subtotal heading 1 to 9 each subtotal heading prints before its corresponding subtotal level
Record defines the section containing the fields that print your data; the record section expands to accommodate your data which may

extend over several pages when printed
Positioning divides a section into two or more subsections; you can control exactly where on the page a positioning section is printed
Subtotals level 1 to 9 defines the fields that will print subtotals; you can have up to 9 levels of subtotaling
Totals prints at the end of the report and defines the fields that you want to total
Page footer defines the area at the bottom of each page; printed at the bottom of each new page of your report
End of report defines the end of the report; must be present on every report

To enable a particular report section, you have to set the appropriate property to true under the Sections tab in the Property
Manager. When you enable a particular report section, it is shownon your report in the correct position. You can click on individual
sections to change their properties in the Property Manager.

Page Headers and Footers

To create a page header for your report, youmust set the pageheader property of the report to true under the Sections tab in the
Property Manager. The Page header section will appear on your report above the Record section, or any subtotal headings if you
have any.

Similarly, to create a page footer for your report, you must set the pagefooter property to true under the Sections tab in the
Property Manager. The Page footer section will appear on your report below the Record section, or any Subtotals and Totals
sections if you have any.

Any fields or graphics you place in the header section, that is between the Page header section and the next section marker will
print at the top of each page. Likewise, any fields or graphics you place in the footer section, that is, below the Page footer section
marker, will print at the bottom of each page. Note that the connection between the different sections is shown in the left margin
of the report editor: the current section is shown in red.

When printing to a non-paged device such as File or HTML, by default the footer section is not printed. The Report header and first
Page header sections are printed at the beginning of the report. However it is possible to force the footer section to be printed by
calling $printsection( kFooter ) for the report instance. The default positioning for a footer for a non-paged device is to follow on
from where the last section stopped printing.

To change the height of any section, including the record, header and footer sections, you can click on the section marker (the
gray bar) and drag it into position. All the sections below the one you move will adjust automatically.

To show youmore how the report will look when you print it, you can view the sections as narrow lines. To view sections as narrow
lines, click on the Narrow sections button in the report editor toolbar, or Right-click on the report background and select the
Narrow Sections option.

Printing Sections as Record Sections

The $printsection method has a new parameter to force the report section to print as a record section. The method $printsec-
tion(iSection[,bPosnIsRecord=kFalse]) prints a section: note bPosnIsRecord applies to positioning sections only. If bPosnIsRecord
is kFalse (the default), this method prints a section based on the position of the previous section; otherwise, when this parameter
is true the method prints the section as a record.

374



Borders and shading

You can set the border and fill properties for each section in a report. The report class and section objects have the following new
properties: $effect, $forecolor, $backcolor, $bordercolor, $backpattern, $linestyle. In addition, sections have $topmargin, $leftmar-
gin, $bottommargin and $rightmargin properties to allow the sections border and fill to be inset from the sections boundary.

Positioning sections cannot have their own border and fill properties. The border and fill of the main section extends through all
its position sections. The border and fill properties of each section are visible in design mode.

Watermarks

You can add awatermark effect (using a background image) to your reports by assigning a picture to the $backpicture property of
the report. The alignment can be one of the following within the report margin: TopLeft, TopCenter, TopRight, CenterLeft, Center,
CenterRight, BottomLeft, BottomCenter, BottomRight, Stretch (stretch the image to fit the report margin), or Tiles (tile the image
within the report margins).

The horizontal and vertical DPI (dots per inch) specify the resolution at which the image is to be printed.

When using notation, $backpicture refers to the binary representation of the image and the formatting properties. To change the
image or formatting properties you can use $backpicture.$picture or $backpicture.$align. The full set of notation is as follows:

Property Description

$backpicture.$picture the actual image (24bit color shared).
$backpicture.$picturealign alignment of the image within the report margins. This can be one of the kPALxxx constants.
$backpicture.$horzdpi the horizontal dpi (defaults to 150), disabled for kAlignMargins and kAlignPrintable
$backpicture.$vertdpi the vertical dpi (defaults to 150) , disabled for kAlignMargins and kAlignPrintable.
$backpicture.$horzoffset additional horizontal offset in cms or inches from the alignment. Disabled for alignments of kAlignMargins and

kAlignPrintable
$backpicture.$vertoffset additional vertical offset in cms or inches from the alignment. Disabled for alignments of kAlignMargins and kAlignPrintable

Icon IDs for background pictures

You can use the $backiconid property to assign an image to the background of a report using an image or icon ID, rather than
using $backpicture. The propertymust refer to an icon ID in an icon set, or an alpha page in #ICONS in your library or an icon data
file. If you specify a value for $backiconid it takes precedence over $backpicture.

Section Positioning

When you print a report, each section follows the previous section by default, and is positioned down the page according to the
height of the previous section set in the report class. However, for some types of section, you can control where a section prints
and whether or not a new page is forced using the pagemode and startmode properties of the section. You can use a special
type of section marker called a position section to print part of your report literally anywhere on the page. To do all these things
you have to modify the properties of the appropriate section marker.

To view theproperties of a section, open your report class in designmode and click on the appropriate section to view its properties
in the Property Manager.

Page Mode

You can control whether or not Record, Subtotals, Totals, and Subtotal heading sections start a new page when they are encoun-
tered by setting their pagemode property. You can select one of the following options for this property.

• Nopage
does not force a new page; uses the pagination in the report class (the default)

• Newpage
always starts a new page before this section

• Testspace
starts a new page before starting this section if there is not the specified amount of space available on the current page

375



If you select the Testspace option, the pagespacing property is enabled in the Property Manager in which you can enter the
amount of space required for the section. If this amount of space is not available on the page, a new page is started. The figure
you enter in pagespacing is shown on the section marker.

Omnis works with units that are 1/72 of an inch; therefore, it may round exact numbers in centimeters or inches to the next real
unit. For example, 1cm becomes 0.99cm.

Start Mode

All sections except for Page footer and End of report let you specify the startmode, which tells Omnis where to start the section.
You can choose one of the following options.

• Follow previous section
starts the section on the line following the end of the previous section (the default)

• Fromtop of previous section
starts the section n inches/cms from the top of the previous section

• Fromend of previous section
starts the section n inches/cms from the end of the previous section

• Fromtopmarg
starts the section n inches/cms from the top margin of the report

• Frombottommarg
starts the section n inches/cms from the bottommargin of the report

When you choose one of the start modes the startspacing property is enabled in the Property Manager, which lets you enter a
measurement for the startmode. The startmode and spacing is shown on the section marker.

Omnis ignores previous section settings if the previous section was a Page header section or a Positioning section within a Page
header section. The spacing comes before the page start test that examines the amount of space left on a page. Omnis ignores
top and bottommargin settings for reports that are not paged.

Note that when you set up a report to print labels, you can use the Fromtop or Frombottom options to set the spacing between
your labels.

You can enter a negative value for the start spacing of a positioning section, for example Start –1.000cms from end of previous
section. This allows you to align fields with the bottom of an extending field.

Record Spacing

The default spacing between records or rows of data on your printed report is determined by the height of the Record section
in your report class. However you can override this spacing by setting the userecspacing property for the Record section. This
property forces the report to use the vertical spacing set in the recordspacing property of the report class.

Position Sections

A Position section is a special type of report section that you can print literally anywhere in the report. For example, using a
positioning section, you could print a footnote or a logo at the bottom of a letter, regardless of the content or amount of data in
the main report letter.

A positioning section placed over the second line of a two-line extending field with the Follow previous section property prevents
the second line fromprinting as a blank. You can also follow extending fields by a positioning sectionwith Follow previous section
to prevent them fromwriting over any fields below. A positioning section within a subtotal section lets you trigger a print position
change by changing a sort field value.

Section Print Height

Report sections have the property $printheight which lets you specify the printing height of a sectionmore accurately than using
positioning sections. The printing height of a section is displayed in the section bar. Setting the sections print height does not
affect the positioning of sections in the report class or on the design window. If a section area is larger than its print height, the
area below the print height is filled with gray. Any report objects that fall entirely in the gray sections ($top of object is greater
than $printheight of section) are evaluated but not printed.

376



You can create label reports using a combination of the $printheight property and the positioningmode kFitOnPage. If a section
is too high to print on the current page, it will be printed the next page. Some objects are normally moved to fit on a page at the
time they are added to the report, e.g. a single line of text. This behavior is disabled for objects in sections that have kFitOnPage
selected.

Standard Lines between sections can expect an overall vertical placement inaccuracy of +-1/72nd of an inch. Hair lines can expect
an overall placement inaccuracy equal to that of the DPI of the printer, but not better than +-1/600th of an inch.

Section Calculations

Sections have the $printif property which can trigger the section to print based on a calculation. If a section has a calculation, it
is skipped if the calculation evaluates to zero, otherwise the section is printed as normal. If a section has been given a calculation,
the text “Print if calculation” will appear in the section bar.

If a main section is skipped, all positioning sections belonging to the main section are also skipped, regardless of their $printif
property. Calling $printsection from amethod will ignore the $printif calculation and always print the section.

Custom Sections

A custom section is effectively a positioning section with $printif calculation of ‘0’. This means the section will not print unless,
$printsection() is called with a reference to the section. You can add a custom section (positioning bar) from the Component
Store.

Custom sections can be placed inside any of themain sections, but can be printed before or after any of the other report sections,
but not during. Changing the $printif calculation to anything other than ‘0’, will change the section into a normal positioning
section, and vice versa.

Hiding Sections in design mode

You can collapse or expand the sections in a report to simplify the visual appearance of the report in design mode. The col-
lapse/expand icon in the report editor lets you collapse a section, leaving the section divider visible. The current collapse/expand
state of a section will be saved in the report class.

When a ‘main section’ is collapsed, any positioning sections in that section are also hidden. Positioning sections can also be
collapsed or expanded individually. Collapsing of sections is disabled when narrow sections are viewed.

Sorting and Subtotaling

To implement sorting and subtotaling for your report, you need to specify the fields on your report to be sorted, and create subto-
tals sections containing those fields. Sort fields define how Omnis subtotals the records or rows of data when printing a report.
With no sort fields, Omnis displays records in the order they are listed on your server, or if the data is from an Omnis data file, in
the order the data was inserted. When you add sort fields to your report, the report will print subtotals when the values change
in the sort fields.

To specify sort fields for your report, click on the Sort Fields button in the report editor toolbar; the Sort fields window opens. In
the Sort fields window, you can specify up to nine sort fields by entering each field or variable name in the left-hand column. Note
that you can use the Catalog to enter your field or variable names. These sort fields form a nested sequence of sorts on the records
that trigger printing of up to nine nested subtotal sections.

The sort fields for a report class are stored in the $sorts group for the class. You can modify the contents of this group at runtime
using the notation, to change the sort fields for the report, but if you want the changes to take effect this must be done in the
$construct() method of the report before the report instance is created. If you havemore than one instance of a report class, each
instance will have the sort fields specified in the class, but you canmodify the $sorts group for a particular instance if you wish to
change its sort fields.

To subtotal a field, place a copy of the field in the Subtotal section and select the appropriate totalmode for the field. This is
independent of the sort fields, which trigger the printing of the Subtotal sections.

When you enter a field or variable name in the list of sort fields the sorting options are enabled for that field. You can enable any
of these options by clicking on the cell and selecting true.

Each sort field has the following options.

• Descending sort
sorts the field in descending (Z to A and 9 to 0) instead of the default ascending order

377



• Upper case conversion
converts field values to upper case before sorting, so the use of mixed case in your database does not affect subtotaling or
sorting

• Subtotalswhen field changes
tells Omnis to print subtotals using the corresponding subtotal section (1 to 9) when the value of the field changes; that is,
if sort field 4 changes, subtotal level 4 will print

• New pagewhen field changes
starts a new page as well as printing a subtotal when the value of the field changes

When you enable the Subtotals or New page options for a sort field, you can specify the number of characters that must change
before a subtotal is triggered or new page is printed.

Subtotal Sections

You can specify a Subtotal heading section in your report. It prints before the first Record section and successive Record sections
following each Subtotals section. The subtotal heading can print column names and anything else you want to apply to each
subtotaled Record section.

The Subtotals section printswhenever the Record section breaks on the corresponding sort field, with the subtotal printing before
the record with the changed value. Since there are up to nine sort fields, you can have up to nine Subtotal heading and Subtotal
levels numbered 1 through 9 corresponding to the sort fields specified in the report. The higher numbered sort fields are nested
within the lower ones and hence change more often. That is, sort field 5 changes within sort field 4 which changes within sort
field 3, and so on. Correspondingly, the Subtotal heading and Subtotals sections with higher numbers printmore often as the sort
fields change.

When you havemultiple subtotals which print consecutively, the corresponding heading sections print one after another, starting
with the one for the last subtotal. Subtotals and totals can be aggregations of several kinds, including sums, averages, counts,
minimums, or maximums, depending on the field’s $totalmode property. Omnis maintains the total for each subtotal printing,
then resets the subtotal to zero for the next section.

The Totals section prints at the end of the report. As for subtotals, you place the fields to aggregate in this section, and Omnis
accumulates the aggregate values across the entire report. You can set the totalmode property for a field in the totals section.

Calculated Fields

In addition to totaled fields in subtotal or total sections, you can place calculated fields in report sections which take their value
from the result of some calculation. In this case the $dataname property of the field is left blank, the $calculated property is
enabled and the calculation is placed in the $text property. For example, this could be the concatenation of a Firstname and
Surname variable to display a person’s full name. Note that such calculated fields cannot be totaled in subtotal or total sections.

PDF Accessibility

Support for PDF/UA in PDF reports is enabled by allowing you to set the order of objects in a report class in designmode and tag
non-text objects such as images. The report object ordering and tags can then be read by an accessibility PDF reader.

The Omnis report engine builds up a page of objects during the record printing process adjusting object positions using sections,
$print and the natural order of records during printing. When the print job is complete, Omnis sends the final objects, page by
page, to an output device ordered left to right, and from top to bottom. When printing to PDF, page by page, the objects are sent
to the PDF device to be turned into a PDF file using PDF Kit. Until now, the order of objects in the final Omnis print job would
determine the order of objects in a PDF file (left to right, top to bottom).

For many reports, this order of objects whilst visually acceptablemay not be acceptable if read by an accessibility PDF reader. For
example, you may have text that is grouped and makes sense to be read together as a block. With the addition of support for
PDF/UA, you can now change the reading order of the objects in a report class and the output PDF if required.

PDF/UA Support

PDF/UA (PDFUniversal Accessibility), formally known as ISO 14289-1, specifies that objects in a PDF file should be capable of being
read in a specific order, and that visual objects that are non-text based (such as images) should be tagged so they can be read by
a PDF reader.

To enable PDF/UA support and have objects tagged and read correctly, an Omnis report printed using the Omnis PDF output
device may require developer modifications to control the order output and apply text tags to some objects.

378



TheOmnis PDF device has a subset setting kDevOmnisSubsetPDFUA for the Omnis PDFDevice.$setpdfsubset(iPdfSubset) func-
tion that when set, tags all objects correctly and sorts objects using the reading order specified in the report class before commit-
ting the objects to the PDF file.

PDF/UA support requires aminimumPDF version of 1.7. You can use the Omnis PDF Device.$setpdfversion(iPdfVersion) function
to set the PDF version. The following code can be used to set the PDF subset and version:

Do Omnis PDF Device.$setpdfsubset(kDevOmnisSubsetPDFUA)
Do Omnis PDF Device.$setpdfversion(kDevOmnisPDFVersion17)

Object Reading Order

To specify the reading order of objects in a PDF report, Omnis design mode allows you to assign a ‘reading order’ to an object or
set of objects. This reading order is used by the PDF device to sort and order fields in the final PDF file, that is, a PDF reader will
read the fields in the specified order.

To set the reading order, report objects have three properties available under the Accessibility tab in the Property Manager.

• $readingordergrp
a number representing a field’s main grouping, default is 0, meaning it has no group

• $readingorderindex
a number representing a field’s order within its reading group, default is 0

• $alt
some non-text based objects (images) support this. The text tag assigned to the object in the final PDF file

All objects are first sorted by group, and then by indexwithin the group. If a group of objects runs top to bottom, the index within
the group does not need to be set, as this is the default order Omnis will use.

To help with setting groups and group indexes in report designmode you can show the group and index (like viewing an object’s
name or $ident). The ShowReadingOrder option in the report design contextmenu allows you to see the reading order of objects
in the report. By default, there is no reading order, so the order in the report design window is shown in a red box and the value
is zero.

To set an object’s reading order, select an object or group of objects in designmode and use the Property Manager to set $readin-
gordergrp and $readingorderindex. Once the order is set, the reading group is shown in a blue box, and if an index in the group
is set, this is also shown, e.g. 1:1 is the first object in group 1. The following image shows a report after some fields have been given
a group reading order.

If you intend to change the reading order of some objects, then all objects in the report will require the reading order to be set as
the default order is 0 and this may conflict with objects with an order. If you only need to change a few objects, do so then assign
all other objects a number larger than the order of the objects you want to control.

The $printontop property for report objects will be ignored when the object reading order is specified in your report class.

Previewing Object Order

Viewing the designmode reading order is useful, but due to $print and position sections which canmove objects during the print
stage, only a final output gives a true representation of the final PDF. To allow you to see the object reading order in the report
output, the ShowReading Order option is also available in the contextmenu in thePrint Previewwindow. Omnis will show all the
assigned reading order stops, and the links between them. There is a small toolbar in the top left corner of the Preview window
allowing you to step through the report object order, as it would be read by a PDF reader.

Alternatively, you can use the Plus (+) orMinus (-) keys to step through the objects in the Preview report. As you navigate through
the order, each object is highlighted showing its reading order stop, but you can press Backspace or the left-most toolbar button
to show all the reading order stops and links.

The following image shows a report with no object order set, and in this case, Omnis will navigate left to right, top to bottom. The
reading order is shown in red, and the link lines show the order of objects a PDF reader will take.

The next image shows a report where the order has been applied. You can see and follow the navigation through the report, and
as you press the Plus key the highlightmoves through the report objects showing the reading order. The order shows the current
object and a link from the previous object and to the next object.

Using this navigation helps you visualize the object reading order and allows you to change the ordering back in the report class
to create a final PDF file containing the object ordering you require for the best accessibility.

379



Figure 134:

Figure 135:

380



Figure 136:

Custom URLs

You can embed a Custom URL (link) in a PDF report that could, for example, launch Omnis, and call a method inside a specified
library, which could perform an action. This is enabled via support for custom URL schemes. Omnis can support one or more
custom URL schemes.

On macOS, the URL schemes must be defined in info.plist. The role for the URLs added to info.plist must be ‘Editor’, otherwise
Omnis will not be invoked by the URL. If you add any URL schemes to info.plist you must re-codesign Omnis.

On Windows, the “customURLSchemes” item in the “windows” section of the Omnis configuration file (config.json) is a JSON
array of strings. A scheme name can contain alphanumeric characters only and must start with an alpha character. By default,
the customURLSchemes item contains the entry “studio%v”. When reading the schemes from config.json, Omnis replaces %v
in each string with the appropriate value for NNN, where NNN represents the major version of Omnis. For example, the default
scheme name will be studio111 in Studio 11.1, or studio120 in Studio 12.0 and so on.

The “customURLUUID” item in the “windows” section of config.json is a UUID that identifies the Omnis server to clients using
custom URLs. This value is reserved for internal use and should not be changed.

Creating a custom URL

The custom URL is made up of the scheme name plus any parameters you wish to pass into Omnis. The syntax for a custom URL
is:

scheme://params/

In some cases, the optional trailing / is needed to make the client consider the URL syntax to be acceptable.

The params can be either query string parameters or JSON. Here is an example of custom URL protocol using query string pa-
rameters:

studio111://lib=test&test=10&value=another

Here is an example of a custom URL procotol using JSON parameters, before escaping them:

studio111://{"lib":"test","test":10,"value":"another"}

And after escaping them, for safety:

381



Figure 137:

382



Figure 138:

383



studio111://%7B%22lib%22%3A%22test%22%2C%22test%22%3A10%2C%22value%22%3A%22another%22%7D

When the custom URL arrives at Omnis, various characters must be escaped, e.g. { becomes %7B, } becomes %7D, : becomes
%3A. Some clients, such as Chrome onWindows, automatically escape these characters, whereas onmacOS, Safari does not, and
you need to do this manually. It is therefore safer to escape all characters. You can use the OW3.$escapeuritext(cTextToEscape)
function to escape URI/URL characters in order to render them safe.

You can create a custom link in a report by adding the URL to the $linkaddress property of a report Entry field. For example, you
could add studio111://lib=testlib/ to create a link to launch Omnis and open a library called ‘testlib’. You can also use an Html Text
(Link) report object, adding your custom link the $address property. When you print the report to an Omnis Preview window or a
PDF, the custom link will be embedded into your report.

Opening a custom link

Toopena custom link in aPDF, the endusermust right-click the link andopen the target in anew tab. SomePDFviewers/browsers
may not allow such custom links to run for security reasons, so your custom links should be thoroughly tested for different PDF
clients.

When you use a custom URL to run Omnis, Omnis will start up if necessary, and then it runs the $urlinvoked method in the
Startup_Task of the specified library (identified by the lib column of the parameters). There must always be a column named lib
to identify the startup task; if the lib column is missing, or the library is not open, Omnis writes a message to the trace log.

The $urlinvokedmethod is listed in the Method Editor under the Class methods for the Startup_Task, which you can override and
then add your own code. The method has two parameters:

• $urlinvoked(cScheme,wParams) called when Omnis is invoked using a custom URL scheme
cScheme is the custom URL scheme,
wParams is a row representing the JSON or query string URL parameters.

OnWindows, there is an executable called omnisopenurl.exe, in the same directory as omnis.exe, which is used to openURLs, that
opens Omnis if necessary, and then sends the request to Omnis. When Omnis starts up onWindows, it checks the registry to see
if any of the custom URL schemes in config.json need to be registered – it will only register a scheme if it is not already present
in the registry, or if the registry entry of an existing scheme looks like it was created by Omnis. When registering a scheme, the
name of the executable used to open a URL, is the currently running core executable name, with openurl appended (the registry
key is added to: HKEY_CLASSES_ROOT\studio<version>\shell\open\command).

Printing Reports

In designmode, Omnis provides awide range of choices for printing or previewing your reports, including sending your report to a
Page Preview, the Printer, to a Text or HTML file. For web andmobile apps, you can generate a PDF file from a report and display it
in the enduserswebbrowser or allow them todownload the file. For desktop applications, endusers can set the report destination
using the File>>Print Destinationmenu option. In your finished library, you can provide a menu, popup menu, or toolbar button
to print your report to the required destination. There are a number of commands that let you set the print destination, including
Send to Page Preview, Send to file, and Send to clipboard.

While you are creating your report class youmay need to print it to preview or test it. You can use one of the buttons on the report
editor toolbar to print the current report class. From these tools you can print to a Page Preview window or the current Printer.

Report Destination Dialog

Note that the Print Destination dialog is only relevant for desktop apps. For web & mobile apps, using the JavaScript Client, the
file can be generated on the server and viewed in the browser on the end user’s mobile device: see PDF Printing.

You can select the output destination or device for your reports from the Print Destination dialog, available from the File>>Print
Destination option on themainOmnismenubar, which is also available to the end user in theOmnis Runtime version. This dialog
may also contain any custom devices, such as the HTML device.

The Print Destination dialog includes the following report destinations.

• Preview or Page Preview (the default; see below)
reports are sent to a report Preview window which is displayed in the Omnis application window; this is convenient for the
end user to view the report, prior to or instead of sending the report to the Printer.

• Printer
the report is sent to the current printer

384

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#pdf-printing-1


• Disk
the report is sent to the file specified in the Parameters pane of the Print Destination dialog; the file is stored in a cross-
platform proprietary binary format

• Clipboard
reports are sent to the clipboard in text format

• Port
the report is sent to the port specified in the Parameters pane

• File
the report is sent to a text file specified in the Parameters pane

• RTF
the report is sent to an RTF file specified in the Parameters pane

• HTML
the report is sent to an HTML file (UTF-8 encoded)

• PDF
the report is sent to a PDF file and can be opened on the end user’s desktop using the Adobe Reader or default PDF viewer.

• Memory and DDE/Publisher
are also available but by default are not visible in the Print Destination dialog (you can set their $visible device preference
to make them visible; see below)

The Page Preview destination is the default report destination; in versions prior to Studio 10.2 the Screen report destination was
the default, but this has been deprecated and maps to Preview in converted apps.

To set the report destination

• Select File>>Print Destination from the main Omnis menubar

• Select a report destination and click OK, or double-click on a destination

Page Preview Destination

The Page Preview (or Preview) option displays a full page on the screen and is the default report destination (from Studio 10.2
onwards). Text is “Greeked” if the screen size is too small, i.e. dots representing the characters so that the whole page fits the
available screen area.

Hyperlinks are supported in Page Previews: see HTML Link objects under PDF for details.

You can have more than one report Preview open at a time. Omnis displays a preview as soon as it has prepared the first page of
data, that is, normally it does not wait for the report to finish. Therefore, as you scroll or Page down a long report it may take a few
seconds to print each page.

The Page preview window can be opened maximized by specifying /MAX in the Send to page preview command parameters or
in $windowprefs.

Preview toolbars

Preview reports have a toolbar at the top of the window to allow end users to print the report to the current Printer or Save the
report to a file. The Omnis root preferences $reporttoolbarscreen and $reporttoolbarpagepreview (in the $root.$prefs devices
group) allow you to select which buttons are shown on the Preview toolbar for end user reports.

Zoom Factor

You can specify the initial zoom level for thePagePreview report destinationwhen executing the Send to pagepreview command,
or setting the $windowprefs preference. The ‘/zoom=n’ parameter can be included directly after the ‘Title’ parameter, as follows:

• Send to page preview syntax is now
Send to page preview ([Do not wait for user][,Hide until complete]) title[/zoom=n][/left/top/width/height/cen/max/stk]

• $prefs.$windowprefs setting is
Title[/ZOOM=n][/left/top/width/height/CEN/MAX/STK]) sets the position and initial zoom factor for preview windows

385



The string /zoom=n is optional, where n is an integer zoom factor, while a zero valuemeans zoomfit. If omitted thePreviewwindow
is zoomed to fit the screen.

A value for n of -1 to -7 means use the standard zoom factor indexed using -n (1 to 7); this corresponds to the 7 standard zoom
factors for the window, in ascending order.

A positive value means use the standard zoom factor closest to, but not exceeding, n. So you can pass in 175 for example to have
an initial zoom factor of 175%.

Copying from Preview reports

You can copy graphics from a report preview window by selecting an area with the mouse and using the Edit>>Copy menu item.
You can copy text in the same way, and you can select and copy more of the report than is displayed on screen.

You can use the tab key to tab through the page list, page and search field in the Preview screen. Therefore, to copy content from
a preview screen, you can tab to the page if necessary, press Cmd+A to Select all and then Cmd+C to copy content.

When the page has the focus, you can use the Escape key to clear the selection.

The Omnis root preference $disablereportcopy (in the $root.$prefs devices group) allows you to disable the copy via selection
feature of screen reports and page previews for end user reports.

Save PDF on Print Preview

The Page Preview window has a Save PDF button. You can control whether this button is present for user reports, using the root
device preference $reporttoolbarpagepreview: the constant kRBsavePDF controls whether or not the button is present.

Printer Report Destination

The Printer option sends the report to the current printer. Under Windows, selecting the printer as destination opens a list of
installed printers, and changing to a new printer does not affect the default printer setup as defined in Windows Printer Settings.

UnderWindows, another application can change the default printer. You can use theOmnis preference $printernotify tomanage
how Omnis responds to the default printer changing. The preference can be set to a constant as follows: kPrtNoteMsg, (the
default) a notificationmessage is displayed inOmnis allowing the end user to change printer or not; kPrtNoteAuto, no notification
message is displayed, and the printer changes automatically; kPrtNoteNoMsg, no notification message is displayed, and the
printer does not change. You can change $printernotify in the Omnis Preferences or Options under the Tools>>Options menu or
toolbar option.

Note that you can change the page setup with the File>>Page Setup menu item.

Disk Report Destination

The Disk file report device sends the report output to a file on disk in a cross-platform binary format. If you double-click on the
Disk icon in the Report Destination dialog Omnis prompts you for a disk file name.

You can print to the Disk device on one platform, reload the file in Omnis and print it on another platform. Alternatively, you can
print the output from the Disk device using the File>>Print Report From Disk menu option, or using the Print report from disk
command.

Clipboard Report Destination

The Clipboard option sends the current report to the clipboard as an unpaged, text-only report suitable for pasting as text into
other applications.

Port Destination

The Port option sends the current report to a Unix or Windows serial or parallel port, or a Mac Modem or Printer port specified in
the Parameters pane. This device also uses the settings in the Page sizes pane: see the File device.

Only one program can have a particular port open; if a port is open in Omnis and it is also, for example, the port used by the
Spooler, then the Spooler will not be able to function.

UndermacOS, there is an option on the Parameters pane to Convert for Imagewriter. When selected, the characters beyond ASCII
127 convert to a combination of a character, backspace, and accent character so that the report can print accented characters and
umlauts.

386



ModernMac computers do not have serial ports, but you can plug a serial adaptor into a USB port. Once the drivers for your serial
adapter are installed correctly, Omnis Studio will automatically recognize any new serial ports when you plug the adapter into
your machine. Any new serial ports that are discovered will be displayed in the parameters panel for you to select.

NOTE: Serial adapters and other USB devices which do not support the Comms Toolbox standardwill not be recognized by Omnis
Studio.

You can save the settings for the Port device to a profile using the Port profile editor: see later in this chapter for a description of
the Port Profile editor. You can also setup the port using the Set port parameters command.

File Report Destination

The File print destination sends the current report to a file. If you double-click on the File icon in the Report Destination dialog
Omnis prompts you for a file name. Omnis does not close the file at the end of the report so you can appendmultiple reports into
a single file. This option enables the Page sizes pane in the Report Destination dialog.

In the Page sizes pane you can specify the number of lines per page to use in reports printed to a file or a port. Omnis stores the
setting in the Omnis configuration file.

If you check the Generate paged reports check box, you can also check the Send form feed check box, which tells Omnis to
terminate pages with a form feed, or fill in the Line per page field with a number of lines to which to pad out each page. Checking
the Restrict page width option lets you enter the number of Characters per line.

RTF Report Destination

The RTF print device sends the current report to an RTF file. If you double-click on the RTF icon in the Report Destination dialog
Omnis prompts you for a file name. You can also set the file name under the Parameters pane in the Report Destination dialog,
as well as control the how images are embedded or linked. The default behavior is to embed images in the RTF file, but you can
link the images in which case any images are stored as separate files and linked to the RTF file; you can also ignore the images
altogether.

The following code allows you to set the name of the RTF file:

Do $devices.RTF.$setparam(kDevRtfFileName,'/Users/test/Desktop/test.rtf')

HTML Report Destination

TheHTML report device is a customdevice that prints a report to anHTML file on disk. When installed and loaded it appears in the
print destination dialog and behaves like any other standard printing device. You can send any Omnis report to the HTML device
and access and change the device using the notation. If you double-click on the HTML icon in the Report Destination dialog
Omnis prompts you for a file name. The HTML output uses UTF-8: if you use a template file, that must also be UTF-8 encoded.

The HTML printing device uses HTML tables and standard HTML tags to position and structure the output of the Omnis report.
The default background color of the HTML file is white. The color of the text in the original report class is retained in the HTML
output file. Where possible, the device converts any image or picture data into JPEG images, which are written to disk and linked
to the output HTML file.

PDF Report Destination

The PDF report destination sends the report output to a PDF file which can be viewed in a browser in the JS Client or on the end
user’s desktop using the default PDF viewer.

The alternative of using thePrinter report destinationwith $macosdesttype set toPDFusesbitmaps to render backgroundobjects,
and their appearance in a scaled PDFwill vary depending on the scaling factor and the algorithm used by the PDF viewer to scale
the bitmap.

For PDF (and Page Preview) reports you can embed an HTML link (URL or mail) behind some Text, an Icon, or a Picture using the
HTML Link Objects.

Printing Background Images to PDF

Background images on reports need to be shared pictures (PNGs) to print on the Linux headless server. To solve this, go to the
library prefs and set $sharedpictures to kSharedPicModeTrueColor. Then open each affected report class in the report class editor;
Omniswill ask if pictures are to be converted to shared, so respondwith Yes. The reportswill nowprint to PDF in the Linux headless
server, and additionally the file size of the report classes will be much smaller.

Omnis will report an error if the Linux headless server cannot print to PDF.

387



PDF Font Mapping

When using custom fonts for PDF printing there may be a mis-match between the name of a font and its Window registry entry,
which results in the font not being found and the report not being rendered correctly. To rectify this, you can add mappings
to the “pdf” entry in config.json (that apply to the Windows platform only), to map a font name to its entry in the registry. For
example, you canmap the font name “Proxima Nova Rg” to its registry entry “Proxima Nova Regular”, using the following item in
the config.json file.

"pdf": {
"plainSuffixes": "Regular,Standard,Normal,Normale",
"Proxima Nova Rg": "Proxima Nova Regular",
"Proxima Nova Rg Bold": "Proxima Nova Bold"

},

Memory Report Device

The Memory device lets you send a report to a binary variable or field, which you can hold in memory or save in a database. At a
later date you can reload the contents of the binary variable or field and print the report to the printer or any other destination.

You can access the Memory device using the notation only via the $root.$devices notation group. By default this device is not
shown in the Print Destination dialog, but you can show it using the following method (although in practice you would not use
this destination for end users):

Do $root.$devices.Memory.$visible.$assign(kTrue)

You can print the output from the Memory device using the Print report frommemory command.

DDE/Publisher Device (Obsolete)

This feature is no longer supported, since it relates to very old Windows and Mac operating systems, but is still available for
backwards compatibility. The DDE/Publisher device lets you send a report via DDE under Windows, or to an “Edition” under
macOS.

You can access the DDE/Publisher device using the notation only via the $root.$devices notation group. By default this device is
not shown in the Print Destination dialog, but you can show it using the following method (although in practice you would not
use this destination for end users):

Do $root.$devices.//DDE/Publisher//.$visible.$assign(kTrue)

Screen Report Destination (Obsolete)

The Screen print destination was available in versions prior to Studio 10.2 but it is now obsolete; it maps to the Preview report
destination by default. The option “useScreenDestination” in the “defaults” section of config.json does allow you to send a report
to the screen if required.

Printing Errors

The print manager reports the following error codes and text. You can setup error handlers to manage these errors.

Error Description

1001650 Non-fatal print manager error
1001670 Fatal print manager error
1001680 Print manager system error; the code is shown in the error text
1001681 Other Omnis error reported by print manager

Tabs in Reports

The “replaceTabsInRTFwithSpacesWhenAddingToReport” item in the “docview” group in config.json sets the default tab width
when printing text containing tabs in reports, so they are displayed properly, e.g. in the Page preview. The config item can be
a value from zero to 32 inclusive, the default is 2. Zero means leave the text unchanged. 1-32 means replace each tab character
found in the text with 1-32 spaces, when adding the text to a print job.

You can use the $settabwidth method to override the default tab width set in config.json.

388



Using style() in Reports

In versions prior to Studio 10.x, if the style() function was used in a report instance belonging to a remote task incompatible results
were generated (but this has been fixed).

The style() function usually generates different results when used in a remote task instance, and the resulting style is suitable for
use with the JavaScript client. The fix allows normal, non-JS client results, to be generated by style() when running in a report
instance inside a remote task.

However, even with this fix, you should note that the call to print the report from the remote form, which passes the results of
style() from some remote form code, will not work: you need to pass the icon id as the parameter, and call style() from within the
report instance to make this work with this fix.

Report and Field Methods

You can create a report class, add fields and objects to the report from the Component Store, but to print sophisticated reports
you will need to add some programming behind the fields and sections in your report. To do this, you need to write code that
uses the Omnis print commands or methods. You can add class methods to the report itself to control printing, and you can add
field methods to each field or section marker on your report to control things like the interval breaks and subtotals.

You can add up to 501 methods to each field or section on your report, and a further 501 methods to your report class. You enter
the methods for a report class and its fields using the method editor.

A report class will contain a $construct() and $destruct() method by default. You can add code to these methods to control the
opening and closing of the report instance. For example, if your report uses a list you can build the list in the $construct() method
in the report. You can use the $open()method or thePrepare for print command to open a report instance, you can finish a report
using $endprint() or the End print command, and you can close a report instance using the $close() method. You can send a list
of parameters to the $construct() method when you open the report instance using the $open() method. You can send data to
a report instance record by record using the Print record command, or print an entire report using the Print report command.
Alternatively, you can send print messages to a report instance using the notation. For example, you can send a $printrecord()
message toprint a record to the report instance, or send an$endprint()message to finish the report; there is no equivalentmethod
for the Print report command. You can override the default handling for these messages by writing your own custom methods
with the same name. You enter these custommethods in the class methods for the report class.

To add a method to a report class

• Open your report class

• Right-click on the report background to open the report context menu

• Select the Class Methods option

• Right-click in the method list in the method editor and add your method

To add a method to a report field or section

• Open your report class

• Right-click on the field or section to open its context menu

• Select the Field methods option

• Right-click in the method list in the method editor and add your method

Report Data Grid Column Parameters

Column calculation properties (in $::calculation) for the Report Data Grid component are tokenized so that they work with the
current function parameter separator.

For compatibility with versions prior to Studio 11, the component still works with the $::calculation and $columnheader properties
stored as character strings, provided that the function parameter separatorsmatch those currently in use. When you re-enter one
of these properties (select the property in the Property Manager and press Return) the property changes so that it is stored as a
tokenized calculation, which will then work with any function parameter separator.

An alternative way to convert a library is to export to JSON and re-import, and in this case Omnis tokenizes the calculations on
import. For import, Omnis will accept the report list calculations as either character strings or calculations; import always results
in tokenized calculations being stored. Accepting both forms means that import is compatible with JSON exported in previous
versions.

389



Print Devices and the Current Device

The following properties under $root handle the group of currently installed print devices or destinations, and the current printing
device.

• $devices
group of currently installed printing devices, including Printer, Preview, Screen, Disk, Memory, Clipboard, Port, File,
DDE/Publisher, and any custom devices you may have installed. You can set a reference to a device by using

Set reference MyRef to $devices.Screen

• $cdevice
the current printing device or report destination. You can change $cdevice by assigning a device from the $devices group,
for example, to specify the screen as the current device use one of:

Calculate $cdevice as kDevPreview
Calculate $cdevice as $devices.Screen
Calculate $cdevice as $devices.$findident(kDevPreview)

Print Devices

The $root.$devices group contains the currently installed printing devices plus any custom devices you may have installed. A
device has the following properties; $canassign for these properties is true unless specified.

• $name
the name of the device; $canassign is false

• $title
the string used to identify the device in the Print destination dialog

• $iconid
the id of the icon for the device as displayed in the Print destination dialog, zero by default which means the device uses
the default icon

• $ident
a unique numeric identifier for the device in the $devices group; $canassign is false

• $visible
if true, the device is shown in the Print destination dialog

• $isopen
returns true if the device is open and in use; $canassign is false

• $istextbased
returns true if the device is text-based, otherwise, the device is image-based, such as Printer, Screen, or Preview; $canassign
is false

• $cangeneratepages
this is a read only property. If it returns true, the device can generate pages and all normal page headers and footers will be
printed. If it returns false, only the report header and first page header are printed. No footer section is printed.

• $cankeepopen
returns true if the device can be kept open for long periods of time, such as the File device; otherwise, the device should be
opened prior to printing and closed immediately after printing has finished, for example you must do this for the Printer;
$canassign is false

You can use the following methods for a device; $cando() returns true if a device supports the method.

• $open()
opens the device ready for printing or transmitting text or data. Some devices such as the Screen or Preview can only be
opened from a print job when printing a report

• $close()
closes the device, if the device is open

390



The following example prints two reports in the same print job, and uses the $open() and $close() methods to initialize the Printer.

Set reference theDevice to $devices.Printer
If theDevice.$isopen ## check if printer is in use
If theDevice.$canclose()

Do theDevice.$close()
Else

Quit method kFalse ## if device can't be closed
End if

End If
Do theDevice.$open() Returns ok ## open the printer
If ok ## print the reports
Set report name reportOne
Print report
Set report name reportTwo
Print report
Do theDevice.$close() Returns ok ## close the printer

End If

• $canclose()
returns true if the device can be closed. If you opened the device using $open(), this method returns true; if you opened the
device via a print job and the job is still in progress, it returns false

• $sendtext( cText, bNewLine, bFormFeed )
sends the text in cText to the current device; all normal character conversion takes place. If bNewLine is true, the device
advances to a new line or sends an end of line character; if bFormFeed is true, a new page is started, or a form feed character
is sent. Data is sent in parameter order: first text, then the new line, then the form feed.

The following example sends some text to the File device.

Set reference theDevice to $devices.File
If theDevice.$sendtext.$cando()
Do $prefs.$printfile.$assign('HD:MyFile')
Do theDevice.$open() Returns ok
If ok

Do theDevice.$sendtext('Some text',kTrue) Returns ok
Do theDevice.$sendtext('More text',kTrue) Returns ok
Do theDevice.$close() Returns ok

End If
End If

• $senddata( cData[,cData1]… )
sends the specified data in a binary format to the device; no character conversion takes place unless the data is of type
kCharacter. If more than one parameter is specified the data is sent in individual packets

When using the $senddata() method you must consider type conversion. The method expects binary data, and therefore any
data which is not in a binary format is converted to binary. For example, if you pass an integer variable, the data is converted to
a 4 byte binary. In some cases, due to cross platform incompatibilities, if you want to be certain of the order in which the data is
sent, and of the values which are sent, you should use variables of type Short integer (0 to 255), for example

Calculate myShortInt1 as 13
Calculate myShortInt2 as 10
Do myDevice.$senddata( myShortInt1, myShortInt2 )

You can send raw data to the Port or File device. The following example prints a report to a binary variable and sends the binary
data to the Port device.

# print a report to a binary variable
Do $cdevice.$assign($devices.Memory)
Do $prefs.$reportdataname.$assign('myBinaryField')
Set report name myReport
Print report

391



# now send the report to the port
Set reference theDevice to $devices.Port
If theDevice.$senddata.$cando()
Do theDevice.$open() Returns ok
If ok

Do theDevice.$sendata(myBinaryField) Returns ok
Do theDevice.$close() Returns ok

End If
End If

• $flush()
flushes the device. For the File device $flush() will ensure all data is written to disk; you can safely call $flush() for devices
which do not support this method; $cando() returns true for all devices that support $senddata() or $sendtext()

Global Printing Preferences

There are a number of Omnis preferences under $root.$prefs that handle the print devices and their parameters. You can set
these using the Property Manager or using the notation.

• $reportfile
the full path and file name for the Disk device

• $printfile
the full path and file name for the File device

• $editionfile
the full path and file name for the DDE/Publisher device

• $pages
the page or page numbers to be sent to the device; all devices support this property. You can specify pages as a comma-
separated list or range of pages separated by a hyphen, or any combination. Prefixing a range with an “e” will print even
pages within the range, or with an “o” will print odd pages within the range. For example
1,3,7,10-15,25-20,e30-40,o30-40

• $reportdataname
the name of the binary field for the Memory device

• $reportfield
the name of the window field for a Preview or Screen report; if you specify this property the report is redirected to the
window field

• $windowprefs
the optional title and screen coordinates for a Screen or Preview window; the syntax is the same as the Open window
command, such as My Title/50/50/400/300/STK/CEN; the title is also used as the document name when printing to the
Printer

• $waitforuser
if true, method execution is halted until the user closes the Screen or Preview window

• $hideuntilcomplete
if true, a Screen or Preview window remains hidden until the report is finished

The following example specifies the Preview as the current device and sets up the preferences for the report window.

Do $cdevice.$assign(kDevPreview)
Do $prefs.$windowprefs.$assign('MyTitle/20/20/420/520/CEN')
Do $prefs.$waitforuser.$assign(kFalse)
Do $prefs.$hideuntilcomplete.$assign(kTrue)

• $charsperinch
the number of characters per inch when printing to a text-based device

• $linesperinch
the number of lines per inch when printing to a text-based device

392



• $generatepages
if true, reports generate paged output when printing to text-based devices, that is, page headers and footers are generated
as normal; otherwise if false, only one report header and page header is printed at the beginning of the report

• $linesperpage
the number of lines per page when $generatepages is true

• $restrictpagewidth
if true, the width of a page is restricted when printing to text-based devices

• $charsperline
the number of characters per line when $restrictpagewidth is true

• $sendformfeed
if true, form feeds are sent to text-based devices after each page

• $appendfile
if true, data is appended to the current print file specified in $printfile, otherwise if false, the file is overwritten when printing
to the File device; note if the device is already open prior to printing a report, the file is appended to regardless

• $istext
if true, forces a non-text device to behave like a text-based device using the same preferences as text-based devices

• $portname
the name of the port when printing to the Port device (Not supported on macOS)

• $portspeed
the port speed setting when printing to the Port device (Not supported on macOS)

• $porthandshake
the handshake when printing to the Port device; this can be kPortNoHandshake, kPortXonXoff, or kPortHardware (Not
supported on macOS)

• $portparity
the parity checking when printing to the Port device; this can be kPortNoParity, kPortOddParity, or kPortEvenParity (Not
supported on macOS)

• $portdatabits
the number of databits when printing to the Port device; this can be kPort7DataBits, or kPort8DataBits (Not supported on
macOS)

• $portstopbits
the number of stop bits to be used when printing to the Port device. This can be kPort1StopBit or kPort2StopBits (Not
Supported on macOS)

The following example sets up the preferences for the Port device.

Do $prefs.$portspeed.$assign(9600)
Do $prefs.$porthandshake.$assign(kPortNoParity)
Do $prefs.$portdatabits.$assign(kPort8DataBits)
Do $prefs.$portstopbits.$assign(kPort1StopBit)
Do $prefs.$porthandshake.$assign(kPortXonXoff)
Do $prefs.$charsperinch.$assign(10)
Do $prefs.$linesperinch.$assign(6)
# Note $charsperinch and $linesperinch are used for
# all text-based devices

There is also a group of Page setup properties under $root.$prefs giving access to the global page settings. These are

• $orientation
the page orientation; this can be kOrientDefault, kOrientPortrait, or kOrientLandscape

• $paper
thepaper typeor size, a constant; oneof 50or sopaper sizes or types includingUSLetter, EuropeanA sizes (fromA6upwards),
envelope sizes, custom sizes, and so on

• $paperlength
the length of the paper in cms or inches depending on the $usecms preference

393



• $paperwidth
the width of the paper in cms or inches depending on the $usecms preference

• $scale
the scaling factor in percent

• $copies
the number of copies

The Omnis rootmethod $getprinterlist() allows you to get a list of printers available to the current user. For example, the following
method will return a list of printers:

# define local vars printer (Char), mylist (List)
Do mylist.$define(printer)
Do $root.$getprinterlist(mylist)

The current line of the list indicates the current printer.

TheOmnis preference $disablereportworkingmessage allows you to disableworkingmessages for reports, which youmightwant
to do when printing to a Print Review window.

• $disablereportworkingmessage
If true, the ‘Sending report to…’ working message is not shown when printing a report.

This property only applies to reports being printed on the main thread (as reports in JavaScript client threads do not show
a working message). Note that you cannot cancel the report if you set this property to true. You may also need to use
$modes.$fixedcursor and $modes.$ccursor if you want to display a cursor other than the busy cursor while printing the report.

Report Instances

Report instances have the following methods.

• $printrecord()
prints the Record section; same as the Print record command

• $printtotals(section)
triggers a subtotal or totals section; section is the highest level subtotal to be printed, a constant, such as kSubtotal5 or
kTotals

• $printsection(iSection[,bPosnIsRecord=kFalse])
This is sent when a section is printed; iSection is one of the constants (kRecord, kTotals, etc.) or a reference to a section field
on the report instance. The default handler prints the section positioned according to $sectionstart, $sectionend and the
positioning mode for the section. For a Subtotal or Total section the current field values for fields whose $totalmode is not
set to kTmNone are temporarily reset to those which were current when $printsection for a detail section was previously
called.
bPosnIsRecord applies to positioning sections only; if bPosnIsRecord is kFalse (the default), this method prints a section
based on the position of the previous section; otherwise, when true the section is printed as a record

• $accumulate(section)
accumulates the subtotals and totals section, and is sent during the printing of a record section

• $checkbreak()
checks if a subtotal break is required, returns a constant: kSubtotal1 to kSubtotal9 or kNone if subtotal break is not required

• $skipsection()
skips the current section; if you call this during $print() for a field, no further fields will be printed for that section

• $startpage(pagenumber)
starts a new page; adds the page header section to the page, and for the first page also adds the report header section

• $endpage(pagenumber)
ends a page and adds the footer section to the page; without parameter ends all pages which have been started

• $ejectpage(pagenumber)
ejects a page; without parameter ejects all pages which have been ended and not ejected; this method ejects pages which
have an active section intercepting their boundary when the section has finished printing

394



• $endprint()
finishes the report; prints the final subtotals and totals sections and ejects all the remaining pages

• $openjobsetup()
opens the job setup dialog. You can call this method immediately after $open() for a report; if it returns kFalse as the result,
the user has selected Cancel, and you should close the report instance. You cannot call $openjobsetup() during $construct()
since a print job is not created until $construct() finishes.

• $cdevice
reference to the printing device for the instance; if you wish to change the device, you must do so before returning from
$construct() of the report instance, and before you start printing the first record. For example, execute the following at the
start of $construct() to specify the page Preview device for the current instance

Do $cinst.$cdevice.$assign($devices.Preview)

The device preferences are listed under the global printing preferences. Report instances have their own printing preferences
which are local to the instance. They take their initial values from the global printing preferences. You can only assign values to
these properties in $construct(), and before you start printing the first record.

The $firstpage property always returns 1, and $canassign() is false. The $lastpage property returns the last page. You cannot set
$lastpage in the report instance to reduce the number of pages generated, that is, once pages have been generated they cannot
be removed from a print job.

Note that the $pageheight property of a report instance returns the height of the printable area excluding the margins, headers,
and footer areas of the report.

The following method generates subtotal breaks every fifth record. The $reccount property is incremented and the subtotals
accumulated manually.

Do $reports.Report2.$open('*') Returns Myreport
For lineno from 1 to Mylist.$linecount step 1
Do Mylist.[lineno].$loadcols()
Calculate Myreport.$reccount as Myreport.$reccount+1
Do Myreport.$printsection(kRecord)
Do Myreport.$accumulate()
If mod(lineno,5)=0

Do Myreport.$printtotals(kSubtotal1)
End If

End For
Do myreport.$endprint()

Page Setup Report instance properties

You can change the page setup information of a report instance without effecting the global settings. The properties which can
be set are;

• $pagesetupdata
this can only be calculated prior to printing the first record; the best time is during $construct. When a print job has started,
$canassign returns kFalse.

• $orientation, $paper, $paperlength, $paperwidth, $scale, and $copies
any of these properties can be changed at any time during a print job, and will effect the next page to be generated. When
$startpage for a page has been called, changing these properties will take effect from the next page onwards. A good time
to make changes for the next page is during a $endpage for the current page, but it can be done from anywhere prior to
the $startpage call for a page to be effected

• $loadpagesetup
When true, the page setup information stored with the report is automatically loaded and used when the report is
printed. This will not affect the global page setup information. The page setup information is applied to the page setup
information of the report instance prior to calling the $construct method or opening the job setup dialog. It is also
possible to load the page setup data from the $construct method of the report instance by assigning $loadpagesetup (
$cinst.$loadpagesetup.$assign(kTrue) ). Assigning kFalse has no effect., For new reports, this property will be set to kTrue
by default. For existing reports, this property will be false.

Once a print job is complete and $endprint has been called, $canassign returns kFalse for all these properties.

395



Printing a report from a list

The following method prints a report from a list and uses a For loop to print the report record by record.

Do $reports.Report1.$open('*') Returns Myreport
For lineno from 1 to Mylist.$linecount step 1
Do Mylist.[lineno].$loadcols()
Do Myreport.$printrecord()

End For
Do Myreport.$endprint()

Note that you should not use hash variables to define the columns in list if it is going to be used as the basis of a report.

Screen Report Fields

You can send the output of a report to a window field, a Screen Report Field, which is similar to a Preview report but contained in
the window field. The current page count is reported in the $pagecount property (read only), while $currentpage is the currently
displayed page and is assignable at runtime. Whenmore than one page is visible, the value indicates the page that ismost visible.

Zoom

You can use the $zoom() method to scale the report from 25% to 200%. Themethod $zoom(iZoom) zooms the screen report field,
where iZoom can be positive (indicating a percentage between 25 and 200% inclusive), or 0 meaning zoom to fit, or negative (-1
to -7) where -iZoom indexes the 7 standard zoom factors from smallest to largest.

Search

The method $searchreport(cText[,bIgnoreCase=kTrue,bNext=kTrue]) searches the report for cText. Further calls with the same
cText and bIgnoreCase search for the next (bNext kTrue) or previous (bNext kFalse) match. Empty cText clears the search.

There is an event which works in conjunction with $searchreport (needed because the search occurs in a background thread).
The event enables you tomanage next and previous buttons, and status text. The next and previous buttons are assumed to start
in disabled state. The event evReportSearchStatus is sent to the report field when the report search status changes: this has one
event parameter pReportSearchStatus which is a row with 4 columns, as follows:

Column Description

next If true, search next can be enabled as there is another search result later in the report
prev If true, search previous can be enabled as there is another search result earlier in the report
count The count of search results
index The 1-based index of the current search result

Report Field and Section Methods

Report fields and sections contain a $print()method that controls that particular field or section when it is printed. Every time
a field or section is encountered during printing its $print() method is called, so for fields in the report Record section $print() is
called for every row of data. Youmust end your own custom $print() methods with aDo default command to carry out the default
processing for that line after your code has executed.

For example, the following $print() method for a report field prints the field in bold if its value is greater than 1000.

If parm_value>1000
Do $crecipient.$fontstyle.$assign(kBold)

Else
Do $crecipient.$fontstyle.$assign(kPlain)

End If

Do default

396



Report Object Positioning

When a report field prints, its position and data are passed to its $print() method; when a report section prints its position only is
passed. You can set up parameter variables of type Field reference in the $print() method for a report section or field to receive
its position and data. You can manipulate the position variable using the report object positioning notation. If you change the
position of a section all objects in that section are affected together with all subsequent sections in the report. Making changes
to the position of an object does not affect other objects.

A report position variable has the following properties.

• $inst
the report instance to which the position belongs

• $posmode
themode of the report position, which is one of the following constants; assigning $posmode does not change the physical
position of the object, but it does change its coordinates to the new coordinate system.

Constant Description

kPosGlobal the position is global to the print job, relative to the top-left of the local area of the first page
kPosPaper the position is relative to the top-left of the paper edge of the page specified by $posvertpage and $poshorzpage
kPosPrintable the position is relative to the top-left of the printable area of the page specified by $posvertpage and $poshorzpage
kPosLocal the position is relative to the top-left of the local area (excluding the header and footer sections, and the margins) of the page

specified by $posvertpage and $poshorzpage
kPosHeader the position is relative to the top-left of the header area (union of report and page header sections) of the page specified by

$posvertpage and $poshorzpage
kPosFooter the position is relative to the top-left of the footer area of the page specified by $posvertpage and $poshorzpage
kPosSection the position is relative to the top-left of the section specified by $possectident

In addition, you can set $posmode to one of the following values to return the coordinates of an area on the page specified by
$posvertpage and $poshorzpage.

Constant Description

kBndsGlobal returns kPosGlobal coordinates. The top, left, width, and height are calculated to global coordinates of the local area of the page
kBndsPaper returns kPosPaper coordinates. The top and left are zero, and the height and width are calculated to the height and width of the paper of

the page
kBndsPrintable returns kPosPrintable coordinates. The top and left are zero, and the height and width are calculated to the height and width of the

printable area of the page
kBndsLocal returns kPosLocal coordinates. The top and left are zero, and the height and width are calculated to the height and width of the local area

of the page
kBndsHeader returns kPosHeader coordinates. The top and left are zero, and the height and width are calculated to the height and width of the header

area of the page
kBndsFooter returns kPosFooter coordinates. The top and left are zero, and the height and width are calculated to the height and width of the footer

area of the page

• $possectident
the $ident of the section when $posmode is kPosSection

• $posvertpage
the vertical page number when $posmode is not kPosGlobal or kPosSection

• $poshorzpage
the horizontal page number when $posmode is not kPosGlobal or kPosSection. This will usually be set to 1. Horizontal page
numbers apply when horizontal pages are enabled

• $top
the top of the position in cms or inches local to its $posmode

• $left
the left of the position in cms or inches local to its $posmode

• $height
the height of the position in cms or inches

397



• $width
the width of the position in cms or inches

Measurements are in either cms or inches depending on the setting of the usecms Omnis preference which you can change in
the Property Manager using the Tools>>Options/Preferences menu option.

Page layout

To understand the positioning notation it helps to look at the layout of the report on paper or screen. The area available for printing
is limited to the printable area on the paper as determined by the printer or device. Within this space Omnis reports print to the
header, footer, and local or global areas, that is, the space remaining after subtracting the header, footer, and margins specified
in the class. Note that Omnis subtracts the margins specified in the class from the paper edge, rather than the boundary of the
printable area.

Figure 139:

The position of a report object, either a section or report field, is relative to the local area on the current page, or the global area
for the entire report.

398



Local coordinates are relative to the local area on the current
page

Global coordinates are relative to the global area for the entire report

The following examplemethod produces a report withmultiple columns by configuring itself according to the current paper size
and orientation. The report class contains various instance variables including iCurColumn, iMaxColumns, iLeftAdjust to handle
columns and a global left adjustment. The data is taken from a list, but your data can be from any source. The Record section
contains one field that gets its data from the list. Note the code for thismethoddoes the positioning and theDodefault command
prints the section.

# $print() method for Record section in a column report
# Declare Parameter var pThePos of type Field reference
# and Local var posBnds of Row type
# pThePos is in global coordinates and does not contain the page
# number, so make a copy and convert it to page-based coordinates
Calculate pos as pThePos
Calculate pos.$posmode as kPosLocal
# Fetch the global boundaries for the page: we can do this now since
# setting $posmode to kPosLocal set $poshorzpage and $posvertpage
Calculate pos.$posmode as kBndsGlobal
# Check if the bottom of the section will fit on the page
If (pThePos.$top+pThePos.$height)>(pos.$top+pos.$height)
# if it doesn't fit is there room for a new col on current page
If (iCurColumn<iMaxColumns)

Calculate iCurColumn as iCurColumn+1
Else

399



# put the section at the top of the next page for column one
Do pos.$offset(0,pos.$height)
Calculate iCurColumn as 1

End If
# now calculate the section's top position based on posBnds.$top
Calculate pThePos.$top as pos.$top
# calculate the section's left pos based on current column number
Calculate pThePos.$left as (iCurColumn-1)*$cinst.$labelwidth+iLeftAdjust

Else If not(pThePos.$left)
Calculate pThePos.$left as iLeftAdjust

End If

Do default ## this prints the Record section

You can use the $offset(x,y) method to move the object horizontally by x units (unless $horzpages is enabled) and vertically by y
units. The units are defined by $prefs.$UseCMS and maybe either positive or negative.

When a report is based on a report superclass several items are inherited including report header and footer sections (e.g. page
header, subtototals, footer, etc), the objects within these sections, as well as the sort fields in the report superclass. The objects
within the record section of the report superclass are not inherited. You can, therefore, create a report template containing your
company identity and base all other reports on the template to ensure a uniform design and layout is maintained across all your
reports.

Inherited sections cannot bemanipulated in any way. You cannot resize an inherited section bymoving the section object imme-
diately below the inherited section, or change the properties of the section or its objects. When a section is inherited, the height
of the section is determined from the superclass, and all other sections below are moved up or down accordingly.

For inherited sections, the text of the section bar and the text of the section connection lines are shown in blue. The background
is shown in gray to indicate that this section cannot be manipulated.

Inheriting Sections

Modifying a Superclass

When modifying the section of a superclass, e.g. adding, removing or changing objects within a section, these changes will be
reflected in any report class which inherits the section.

Removing an entire section from a superclass will also affect all subclasses. However, adding a new section to a superclass will
not affect any of its subclasses. To inherit the new section, subclasses need to be modified to inherit this new section.

Any changes made to sort fields will be reflected in all subclasses.

Inheriting/Overload a section

To inherit or overload a section, right click on the section in the Property Manager. A context menu opens allowing you to inherit
or overload the property. You cannot manipulate inherited sections, or inherited section objects, or to add more objects to an
inherited section.

Subtotal Sections and Sort Fields

A subclass inheriting a subtotal sectionwill also inherit the sort field from the super class, unless the subclass has already specified
a sort field for the subtotal section in question. Sort fields can be overloaded or inherited via the context menu of the sort field.
The properties of an inherited sort field cannot be changed. If you want to change the properties of an inherited sort field you
must first overload the sort field.

When overloading a sort field, the properties of the sort field originally inherited are maintained. If a sort field is inherited which
has not been specified by its super class, the name will be displayed as #???.

Positioning Sections

If an inherited section contains positioning sections, these are also inherited. It is not possible to add additional positioning sec-
tions to an inherited section. It is not possible to inherit position sections without inheriting their “main section”.

400



Notation

You can inherit or overload sections using notation. To do this you assign $isinherited of the section notation. For example:

Do $clib.$reports.myreport.$pageheader.$isinherited.$assign(kTrue)

To inherit sort fields using notation:

Do $clib.$reports.myreport.$sorts.1.$isinherited.$assign(kTrue)

The objects of inherited sections are not part of the subclass and as such will not appear in the list of objects of the report class,
but will appear in the list of objects of a report instance.

The following section properties can be inherited: $reportheader, $pageheader, $subtotalhead, $subtotalhead1 to …9, $subtotal9
to …1, $pagefooter, $totals.

Report Fonts

If you are developing an application for a cross platform environment (for desktop apps), you may want to set up the system font
tables to allow the fonts used in your application to map correctly across the different platforms. There is a system font table in a
library for report classes and window classes for each platform supported in Omnis.

The fonts in the report font table will appear in the $font property for report objects. So even if you are developing an application
for a single platform, you may still want to edit the report font table(s) to add fonts to those already available for report objects.

Font table Description

#WIRFONTS Report font table for Windows OS
#MARFONTS Report font table for Mac (9 & earlier)
#UXRFONTS Report font table for Unix
#MXRFONTS Report font table for OSX/macOS (10 onwards)

To view the report fonts system table

• Use the Browser Options dialog (press F7/Cmnd-7 while the Studio Browser is on top) to make sure the system tables are
visible

• Double-click on the System Tables folder

• Double-click on #WIRFONTS or the report font table for your platform

The #WIRFONTS system table contains a list of fonts that are available in Omnis by default. Each row in the font list displays the
corresponding font for each platform supported in Omnis. To change the font mapping, replace the name of a font either by
typing its name or selecting it from the list of fonts. To add a font, click in the next available line in the font list and add the name
of the font. Add a font name for each platform.

The font table editor loads or creates a font table for each platform (corresponding to each column in the editor) and allows you
to edit them all simultaneously. Therefore, when you edit the report font table for the first time, and click OK to finish editing it, a
new system table is added to your library for each platform supported in Omnis, other than your current platform.

Windows Fonts

UnderWindows, all fonts used in reports must be installed and registered. Reports can use fonts that are installed for the current
user located in:

C:\Users\USER\AppData\Local\Microsoft\Windows\Fonts

and registered here in HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts. Such fonts can be in-
stalled by right-clicking on the .ttf font file and selecting the Install font option.

Omniswill also look for fonts installed forall usersand registered inHKEY_LOCAL_MACHINE (HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Fonts), but this requires administrator privileges to install and write to the registry, so this may not be appro-
priate for some end users, in which case they can install a font for the current user.

401



Monaco font (macOS)

Apple has replaced Monaco font with Menlo, therefore you should use Menlo in your reports to be compatible with current and
future versions of macOS.

Unknown macOS Fonts

You can map unknown macOS fonts in reports, such as the New York legacy Mac font, to alternative fonts. You can add the
“unknownMacOSFonts” item to the “pdf” section of config.json to specify the font mapping. For example:

"pdf": {
"unknownMacOSFonts": {

"New York": "Times New Roman",
"default": "Lucida Grande"

}
},

The members of the unknownMacOSFonts object are the names of the unknown fonts to be mapped, and the name of the
replacement font. A “default” member can be included to map all other fonts not listed in unknownMacOSFonts to the specified
font.

Port Profiles

A port profile is a named collection of information sufficient to completely describe the operating system configuration of a port.
Under Windows, the port profile information corresponds to the information required to set the fields in a DCB for a serial port
(under Win16 the DCB is different to Win32). There is no port profile for a parallel port, since it requires no operating system
configuration information.

Under macOS, the port profile information corresponds to the information required to make the SerReset and SerHShake API
calls. (Note: Port profiles are not currently supported on macOS.)

The information required to completely configure a port therefore comprises:

1. The port profile (not required for parallel ports)

2. Characters per inch.

3. Lines per inch.

Port Profile Management

Each port profile is stored in a file. The Ports folder in the Omnis tree contains the port profiles. The port profile file contains:

• An indicator of the platform to which the profile corresponds - Win16, Win32 or macOS. This allows for runtime checking.

• The name of the profile, to be used in the report destination dialog, and as an argument to the Set port parameters com-
mand. Note that profile names are not case sensitive.

• The profile data.

Note that this means that each profile file only contains the data for a single platform.

You can create and edit profiles using the Port Profile Editor on the Add-ons submenu in the Toolsmenu (it is not available on
some older operating systems). The profile editor must run on the platform for which the profiles are to be created.

Port Profiles at Runtime

Report Destination Dialog

When the report destination is set to Port, the parameters tab of the dialog displays the port configuration information. There
is a dropdown list on this tab, which contains a list of profile names, and one additional entry, ‘Use options below’. When this
is selected, you can specify the port parameters in the dialog. When a profile is selected, Omnis configures the port using the
information in the profile. Note that the dropdown list and configuration fields on this tab are disabled if you select a parallel port.

402



Set port parameters command

You can use a port profile name in place of the port parameter list:

Set port parameters {Profile name}

When this command executes, it first checks the entire parameter string against the list of profiles. If it matches an entry in the
list, the command uses the profile to configure the port; otherwise, the command treats the parameter string as a parameter list.

Notation

The relevant $port… notation such as $portparity is unassignable when a port profile is selected. The $portprofile property is the
port profile for the current port on the macOS, or just the single port profile under Windows.

Printer Escapes

When sending to printer, escape characters are not interpreted correctly, because the printer driver attempts to draw them as
data. You must send reports containing printer escapes to port to ensure escape sequences are interpreted correctly.

The Omnis root preference $exportencoding ($root.$prefs) determines how the data is converted before Omnis sends it to the
port. Set this to kUniTypeAnsiLatin1 for printer escapes to be interpreted correctly.

The escapes generated by the style() function cannot be mixed (in a report field’s data) with escapes specific to a printer.

Labels

To print labels in Omnis you need to create a report class and set up its properties for label printing. You can create the report
class using the standard SQL or Omnis report wizards, or you can create an entirely New Report and add the fields yourself. This
section uses the Omnis Report wizard as the basis for a Customer address label, but the process is the same for any label report.

To create the basis of your label report

• Create a new report class using the Omnis Report wizard and include the fields you want in your label

• Open the report class to modify it

• Delete the header section and any labels the report wizard places on the report class, but leave the data fields; your report
class should look something like the following

To change this report class into a label report you need to change some of its properties, set the properties of the Record section
to position your labels on the printed page, and as a further enhancement you can set the properties of some of the fields on the
report to exclude empty lines. Note that all measurements use the current units set in the usecms Omnis preference.

To set the label properties of a report class

• Click on the background of your report class to view its properties

• Set the islabel property to kTrue

• Set the labelcount property to the number of labels across the page; for example, for standard 3 x 8 laser labels you set
labelcount to 3

• Specify the width of a single label in the labelwidth property; if there are spaces between your labels, include the space in
the label width, that is, the labelwidth is the distance between one record and next across the sheet of labels

• If you want to print more than one label for each row or record of data set the repeatfactor property, otherwise leave it set
to 1 for a single copy of each label

To specify the distance between each row of labels down the page, you change the properties of the Record section in your report
class.

• Click on the Record section to view its properties

• Set the startmode property to kFromTop, and in the startspacing property enter the distance between the top of one row
of labels and the next going down the label sheet

403



Excluding Empty Lines

When you print your labels some of the fieldsmay be empty and a blank line is printed. However you can stop a field fromprinting
andmove up all subsequent lines by setting the nolineifempty property for the field. For example, if your label includes two lines
for the address you can set the nolineifempty property to kTrue for the second address field. In this case if the second address
line is empty for a particular record, the line is not printed and subsequent fields move up one line. If any address field on your
label is likely to be empty you ought to set its nolineifmpty property.

Using a Calculated Field

Rather than putting two separate fields on your label report for the Firstname and Lastname data, you can use a single calculated
field and the con() function.

To create a calculated field

• Create a field on your report and view its properties

• Leave the $dataname property empty, and set the $calculated property to kTrue

• Enter the calculation in the text property, something like the following

con(CU_FNAME,’ ‘,CU_LNAME) ## note space char is in quotes

The con() function concatenates the current values in the CU_FNAME and CU_LNAME fields and separates them with a single
space character.

Using all the features described in this section, your label report should look something like the following when printed to the
screen.

HTML Report Device

The Omnis Studio Print Manager API has beenmade public, allowing you to create your own custom printing devices as external
components and place them in the XCOMP folder. You can show your own customprinting devices in the Print Destination dialog,
and use the printing preferences and notation to control your own devices. The HTML printing device is an external component
and shows what you can do with custom devices. You can use the HTML report device in the same way as the standard report
destinations; there is no difference between internal and external output devices.

When the HTML external component is loaded in Omnis, it registers an external output device with the Omnis Studio Print Man-
ager and shows the HTML icon in the Report Destination dialog. To print to the HTML output device, you can set it up via the
Report Destination dialog, or access it via the notation using the print device methods.

You can specify the HTML device using the notation as follows.

Calculate $cdevice as kDevHtml
Calculate $cdevice as $devices.Html

You can also set an item reference to the HTML device:

Set reference myDevice to $devices.Html

The constant kDevHtml is supplied by the HTML component at registration together with some other constants.

Setting the HTML Device Parameters

The HTML output device has several parameters which affect the overall appearance of the HTML document generated by the
device. You can change some of these parameters in the Report Destination dialog and the notation, while some can be manip-
ulated by the notation only. The HTML output uses UTF-8: if you use a template file, that must also be UTF-8 encoded.

The HTML device parameters are represented by constants which you can use in the notation. Some of them correspond to
parameters in the Report Destination dialog.

Constant Description

kDevHtmlFileName the pathname of the destination HTML file

404



Constant Description

kDevHtmlFont1 largest point size which maps to HTML font size 1
kDevHtmlFont2 largest point size which maps to HTML font size 2
kDevHtmlFont3 largest point size which maps to HTML font size 3
kDevHtmlFont4 largest point size which maps to HTML font size 4
kDevHtmlFont5 largest point size which maps to HTML font size 5
kDevHtmlFont6 largest point size which maps to HTML font size 6
kDevHtmlFont7 largest point size which maps to HTML font size 7
kDevHtmlImageBorder whether JPEG images have a single pixel border
kDevHtmlUseRects whether background rectangles are to be used to determine the background color of the HTML table cell which

intersects the background rectangle
kDevHtmlBackcolor background color of the HTML document
kDevHtmlTextcolor default text color; any black text received from the print manager will be changed to this color
kDevHtmlLinkcolor color for HTML text or pictures which are HTML links
kDevHtmlVLinkColor color for links which have been visited
kDevHtmlALinkColor color for links which are currently active
kDevHtmlTemplate full path and file name of a template HTML file which must be UTF-8 encoded; it must already contain the basic

framework for an HTML file, that is <html><head> <meta http-equiv=“content-type” content=“text/html;
charset=UTF-8”></head> <BODY bgcolor= …etc…> </BODY> </HTML>

kDevHtmlTemplateChars the place holder contained within the template file which marks the point at which the report output will be
inserted into the template, that is, “$$$$” the template file must contain this text, that is <html><head> <meta
http-equiv=“content-type” content=“text/html; charset=UTF-8”></head> <BODY bgcolor= …etc…> <p>$$$$</p>
</BODY> </HTML>

kDevHtmlScaleFont… an additional single font scale factor; the following constants are available kDevHtmScaleFontNone: no scaling
kDevHtmScaleFontVSmall: reduce HTML size by 2 kDevHtmScaleFontSmall: reduce HTML size by 1
kDevHtmScaleFontLarge: increase HTML size by 1 kDevHtmScaleFontVLarge: increase HTML size by 2

You can get and set the value of the device parameters using the following methods.

• $getparam(param constant)
returns the value of the specified parameter

• $setparam(param constant, value [,param constant, value, …] )
sets the value(s) of the specified parameter(s)

For example

Do $devices.Html.$setparam(KDevHtmlFont1,6,KDevHtmlFont2,8)

Do $devices.Html.$getparam(kDevHtmlFileName) Returns MyPath

The following example, sets up a template file (which must be UTF-8 encoded):

Calculate lPath as 'C:\<path>\Template.htm'
Do $devices.HTML.$setparam(kDevHtmlTemplate,lPath)
Do $devices.HTML.$setparam(kDevHtmlTemplateChars,'$$$$')

The value of all device parameters is stored in the Omnis configuration file.

Sending Text or Data

It is possible to send text or data to some internal and external devices. The HTML device supports both. You can use themethods
$sendtext() and $senddata() to send text and data, respectively.

When sending text, the HTML output device surrounds the given text with the correct HTML syntax, that is, it places begin para-
graph and end paragraph statements around the text. You can send text withmore than one call to $sendtext(), but still have the
text appear in one paragraph. To do this, specify kFalse for the line feed parameter of the $sendtext() method. The device buffers
the text separately, before adding a single paragraph to the document when you call $sendtext() with the line feed parameter set
to kTrue.

When sending data, the device writes the data directly to the current position in the HTML file without any modification.

405



You can send text or data between reports, but not during printing, that is, while a report is being printed calls to $sendtext() and
$senddata() are ignored.

The following method uses $senddata() to send data to an HTML file.

Set reference myDevice to $devices.Html
Calculate $cdevice as myDevice
Do myDevice.$setparam(kDevHtmlFileName,"C:\Omnis\REPORT.HTM")
Do myDevice.$open() Returns ok
If ok
Do myDevice.$senddata(myData1)
Set report name Report1
Print report
Do myDevice.$senddata(myData2)
Set report name Report2
Print report
Do myDevice.$senddata(myData3)
Do myDevice.$close()

End If

HTML Report Objects

HTML report objects are special objects that you can use to insert objects, such as other HTML documents, pictures, DLLs, or web
site addresses, into your HTML reports. The HTML report objects are part of the HTML printing device and appear in the Media
group in the Component Store when editing a report class.

The HTML report objects have an $address property which you can set to the address or location of an HTML document, picture,
DLL, or web site, for example, “results/result1.htm” or “http://www.omnis.net/”. The text can contain square bracket calculations,
such as “www.[lvWebName]”.

If the HTML objects are printed to any other device other than the HTML device, they behave like their equivalent Omnis field
types, a standard picture or text field.

The omnisPreviewURLPrefix item in the ‘defaults’ section of config.json allows you to set the report preview URL prefix for the
$address property for HTML Link objects. The item defaults to ‘omnis:‘ if empty.

Chapter 11—Window Components

Window classes andWindow components are required for developing desktop or thick client applications only, and are therefore
hidden in some editions of Omnis Studio, including the Community Edition. To create web or mobile apps, you need to create
Remote forms using JavaScript components.

In addition to the Window class components, Menu classes and Toolbar classes are described in this chapter since they relate to
desktop apps only. General techniques formanaging windows andwindow instances, used for creating desktop applications, are
described in the Window Programming chapter.

Example Apps and Code

Many of the Window Components are included in example apps under the Samples section in the Hub in the Studio Browser;
use the filter to display the ‘Windows’ examples, or use the Search to find a specific component. You can examine the window
classes and components in these example apps, and look at the code behind each component: you can double-click on awindow
component in design mode to see its code methods in the method editor.

Window Class Components

There are over 60 components or controls that you can use in Window Classes, for desktop or thick client applications, including
standard Entry fields, Buttons, Lists, Grids, and so on. The following table provides a list of all the window class components
in Omnis listed in their respective groups. (Background Objects are described at the end of this chapter.) Xcomp indicates an
External component that is loaded automatically.

406

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#chapter-2javascript-remote-forms
/developers/resources/onlinedocs/WebDev/03jscomps.html#chapter-3javascript-components
12winprog.html#chapter-12window-programming


Group Icon Name (type) Description

Buttons Button Area Invisable area that responds to user clicks

Check Box Displays On or Off choices with a check
mark (also Yes or No, and 1 or 0 values)

Multibutton Control (Xcomp) A round, animated popout button that
opens to show a number of additional
options

Push Button Button that responds to user clicks

Radio Button Round button that can be either on or off

Radio Button Group Round buttons that can be either on or off
in mutually exclusive group

Round Button (Xcomp) Round Button showing progress or
individual values

Split Button Standard button with a dropdownmenu

Switch Control (Xcomp) iOS style switch with animated slide

Trans Button (Xcomp) A ‘rollover’ type button

Containers Group Box Groups other fields on your window

Paged Pane Multiple pages or panes containing fields
and other controls

Scroll Box Group other fields in a scrollable area

Tab Pane Multiple pages or panes with tabs

Entry Fields Masked Entry Field Entry field with ‘mask’ to format data

Multi Line Entry Field Entry field allowing multiple lines with
scroll bars

Single Line Entry Field Field into which users can insert data or
view existing data

Token Entry Field Field which tokenizes entered text

Graphs Graph2 Graph component with multiple chart
types

Labeled Fields Labeled Fields Fields and label combined into one object

Labels Labels and text objects See Background Objects

Lists Check List List with check box line selection

Combo Box Combined dropdown list and entry field

Complex Grid Grid that can contain other fields and
controls

Data Grid Grid to display text and numerical data

Droplist Single column dropdown list

Headed List Box List with button style headers

Icon Array Displays list of items as clickable icons

List Box Displays list variable contents

Popup List Single-column list allowing easy user
selection

String Grid Grid to display character data only

407

/developers/resources/onlinedocs/ExtendingOmnis/08graph2.html#chapter-8omnis-graphs


Group Icon Name (type) Description

Tree List Displays list data in an expandable
hierarchy

Media JPEG Control (Xcomp) Displays JPEG images

OBrowser (Xcomp) Embed a web page into a window or
enables HTML controls

OmnisIcn Control (Xcomp) Displays an icon from an Omnis icon data
file

Picture Control Displays image data from a picture
variable

Video Player (Xcomp) Plays video file from disk or remote server

WAV Player (Xcomp) Plays a WAV sound file

Menus Popup Menu Displays a menu class on a window

Navigation Accordion Control (Xcomp) List of expandable options

Breadcrumb Control Displays “location” within the hierarchy of
an application

FishEye Control (Xcomp) Displays a row or column of clickable
icons

Hyperlink Control (Xcomp) List of hyperlink options

Navigation Menu (Xcomp) Cascading menu with images and text
options

Sidebar Control (Xcomp) Displays a list of options with groups

Tab Strip Set of tabs only that can be linked to a
paged pane

Other Calendar Control (Xcomp) Presents dates in a standard calendar
format

Clock Control (Xcomp) Clock face showing the current time

Color Palette Color picker allowing color selection

Marquee Control (Xcomp) Displays scrolling text

Progress Bar (Xcomp) Indicates progress of a counter

Slider Control (Xcomp) Draggable button to set a value

Transform Control (Xcomp) Adds animation or effects to window
objects

Reports Modify Report Field Embeds a report class in a window

Screen Report Field Displays the output of a report

Shapes Shape Field Shape with some field properties; for
other shapes see Background Objects

Subwindows Subwindow Embeds another window in the main
window

Someexternal components have been deprecated and have beenmoved the ‘Deprecated Components’ group in the Component
Store. See Deprecated Components.

There are also a number of ‘Internal’ window components that should not be used for new applications, including HelpMethods
and Icon Edit; they can be shown using the Exclude Group option, available by right-clicking on the Component Store.

408



Loading External Components

Most external components are pre-loaded while other may need to be loaded manually to be visible in the Component Store (in
the standard or deprecated groups). To load an external component, Right-click/Ctrl-click on the Component Store and select
the External Components… option (or double-click the #EXTCOMPLIBS system class in the Studio Browser) to open the External
Components dialog. Expand the External Components group (not the JavaScript group), find the component (library) you want
to enable and select it.

Change the ‘Preload status’ for the component to ‘Opening [lib-name]’ to load the component for the current library, or select
‘Starting Omnis’ if you want the component to load for all libraries. You only need to load or enable the components you intend
to use: loading any components that are not used places an unnecessary load on Omnis.

When loaded manually, the external component is included in the relevant group in the Component Store, e.g. the Accordion
component is an external component and is added to the ‘Navigation’ group, or the external component may be added to the
‘Other’ group.

Window Class Object Limit

You cannot place an unlimited number of objects on aWindow class. The object limit is 8191 for aWindow class, including objects
on subforms, although in practice the limit is likely to be less due to platform limitations.

Object Properties

All fields and components have General properties that control the overall behavior and appearance of the field which you can
view and change in the Property Manager. In addition, each type of field or component has its own set of properties andmethods
that provide its unique functionality. All fields have a particular size and position, stored in the left, top, width, and height ($left,
$top, $width, $height) properties, which are displayed at the top of the Property Manager.

External components have many of the standard properties, together with its own specific properties which are generally shown
under the Custom tab in the Property Manager.

Object Names

All window fields have a name ($name) property which is displayed at the top of the Property Manager. When you add a com-
ponent to a window, Omnis assigns the component a default name with the format ‘classname_comptype_N’ where N is a four
digit integer unique to the class. For example, an entry field in a window class might be named ‘wMyWindow_entry_1008’. You
can accept the default name assigned to a component or change it to a more descriptive name for your application.

To change the name of an object, click on the name or the pencil icon and change the name. There are no restrictions on the
name of an object, although you are advised to use only alphanumeric characters and avoid using spaces. Do not use the same
name for multiple objects since this will cause confusion or errors when you refer to the object in the notation. For this reason,
you should use unique names for fields and objects within the same class.

The object type is shown below the object name in the Property Manager, e.g. Entry or Pushbutton. You cannot change the type
of an object. The $objtype property is displayed in Advanced mode in the Property Manager, e.g. kEntry or kPushbutton, but it
cannot be changed.

Object datanames

All data-bound fields and components have aDataname ($dataname) property, which is displayed in the top panel of the Property
Manager. For some list objects, $listname is shown which is the name of the data variable associated with the list-based window
object. When you create a class using anOmnis wizard, the $dataname of each field created automatically in the class is assigned
a variable of the appropriate type. When you create a window field from the Component Store you need to assign the $dataname
property manually.

You can create variables in the Variable panel of the Method Editor (click on Methods in the Design bar at the top of a window
to open the Method editor), or you can type the name of a variable into the Dataname field in the Property Manager, press the
Return key and define the variable in the ‘Create Variable’ dialog. See Variables formore information about declaring and naming
variables.

409

03programming.html#variables


Component Icons

Several of the window class components can use icons to enhance their visual appearance, such as the Pushbutton, Sidebar, and
Icon array. These icons are added to a component by specifying the icon name or ID in the $iconid property for the control. The
icon size can be specified using a size constant, such as k16x16, k32x32, or k48x48, or you can append +wxh to the icon name or ID
to specify a custom size, e.g. help+64x64.

Window component icons can be SVG image files selected from the dialog that opens when you click on the $iconid property in
the Property Manager (or for older apps you can use PNG files). The ‘material’ iconset is selected by default when the Select Icon
dialog opens, which contains over 100 icons that you can use in your own apps. The icons in thematerial iconset are sourced from
the Google material design set, and they have been themed using the Omnis SVG Themer tool (so they support JS and system
themes). The Google icons are issued under the Apache License Version 2.0 (https://fonts.google.com/icons), and you are free to
use these in your Omnis applications with the proper attribution in your product licensing.

If you use your own SVG icons, they should be placed in a named iconset folder inside the ‘iconsets’ folder in the Omnis tree. The
name of the iconset needs to be assigned to the $iconsets property of the current library. See Selecting an Icon for more details
about specifying icons, SVG icons and iconsets.

For legacy apps only, PNG icons can be located in the #ICONS system table in the current library, the Userpic icon datafile, or the
Omnispic datafile. You will need to use the Icon Editor to add or edit the icons in #ICONS or an icon data file.

Themed SVG Icons

From Studio 11 onwards, you can use themed SVG icons that have been “themed” using the Omnis SVG Themer tool (available in
the Tools>>Add Ons menu). The ‘material’ icon set in Omnis contains themed SVG icons and is available automatically when you
edit a Window class.

A themed SVG icon will use the color set in the $textcolor property of the window class control, so it matches the color of the text
for the control. For Styled text, a themed SVG is drawn using the current text color for the text run.

Some external components support themed SVG icons. The Multibutton, Round button and Tile external components have the
$textcolor property, plus the HTML icon link control has the $::textcolor property. The color specified in these properties will be
applied to a themed SVG icon.

Drag Icon background

As a consequence of support for themed SVG icons for window classes, drag icons have a background by default on macOS, to
prevent themed SVGs from becoming invisible, and make drag icons more cross-platform. You can turn off this behavior using
the dragIconBackground item in the ‘macOS’ section of config.json (default is true, to show the icon background).

Dark and Light Modes

You can specify different SVG icons for Dark and Light modes (this is only intended for running desktop apps on Windows or
macOS, since different system color modes do not apply to web and mobile apps running in a web browser).

Each icon set folder can have two sub-folders, named dark and light, into which SVG icon files can be placed to support Dark and
Light system color modes.

When you assign an icon to a control you only need to assign a single icon name or ID and the icon for Dark or Light mode will be
chosen automatically from the appropriate sub-folder.

Vertically Centered Text

The $vertcentertext property controls whether or not text is centered vertically in the field area. The property makes it easier to
produce well aligned text and fields across all the platforms supported in Omnis. Using this property in your windows will allow
you to line up the base-line of text labels and the text data contained in fields.

• $vertcentertext
If true, single line text is vertically centered in the height of the field. If false, the text is vertically positioned according to the
default positioning for the field. For existing fields the property is set to kFalse.

The $vertcentertext property is available for several window field types, including single line edit fields, combo boxes, droplists,
background labels, background text objects, string labels, shape fields (the text part), checkboxes (no border), radio buttons (no
border), masked entry fields. The new property also applies to several remote form fields, including single line edit fields, combo
boxes, droplists, background labels, string labels, checkboxes (no border), and masked entry fields. Note the property is not avail-
able for multi-line fields on windows.

410

https://fonts.google.com/icons
/developers/resources/onlinedocs/WebDev/03jscomps.html#selecting-an-icon


Font Scaling for Fields

You can increase or decrease the font size of the Multi-line Entry field, String grid and Data grid using the key press Ctrl + or Ctrl -.

The $disablefontsizekeys property lets you control font scaling for these controls, together with the standard List, Checkbox list,
Headed list and Tree list which already respond to the Ctrl +/- key press to scale the font. The default value of $disablefontsizekeys
is kFalse, which means the control will respond to the Ctrl +/- key press to adjust its font size; set the property to kTrue to disable
font scaling.

Event & Control Methods

$sendevent method

Window objects and window instances have the $sendevent method which allows you to test your $event/$control methods for
window fields (or window instances).

• $sendevent(iEvent[,eventParameters…])
Sends event iEvent (an ev… constant value) to the object with eventParameters passed as name,value pairs, for example
$sendevent(evClick,‘pLineNumber’,2). Returns kFalse if the event is discarded; generates a debug error if there is a problem
with the parameters.

You can also pass #SHIFT, #CTRL/#COMMAND, #ALT/#OPTION as “event parameter” names, to set the value of these variables
when the event is being executed.

When entering a $sendevent method, typing Ctrl+Space after the quote lists the event parameter names.

Note that the invoked $event/$control will execute, but if there are requirements of the data associatedwith the control, you need
to separately code for that - $sendevent simply sends the event causing $event or $control to execute appropriately.

Alpha Colors & Transparency

Some of the Window class controls support alpha colors,meaning that you can set the transparency for the color of the control.
The color picker in the Property Manager displays an alpha selection slider if a selected control supports alpha colors (the alpha
slider is hidden for controls that do not support alpha).

The controls that support alpha colors include the Line, Oval, Rect and RoundRect background objects for windows.

The rgba() function can be used to set the RGB color and alpha setting for controls. The syntax is rgba(red,green,blue,alpha)
with each parameter being an integer value in the range 0-255, where an alpha value of 255 means completely transparent. For
example, to set the color of a window background object, in this case 50% transparent red:

Calculate $cwind.$bobjs.1016.$forecolor as rgba(255,0,0,127)

In addition, the color selection palette for the controls that support the use of a color palette or a popup color palette, including
the colorpalette control, push buttons, and toolbars, include the alpha selection slider.

When assigned a color with no alpha the palette will automatically hide the alpha slider. If the control is assigned an alpha value,
the palette will display the alpha slider.

For example, where colorbutton is a push button with $buttonmode set as kBMcolorpicker:

Do $cwind.$objs.colorbutton.$contents.$assign(rgb(255,0,0)) ## will cause the color palette not not show an alpha value
Do $cwind.$objs.colorbutton.$contents.$assign(rgb(255,0,0,127)) ## will cause the color palette to show an alpha value

Omnis external components can support alpha colors. The Export & Import Library to JSON options also support alpha color
values for controls.

Container Fields

Some of the complex field types are described as container fields. A container field is simply a window field that contains other
fields. These include tab and paged panes, complex grids, group boxes, scroll boxes, and subwindows. All container fields except
subwindows have the $objs and $bobjs object groups containing the fields and background objects within the container field.
Therefore, in the notation you access the objects within a container field via these object groups. For example, the notation for a
field called MyField inside a paged pane is

$iwindows.WindowName.$objs.PagedPane.$objs.MyField

411



Figure 140:

$container

Every fieldwithin a container field has the $container propertywhich is an item reference to the container field towhich the object
belongs, for example

# Code in $event for MyField
Set reference iItem to $cobj.$container
# sets iItem to $root.$iwindows.WindowName.$objs.PagedPane

You can nest container fields 999 levels deep. Beyond this level, the most deeply nested field or object is not set up when the
window is opened and becomes a display field showing an error message.

$container returns the window instance for controls (including subwindows) at the top level: in versions prior to Studio 10 this was
not available for window class controls, only JavaScript controls. For example, you can use $cinst.$container() to refer to the outer
window instance when executed in a subform window.

If you have a loop in your code that steps through from a window class control up the container hierarchy the final container will
be the window, so you will need to test if the container is a window, e.g. If itemref.$container().$ref.$classtype=kWindow, then
Break to end of loop.

$objlink

The $objlink property is an integer that contains information about the container of the object. You can assign $objlink in your
code using class notation, provided that the design window is not open. So for example, you can move an existing control in a
window class into a Group Box in the same window class using code.

Object Animation

There is a library and window class control property, $animateui, that allows you to animate some window controls, including the
Tree List, plus the Tab Strip has some display types to highlight and animate the tabs when they are selected. The property is
defined as:

• $animateui
If the library property $animateui is true, all objects that support $animateui will animate aspects of their interface. There-
fore, the object property only applies when the library property is false.

If the $animateui library property is false (shown on the Appearance tab in the Property Manager), the $animateui property for
the individual object is used. Therefore, if you only want some of the controls in your library to animate, set the $animateui library
property to false, and override at the object level by setting $animateui for the object to kTrue.

412



Moving Objects

Window instances have the methods $beginanimations() and $commitanimations() which allow you to animate changes to cer-
tain properties of some window components including the $alpha property: other properties supported are $left, $top, $width
and $height.

• $beginanimations(iDuration[,iCurve=kAnimationCurveEaseInOut])
after calling this, assignments to some properties are animated by $commitanimations() for iDuration (inmilliseconds) and
using the specified animation curve (kAnimationCurveEaseInOut is the default)

• $commitanimations()
animates the relevant property changes that have occurred after the matching call to $beginanimations()

For example, you could move a component into view by animating a change to its position via its $left and/or $top properties.

Do $cinst.$beginanimations(1000, kAnimationCurveLinear)
Calculate $cinst.$objs.button.$left as currentposition ## var set to required position
Do $cinst.$commitanimations()

If you set the same property for an object more than once, the first property change is animated, and then the last property
change is animated when the first completes, while property changes between the first and last are ignored.

The iCurve can be one of the following animation “easing” curves:

• kAnimationCurveEaseIn
The animation begins slowly and then speeds up as it progresses.

• kAnimationCurveEaseInBack
The animation is similar to kAnimationCurveEaseIn but first moves in the opposite direction before easing begins.

• kAnimationCurveEaseInOut
The animation begins slowly, accelerates through the middle of its duration, and then slows again before completing.

• kAnimationCurveEaseOut
The animation begins quickly and then slows down as it progresses.

• kAnimationCurveEaseOutBack
The animation is similar to kAnimationCurveEaseOut but moves beyond the final point before easing back to the final
location.

• kAnimationCurveEaseOutBounce
The animation starts slowly and then bounces on its final location.

• kAnimationCurveEaseOutElastic
The animation starts fast and springs to a stop around its final location.

• kAnimationCurveLinear
The animation occurs evenly over its duration.

The evAnimationsComplete event is generated after the last property change has completed, which allows you initiate a further
animation or another action, or reverse the changes you have made.

Rounded Borders

You can apply rounded borders to most Window class UI controls by setting the $borderradius property.

In general, $borderradius only applies when $effect is kBorderPlain, kBorderCtrlEdit or kBorderCtrlList. For Pushbuttons, Radio
buttons, and Check boxes, $borderradius only applies when $buttonstyle is set to kUserButton.

Object Transparency

Most window components have the $alpha property which means you can set the transparency of the component (an integer
from 0 to 255, with 0 being completely transparent and 255 opaque). The $alpha property for a component can be manipulated
using the $beginanimations() and $commitanimations() methods so you could “fade in” and “fade out” objects by setting the
alpha from 0 to 255 using animation.

413



Tooltips

Tooltips are short messages that pop up when the end user passes the pointer over a field or control to provide some help or
information about the object. The tooltip text is entered in the $tooltip property for the object. Entry fields can also have Content
tips.

You can control the background and text colors, the justification of text and the position of the tooltip relative to the component.
The toolip properties are in the ‘tooltip’ section of ‘appearance.json’, as follows:

• systemstyle
If true (the default), tooltips in the system style are drawn using colorinfobk and colorinfotext; if false, Omnis style tooltips
are drawn using tooltipbackgroundcolor and tooltiptextcolor
Omnis style tooltips have rounded corners and (unless it is not relevant for the particular tooltip) a small pointer

• tooltipbackgroundcolor
The background color used for Omnis style tooltips

• tooltiptextcolor
The text color used for Omnis style tooltips

• defaultjustification
The default justification of the tooltip rectangle relative to the active area of the component: 0 left (the default), 1 right, 2
center; ignored by certain controls if applying the default does not make sense

The $tooltippos property controls the position of the tooltip relative to the control:

• $tooltippos
A kTooltipPos… constant that specifies where $tooltip appears relative to the window control

Constant Description

kTooltipPosMouse $tooltip appears relative to the mouse pointer (this is the default and corresponds to 10.1 behavior)
kTooltipPosRight $tooltip appears to the right of the window object
kTooltipPosBottom $tooltip appears below the window object
kTooltipPosLeft $tooltip appears to the left of the window object
kTooltipPosTop $tooltip appears above the window object

HTML Components for Desktop Applications

You can add your own custom HTML components to your window classes, which are used in the thick client, that is, for desktop
based applications. (Note this feature does not relate to the JavaScript components for creating web and mobile apps – this
feature refers to using HTML based controls onwindow classes.)

By adding HTML controls to your window classes you can enhance the UI in your desktop applications and accelerate your devel-
opment projects – you can obtain many different types of ready-made HTML based components from third-party sources, from
simple data controls, to date selectors, to full gantt charts, with the richness and interactivity youwould expect to see inweb-based
applications.

Omnis HTML controls can be thought of as thick client external components implemented using HTML, JavaScript and CSS – in
effect, you can use any browser based technology to implement this type of HTML controls. To add an HTML based control to
a window class you need to use the OBrowser window control, which can, in this case, be used to display a single HTML based
control in a window class (the OBrowser object can also act as a regular browser for displaying web pages, which is described
under OBrowser). The OBrowser object is in the Media group in the Component Store.

The Omnis HTML controls themselves are located in the ‘htmlcontrols’ folder in the main Omnis Studio program folder. Each
control has its own sub-folder in the htmlcontrols folder, and the name of this folder is used as the name of the control, e.g. the
files for a control named List would be placed in a folder called List. The Omnis tree contains some example HTML controls
which you can use for testing, or as a basis for creating your own custom controls. These examples, such as the Quill component
which provides a basic text editor, are not supported controls in their own right, so we don’t recommend using them as-is in your
applications.

To add an HTML control to a window class, you need to add the OBrowser object to the window, which is available in the Media
group in theComponent Store, and set its $urlorcontrolnameproperty to thenameof the control – this property displays a droplist
containing the names of all the available controls installed into the htmlcontrols folder in your Omnis development tree, including
any you have added. Having added the control to your window you can set its properties in the same as way as any other Omnis
component. See the Adding HTML controls to your window later in this section.

414



Using HTTP for controls

The $htmlcontrolsusehttp property controls whether html controls are served using a file:// URL (when set to kFalse), or using the
built-in HTTP server (kTrue). File URLs are not deemed secure, so somewebAPIs in HTML controlsmay not be available. Therefore,
it is recommended that you set $htmlcontrolsusehttp to true. When true, html controls are loaded from the ‘html/htmlcontrols’
folder in Omnis.

The config options “htmlcontrolsFolder” and “defaultHtmlcontrolsFolderInDataFolder” only apply when $htmlcontrolsusehttp is
false.

Third-party HTML controls

Aswell as creating your own controls usingHTML, JavaScript, and CSS, you can obtainmany ready-made controls from third-party
sources, either on an open source or paid-for basis. TheHTML code for a control needs to be embedded into theOmnis compatible
HTML template which is required to load a control into the OBrowser object in Omnis. You can find many very useful HTML or
JavaScript based controls on GitHub (https://github.com/), plus there are a number of example HTML controls in theOmnis Studio
GitHub repository: https://github.com/OmnisStudio/

JavaScript Client Bridge

The JavaScript Client Bridge (JSCBridge) is anHTML control that allows you to run theOmnis JavaScript ClientwithinOBrowser in
a standardWindow Class, whichmeans you can open a Remote Form in the desktop (fat client) version of Omnis Studio, passing
data between the form and Omnis.

The source code anddocumentation for the JSCBridge control are available on theOmnis StudioGitHub repository: https://github.
com/OmnisStudio/Omnis-JSCBridge

Creating Omnis HTML Controls

Each Omnis HTML control can be comprised of a number of files which are placed in a folder in the ‘htmlcontrols’ folder in the
Omnis program folder. The main file for each control is an HTML file which is named <control name>.htm. For example, if you
want to create a control called “quill” you need to create an HTML file called ‘quill.htm’ which is placed in a folder named ‘quill’
within the ‘htmlcontrols’ folder. The .htm file is the file loaded into the browser control (set using $urlorcontrolname) when the
control is used on your window.

In addition, theremay be a JSON file named <control name>.json in the control’s folder which defines the htmlcontroloptions row.
Plus, the control folder can contain other resources needed as part of the control implementation, such as JavaScript files, CSS
files, image files, and so on. The control .htm file typically has links to these other resources.

When you have added the correct files to the relevant folder the control will be ready to use and add to the window classes in your
application. To deploy your application, you will need to add the same files and folder structure to the Omnis runtime tree.

<control name>.htm

The .htm file for a control defines a jOmnis object, its various callbacks, and the HTML content for the control itself, embedded at
the place marked “…control-specific contents…” in the HTML code. The file has the following structure:

<html>
<head>

<title></title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<script type="text/javascript" src="../omnishtmlcontrol.js"></script>
<script>
jOmnis.callbackObject = {
omnisOnLoad: function () {},
omnisSetOptions: function(options){},
omnisCssChanged:function(){},
omnisSetData: function (value) {},
omnisGetData: function () {},
omnisGetCurrentLine: function(){},
omnisGetSelection: function(){},
omnisSetFocus: function () {},
omnisTab: function() {},
omnisGetDraggedData: function (event) {},

415

https://github.com/
https://github.com/OmnisStudio/
https://github.com/OmnisStudio/Omnis-JSCBridge
https://github.com/OmnisStudio/Omnis-JSCBridge


omnisDropHilite: function (hiliteLine, destinationId) {},
omnisDropUnhilite: function () {},
omnisGetDropLine: function (mouseX, mouseY) {},
omnisDoScroll: function(scrollDirection, scrollAmount){},
omnisOnWebSocketOpened: function() {},
omnisOnWebSocketClosed:function() {}

};
</script>

</head>
<body style=“margin:0;" class=“omnishtml”>
…control-specific contents…

</body>
</html>

Note that the omnishtml class could be applied to another element rather than the body.

The omnishtmlcontrol.js JavaScript file is used at the start of the page, and provides an interface to various objects in Omnis,
including:

• Provides the interface between JavaScript and the OBrowser component.

• Provides an object that allows you to manipulate an Omnis list represented in JSON.

• Ensures that HTML controls can use Date variables as their $dataname.

Existing users should note that pre-Studio 10.2 versions had 3 JS files that are now combined into 1 file: the omn_list_base.js and
omn_date.js files have been bundled with omnishtmlcontrol.js so you only need to reference that one file. Existing HTML controls
should work as the bundle is named omnishtmlcontrol.js, which is also nowminified.

<control name>.json

The JSON <control name>.json file defines the options and properties of your HTML control. The control’s JSON document has
the following structure:

{
"data": "multi",
"options": {

"selectedcolor": 255,
"margin": 0,
"mainiconid": 1710,
“title": “The title”,

},
"optionsDescriptions": {

"selectedcolor": "Description for selectedcolor option",
"margin": "Description for margin option",
"mainiconid": "Description for main icon id",
"title": "Description for title"

}
}

The top-level object has members as follows:

416



Member Description

data This member indicates how data is exchanged between
OBrowser and the JavaScript running in the HTML control.
It can have three possible values: all: This means that when
OBrowser wants to get the current value of the control
from JavaScript, it will retrieve all of the data. NOTE that all
is the default data handling mechanism if the control does
not have a .json file. single: Applicable to controls for which
$dataname is a list. When OBrowser wants to get the
current value of the control from JavaScript, it will retrieve
just the current line. This is useful for single select lists that
do not modify the data. multi: Applicable to controls for
which $dataname is a list. When OBrowser wants to get
the current value of the control from JavaScript, it will
retrieve the current selection state and the current line.
This is useful for multiple select lists that do not modify the
data. single and multi provide optimized data handling for
lists that do not modify the data.

option Each member of options is an option that can be used to
modify the behaviour of the control. The options object
defines the members and their default values. Each
member must be a simple type (number, boolean or
string). The initial value of $htmlcontroloptions for a new
control is the value of this object. If you edit the json file to
include new options, OBrowser should detect them and
update $htmlcontroloptions. When OBrowser sends the
options to JavaScript it sends the current value of
$htmlcontroloptions. If the option name ends in “color”
then the value stored in the options object is an integer
RGB value. When OBrowser sends this to JavaScript it
converts it to a CSS color value. If the option name ends in
“iconid” then the value stored in the options object is a
valid icon id from an iconset. When OBrowser sends this to
JavaScript it converts it to a file URL. When using an icon
from #ICONS, the file URL uses the same PNG file as that
used for the JavaScript client. You will need to manually
delete the PNG in the html/icons folder if you edit the icon,
to allow Omnis to re-generate the file.

optionsDescriptions There should be a member in this object for each member
of options. The values are used as tooltips when editing
$htmlcontroloptions using the property manager.

The Callback Object

omnishtmlcontrol.js creates an instance of an omnishtmlcontrol object called jOmnis. Your page sets the callbackObjectmember
of jOmnis, to allow the omnishtmlcontrol object to communicate with your control implementation.

Your callback object can contain its own members, but do not use ‘omnis’ as the prefix of a member name, since we use omnis
to identify methods provided by the callback object that may be called by omnishtmlcontrol.

Methods called using $callmethod are members of the callback object.

The following table describes the omnis-prefixed methods you need to provide in a callback object. Each member is marked as
mandatory or optional to indicate if you must provide an implementation.

Method Description

omnisOnLoad Mandatory. Called when the browser
onLoad event occurs. Use this to perform
initialization.

417



Method Description

omnisSetOptions Optional. Called to set the options for the
control. It has a single argument, which is a
JavaScript object containing the members
defined in the control .json file. When first
loading the control, omnisSetOptions is
called before CSS is applied and before set
data. Once the control is loaded,
omnisSetOptions can be called again if the
application assigns $htmlcontroloptions.

omnisCssChanged Optional. Called after the CSS in the
omnishtml class has been added to the
page, or updated. When first loading the
control, omnisCssChanged occurs after
omnisSetOptions, but before set data. Once
the control is loaded, omnisCssChanged can
be called whenever a property that
contributes to the omnishtml class is
changed.

omnisSetData Mandatory. Called to set the data for the
control. One parameter, the data.If the data
is a row variable, then the parameter is a
JavaScript object with a member for each
row column; the data types of the members
must be simple types (character, boolean,
integer, number). If the data is a list, then
the parameter is an instance of
omnis_list.Otherwise, the data is a value of a
simple type. Note that for character data,
OBrowser converts Omnis line endings (\r)
to suitable line endings for the HTML control
(\n) before calling omnisSetData.

omnisGetData Mandatory for controls which have a data
mode of “all”. Called to get the data from the
control. Returns the data for the control.If
the data is a row variable, returns a
JavaScript object. It must have the same
definition as the originally set row. If the
data is a list, the return value must be an
instance of omnis_list.Otherwise the return
value must be a simple type. Note that for
character data, OBrowser converts browser
line endings (\n) to Omnis line endings (\r) in
the returned data.

omnisGetCurrentLine Mandatory for controls which have a data
mode of “single” or “multi”. Returns the
current list line.

omnisGetSelection Mandatory for controls which have a data
mode of “multi”.Called to get the list
selection from the control. Returns an array
of integers, with a member for each list line.
A member is zero if the line is not selected,
one if the line is selected. The array entry for
line 1 is at array index zero.

omnisSetFocus Optional. Called when the control receives
the focus. You may need to focus an
element when this method is called
e.g. this.elem.focus().

418



Method Description

omnisTab Optional. Passed a single parameter, the
JavaScript keydown event. Called when a
tab occurs. This gives the control the
opportunity to tell Omnis to tab out of the
control.omnishtmlcontrol provides default
behaviour based on HTML tabindexes - you
can override the default by providing
omnisTab. To tell Omnis to tab out of the
control, omnisTab calls
jOmnis.tabOutOfControl with a single
Boolean argument which is true to perform
a shift tab.

omnisGetDraggedData Optional. If your control supports drag data,
you provide this callback to let Omnis obtain
the data being dragged. The return value is
the dragged data, or null if nothing can be
dragged.You can either return text, or a list,
or a row.There are helper methods in jOmnis:
makeDraggedDataList and
makeDraggedDataRow to assist with the
latter two return types.

omnisDropHilite Optional. Called to highlight the control
when it is a possible drop destination during
drag and drop.Two parameters: hiliteLine,
destinationIdhiliteLine is Boolean, true if the
$hiliteline property is set for the
control.destinationId is the drop destination
id, typically a line number returned by
omnisGetDropLine if highlighting lines is
supported.There is a helper method in
jOmnis, that can be used to highlight the
entire control. For exam-
ple:jOmnis.appendDefaultHiliteDiv(document.body);appendDefaultHiliteDiv
returns the appended div, so you can
remove it from the DOMwhen
unhighlighting.

omnisDropUnhilite Optional. Called to remove drop highlighting
from the control. No parameters.

omnisGetDropLine Optional. Called when $hiliteline is true, to
determine the line over which the pointer is
positioned. The return value is the line
number (destination id).It takes 2
arguments: mouseX, mouseY These are the
current pixel coordinates of the pointer.

omnisDoScroll Optional. Called to scroll the control while
the pointer is over its edges during drag and
drop of data.It takes 2 arguments:
scrollDirection, scrollAmount scrollDirection
is an eScrollDirections value (see
omnishtmlcontrol.js) that identifies the
direction to scroll. scrollAmount is the
maximum number of pixels by which to
scroll. Scroll by this amount, if scrolling is
desired.

omnisOnWebSocketOpened Optional, and not normally needed. Called
when the socket between OBrowser and the
HTML control opens. From Studio 8.1.6 the
method receives the Web Socket port as a
parameter.

omnisOnWebSocketClosed Optional, and not normally needed. Called
when the socket between OBrowser and the
HTML control closes.

419



Sending Events

jOmnis contains APIs that allow you to send events to $event:

API Description

sendClickEvent jOmnis.sendClickEvent(lineNumber)Generates evClick
with pLineNumber set to lineNumber.

sendDoubleClickEvent jOmnis.sendDoubleClickEvent(lineNumber)Generates
evDoubleClick with pLineNumber set to lineNumber.

sendControlEvent jOmnis.sendControlEvent(infoObject)Generates
evControlEvent with pInfo set to the row corresponding
to infoObject.

HTML controls can pass dates when calling sendControlEvent(), either directly, or as a column in a row/JS object. However, due to
issues sendingmessages to Omnis including Omnis dates inside lists/rows, any objectmembers whose names begin “__” (double
underscore) are stripped out before sending to Omnis.

In addition, HTML controls can pass nested rows/JS objects with sendControlEvent().

Development Mode

If you need to alter the behavior of your HTML control in some way in development mode, you can check the value of jOm-
nis.mDesign which will be true in development mode.

Debugging

You can edit config.json (see the later configuration section) to enable debugging of your control.

On Windows, once you have set a remote debugging port, open Chrome and navigate to http://127.0.0.1:nnnn where nnnn is the
remote debugging port.

On macOS, right click on the control and select inspect element. Note that the web inspector window that opens does not work
that well with our window ordering.

Drag Object Support

Due to the way pointer events work with the control, when you enable drag object or drag duplicate, Omnis displays a small bar
at the top of the control to enable it to be dragged. There is a property, $dragobjectbarcolor that you can use to set the color of
this bar.

Reloading HTML Controls

You can use the $reload() method with an Omnis HTML control to reset it to its initial state. $reload() also automatically redraws
the control, so its data will also be set. Using $reload like this is useful when debugging your JavaScript.

Tooltips

The tooltip property for an Omnis HTML control is applied once when the control is created, and it is not re-evaluated. If you want
to change the tooltip after creation, you must use $callmethod to provide an interface to change a title attribute in the HTML.

Adding HTML controls to your window

Having created or obtained an HTML control and placed it in the htmlcontrols folder, you can use it in a window class in your
library. There are also a number of example controls for you to use as well, such a simple List and Quill, a basic text editing control.
Once the control is placed on your window it can be used and updated in the same way as any other control.

Locate theOBrowser* object in theMedia** group in the Components Store and add one to yourwindow class. Open the Property
Manager and set the $urlorcontrolname property to the name of the control – the droplist for this property contains the names
of all the available controls installed into the htmlcontrols folder.

For HTML controls located in the ‘html/htmlcontrols’ folder in Omnis, you will need to set the $htmlcontrolsusehttp OBrowser
property to kTrue, after which the HTML controls will be listed in the $urlorcontrolname property.

There is a version of the JS Markdown Object that is implemented as an HTML control which you can use in a window class; see
Markdown Object.

420



Html Control Properties

When you select a control its properties will be displayed in the Property Manager, including the following properties.

$dataname

An Omnis HTML control can be data bound. The dataname can be a list, a row, a date, or any other simple non-binary type. This
makes the control behave like any other data bound control, with one small exception that improves performance. Omnis does
not redraw the control when it gets the focus. The only real consequence of this is that you need to explicitly call $redraw in order
to update the control.

$disabledefaultcontextmenu

The underlying browser has its own context menus e.g. a TEXTAREA with spell checking enabled has clipboard menu items, as
well as spelling suggestions etc. The underlying browser menu is considered the default context menu, and you can disable this
using the $disabledefaultcontextmenu property.

$htmlcontroloptions

AnOmnis HTML controlmay have a rowof options that can be used to configure its behavior. You can consider these to be custom
properties. The Property Manager has a droplist button for this property, which opens the editor for these options. Options with
names ending in color or iconid are edited using the color picker or select icon dialog respectively. The fixed column at the left of
the editor has tooltips that display descriptions for the members of the options row.

If the control does not have any options, this property is read-only.

$applycss and $cssextra

You can optionally apply a CSS class named omnishtml to the Omnis HTML control (note that the control needs to explicitly use
omnishtml - if it does not, then apply CSS will not have any affect). Set $applycss to kTrue if you want to use the omnishtml class.

The omnishtml class contains entries for various other properties of the browser object (OBrowser): $backcolor, $backalpha, $text-
color, $align, $fontsize, $fontstyle, $font. $font uses the JavaScript client font table entry corresponding to the window font.

In addition, OBrowser also concatenates the value of $cssextra to the end of the omnishtml class e.g. you could set $cssextra to
“text-decoration:line-through;text-transform: uppercase;”.

$dragmode

You can set $dragmode to kDragData to enable drag from the control. This only works if the particular control has been designed
to support drag data. Drag and drop uses the standard Omnis drag and drop messages.

$hiliteline

List controls that accept dropped data can be configured to highlight individual lines during drag and drop. You can set this
property to true, to indicate that you want highlight line behavior, but you will only get that behavior if the Omnis HTML control
currently being used supports it.

In addition, when evDrop occurs for a control with $hiliteline set to true, the pDropId event parameter identifies the area of the
control over which the drop is to occur, either a line number or ident (when $hiliteline is true), or zero if the control is not list-based
(or $hiliteline is false).

$callmethod()

Omnis HTML controls can have methods. You can use the $callmethod() method to call a method within a control or one of the
standard callbacks.

• $callmethod(cName,vParam)
Calls method cName in the control object, passing parameter vParam; returns a unique id for this call. The method runs
asynchronously and sends the evCallMethodDone event to the control on completion (see Events below)

# method gets the data from the example Quill control
Do $cinst.$objs.quill.$callmethod('omnisGetData') Returns iID

# event method for Quill control assigns the data returned to a var

421



On evCallMethodDone
If pUniqueId=iID

Calculate iData as pReturn
# Do something

End If

Markdown Object

There is a version of the JSMarkdownObject that you can use in awindow class as anHTML control (the source files for the control
are located in the ‘html\htmlcontrols’ folder); see theMarkdownObject JS component formore details about creatingmarkdown
content and setting its properties.

To use the Markdown Object in a window class, add an OBrowser control to your window, set its $htmlcontrolsusehttp property
to kTrue, then select ‘markdown’ in the $urlorcontrolname property.

The markdown content can be built up in the same way as for the JS control and assigned to an instance variable specified in
$dataname of the Markdown HTML control.

The color settings and so on for themarkdown can be set in the $htmlcontroloptions property, for example, textcolor and image-
maxwidth, which are equivalent to the properties for the JS control.

Ports

The OBrowser component operates on the same port as the Omnis Server which is either assigned dynamically or via the Omnis-
server property. For debugging HTML controls, OBrowser opens another port forWebSocket communications between htmlcon-
trols andOmnis. This is $serverport + 1, or 6912 if $serverport not set. This canbeoverriddenby setting “obrowser >htmlControlPort”
in config.json.

If debugging in OBrowser is enabled (if the canDebug item in the ‘obrowser’ section of config.json is true), OBrowser opens
another port to allow remote debugging of the web content. By default this is port 5989, but can be overridden by setting the
remoteDebuggingPort item in the ‘obrowser’ section of config.json.

Events

Omnis HTML controls have some basic events, such as single and double click, but they can have custom events.

evCallMethodDone

The evCallMethodDone event is triggered when a $callmethod() is completed: it has three parameters in addition to pEventCode:

Parameter Description

pUniqueId The unique id that was returned by $callmethod(). This associates this event with the original call.
pReturn The return value of the control method. NULL if an error occurred - see pErrorText for details.
pErrorText Text describing the error.

evClick and evDoubleClick

Omnis HTML controls can generate standard click and double click events, with the pLineNumber event parameter.

evControlEvent

Omnis HTML controls can generate custom events. Each custom event sends evControlEvent. This has one parameter in addition
to pEventCode:

Parameter Description

pInfo A row containing information about the event. If the control generates more than one type of control
event, a column in this row can identify the event type

422

/developers/resources/onlinedocs/WebDev/03jscomps.html#markdown-object


Menu Classes

AMenu class defines a pulldownmenu that can be installed on themain Omnis menu in desktop apps (not web or mobile apps).
A menu class can also define a Popup menu control that can be displayed on a window class. You can create a new Menu class
from the Studio Browser using the New Class>>Menu or Class Wizard>>Menu… option.

Menus let end users perform standard operations in your desktop application, such as open a window for data entry or print a
report. The definition for a standard menu is stored in amenu class. You can create your own custom menus and install them
on themain application menu bar using the Install menu command, typically in the Startup_Task. You can install a menu on the
menu bar of a window, or open it as a popup or context menu on a window class. You can create hierarchical menus that drop
down off another menu, and you can incorporate standard Omnis menus such as File and Edit into your application.

The types of menu classes you can create are:

• Standard dropdown menus
you can install any menu class on the main menu bar; you can add shortcut keys and control access to menus using user
levels, you can check and uncheck individual menu lines and enable/disable them.

• Hierarchical menus
you create a hierarchical menu as a separate menu class and add it to another menu line; when the user selects the line a
menu drops down

• Popup menus
this type of window field pops up a standard menu when you click on it

• Window menus
you can install any standard or custommenu on the menu bar in a window class

• Context menus
you can define a context menu that pops up when you Right-click on a field or window

You can add up to 500 lines or menu items to amenu class, but in practice you will only need the first twenty-or-so for most types
of menus. You can add a keyboard alternative, or shortcut key, to each menu line when you create the class.

Methods do the real work behind the menu. You can addmethods to the class itself and each menu line. The class methods can
initialize the menu when it is installed, and the line methods could do anything from open a window, print a report or series of
labels, or insert a row into your database. When you select a line in the installedmenu, Omnis runs themethod behind thatmenu
line.

Menu wizards

You can create a menu using one of the wizards or templates available in the Studio Browser.

To create a new menu using a wizard

• Select your library in the Studio Browser

• Click on the Class Wizard option, then click on the Menu option

• Under theWizards option, select Menu Wizard and click on the Create button, or under the Templates option, select File
Menu to create a standard File menu

• Follow the instructions on screen

The following wizards and templates are available:

• Menu Wizard
creates amenu containingmenu lines to openwindow classes and print report classes; can also contain hierarchicalmenus

• File Menu Template
creates a menu that you can use to replace the standard File menu; you can edit this menu class and add your own menu
lines

You can also create a newmenu class using the New Class>>Menu option in the Studio Browser. Having created the menu class,
add the title or name of the menu in the $title property. To add a line, right-click on the menu title and select Add Line. Add the
text for the menu line in the $text property for the line. To add a second line, right-click on the first menu line option and select
Add Line.

423



Menu lines and methods

You can create a menu class and add each menu line, but to make your menu properly function you need to add some program-
ming behind your menu. If you build a menu class from scratch you will have to add methods to the menu yourself, but if you
built your menu using the menu wizard then Omnis will have added the appropriate methods to your menu automatically.

You can add classmethods to themenu itself to control themenu when it is installed. And you can add linemethods to each line
in yourmenu by double-clicking on themenu line to open themethod editor: a linemethod is executedwhen the corresponding
menu line is selected in the installed menu.

Many of the standard functions of a menu, such as enabling or disabling a menu line, adding shortcut keys, or setting passwords
for each menu option, are properties of each menu line. You can edit the properties of a menu or menu line using the Property
Manager.

Menu Icons

Your own custom menus can have icons for each menu line. Menu lines have the $iconid property in which you can specify the
id of an SVG file or a 16x16 PNG icon for the menu line; larger icons are not available for menu lines. If the property is empty (the
default) the menu line does not have an icon.

The icons can be SVG files from an iconset (or PNGs from an iconset, the #ICONS system table, or the OmnisPIC or USERPIC icon
data file in legacy apps only). See Selecting an Icon for more details about specifying icons, SVG icons and iconsets.

The $iconcolor property for a menu line (or toolbar button) sets the icon color when using a themed SVG icon. The $defaulticon-
color property for a menu class (or toolbar) sets the icon color when using themed SVG icons and the $iconcolor property of the
item is kColorDefault. If $defaulticoncolor is also kColorDefault, then themed icons use the text color.

Menu Shortcut Keys

You can specify a shortcut key or keyboard alternative for each line in your menu. When the end-user presses the specified key
combination themenu line is activated. UnderWindows, you can add Ctrl and Alt key combinations tomenu lines. UndermacOS
you can add Cmnd andOption key alternatives. You can furthermodify keyboard alternativeswith the Shift key under anyOS. You
enter these keys in the Property Manager for the menu line, or by pressing the required key combination when the appropriate
menu line is selected in the menu editor.

The menu editor context menu has the option Accept All Key Strokes. When checked (the default) the menu editor accepts all
keystrokes, including shortcut keys, and enters them into the currentmenu line. When this option is unchecked, you cannot enter
menu lines directly from the keyboard, in this case you have to enter the text and shortcut key for eachmenu line in the Property
Manager.

To add a shortcut key in the menu editor

• Open your menu class in design mode

• Select the menu line and press the key combination you want to assign to it

For example, select the menu line and press Ctrl or Cmnd and the number key “5” to add the Ctrl/Cmnd-5 shortcut key, or press
Ctrl or Cmnd and the letter “A” to add the Ctrl/Cmnd-A shortcut key to the current menu line. Whichever platform you are using,
the appropriate shortcut key is entered for all platforms automatically.

Certain shortcut keys cannot be inserted in this way, because they have functionality that is detected and intercepted by Omnis
or the operating system. They are Ctrl/Cmnd-T and Ctrl/Cmnd-S on all platforms, plus Cmnd-Q and Cmnd-W under macOS.

You can specify menu shortcut keys for a menu line in the Property Manager by assigning a value to the $winshortcutkey or
$macshortcutkey.

You should avoid using standard key combinations that appear in Omnis or the operating system. macOS function keys on ex-
tended keyboards activate themenu option with the corresponding Cmnd-number combination. Thus, F1 is the same as Cmnd-1.
You cannot use the Shift-Cmnd-n options, where n is a digit from 0-9, because macOS uses these options.

Furthermore, you should make sure that no two menu items in a menu have the same shortcut key and that no two menus
installed at the same time have the same shortcut key. Duplicates will be unpredictable depending onwhichmenus are installed
at the time or the order in which they appear on the main menu bar.

Menu Shortcuts (macOS)

The “useFnInMenuShortcuts” item in the “macOS” section of the config.json file controls how Function keys on macOS are in-
terpreted. When set to true (the default), the Function+number menu short cuts display as Fn, or if false they display as +n.
(ST/MC/264)

424

/developers/resources/onlinedocs/WebDev/03jscomps.html#selecting-an-icon


Alt Shortcuts Keys under Windows

Under Windows you can add Alt key equivalents to menu lines and to the menu title itself. You specify the key by including an
ampersand (“&”) before the character in the menu line or menu title. For example, if you want your users to open a menu called
Travel with the Alt-T key combination, add an ampersand before the T in the menu title. In this case, the text for the menu title
should be “&Travel”. Likewise, you can add an Alt shortcut key to any letter in a menu line. For example, to add the Alt-S shortcut
key to a “Customers” menu line, the text for the menu line should be “Cu&stomers”. To display an ampersand (“&”) as literal text in
a menu title or menu line, you need to insert two ampersands, for example, “Profit && Loss” to display “Profit & Loss”.

You can include the ampersand in the appropriate menu line or title when you enter the item in the menu class editor, or you
can add it to the text or title property for the item in the Property Manager. Usually, you add shortcut keys as an afterthought,
in which case it is easier to do it in the Property Manager. Note you cannot select the menu title or line and press the required
Alt-key combination to assign this type of shortcut key: youmust enter it directly into themenu editor when you enter the line or
using the Property Manager.

Hierarchical menus

A hierarchical menu or submenu is a menu that drops down from another menu line when you select the option. You can create
a hierarchical menu using any previously defined menu class. To add any previously defined menu to a menu line, to create a
submenu, you add the name of the menu class to the $cascade property for the menu line in your main menu.

When you add a hierarchical menu to a menu line, Omnis places an arrow against the menu line in the menu editor. This also
appears in the installed menu indicating there is a hierarchical menu attached to this menu line. When you select the option in
the installed menu the hierarchical menu drops down.

You can cascade menus up to five levels deep under macOS, and up to eight levels under Windows. You should avoid cascading
a menu off itself, or creating a chain of menus that cascade off each other recursively.

Rebuilding submenu instances

Each time you add a line to a menu instance, delete a line from a menu instance, or change the $cascade property at runtime,
Omnis rebuilds the menu, and as part of the rebuild process it destroys and recreates instances for cascading menus. You can
manage the rebuilding of amenu instance by assigning kTrue to $disablerebuild, and then setting it back to kFalse after updating
the menu, so that the menu rebuild only occurs once.

Menu Instances

$menuinst for a Cascading menu object (and a Popup menu) will appear in the Notation Inspector. This allows you to select
$menuinst and see the properties of the instance, and also drill down further to see $objs, etc. Note that $menuinst only appears
in the Notation Inspector when the parent object has an associated instance.

Window menus

A window menu is a menu installed on the menu bar of a window. A window menu bar is a property of the window class itself.
To show the menu bar for a window you must enable the $hasmenus property. Having enabled the menu bar for a window, you
can drag menus from the Studio Browser and drop them onto a windowmenu bar.

When you enable the windowmenu bar all the objects on your window including fields and background objects will move down.
You can add any type of menu to a windowmenu bar, including your own custommenus or the standard Omnis menus, such as
File or Edit: you add a standard menu by right-clicking on the windowmenu bar and selecting the menu you require.

Popup menus

A popup menu is a type of window field that opens a menu when you click on the field. You can create a popup menu using any
previously definedmenu class and you can add any of the standard Omnis menus such as File and Edit to your window as popup
menus. When you create a popup menu field you enter the name of the menu class in the field’s $menuname property.

You can use the constant kDefaultBorder for the $effect property to ensure the menu has the default border style for the current
operating system.

Context menus

A context menu is a menu that pops up when you Right-click on the background of an open window or a field; under macOS
you Ctrl-click to popup a context menu. Context menus appear throughout the Omnis design environment to help you access
methods and so on, but you can add context menus to any of the windows in your application. To create a context menu, you
enter the name of a previously defined menu class in the $contextmenu property for the window class or field.

425



Security and menu access

You can restrict access to certain parts of your library, includingmenu items, by setting up a secure system of passwords. You can
define varying degrees of access for up to eight groups of users (each type of user or group is assigned a separate password), plus
amaster password. Several different users can use the same password: you are not limited to literally eight users. You can use the
passwords set up in your library to control access to the menus in your library.

Access to menus or menu lines is set in the $users property for the menu item and utilizes the user numbers and passwords set
up in your library. The default is to allow access to all the menu items in your library for all users or passwords, that is, passwords
1 to 8. The master password has access to all menus at all times. The users property contains the string “12345678”. To restrict
access to a menu or menu line, you delete the user number from the users property. For example, to restrict access for user 4,
delete the number 4, which leaves the string “1235678”. To allow access to amenu item, you include the user number in the users
property for the menu or menu line. For example, to allow access for user 4 only, delete the default string and enter the number
4 only.

Status bar help for menus

You can add short help messages to menus and menu items that display on the window status bar or the main Omnis help bar.
You enter themessage in the $helptext property for themenu title ormenu line. The $hasstatusbar window property enables the
status bar for a window class, and the $helpbaron Omnis preference enables the main Omnis help bar. You can change the font
and point size for themain Omnis help bar with the $helpfont property. UndermacOS Classic you can display themenu help text
in Help balloons by enabling the $balloonson property.

Toolbar Classes

A Toolbar class defines a custom toolbar that can be installed onto the main Omnis toolbar in desktop apps only (not web or
mobile apps). A toolbar can float inside the application window, or can be added to a window class. You can create a new Toolbar
class from the Studio Browser using the New Class>>Toolbar or Class Wizard>>Toolbar… option.

You can create your own toolbars that contain buttons and other controls that lets the user access common options and functions
in your application. You can install your own custom toolbars in the top, left, right, or bottom docking area of the main Omnis
applicationwindowusing the Install toolbar command, typically in the Startup_Task or fromacustommenu. You can add toolbars
to any window class too, but you must create your toolbar class first before you can add it to a window. The toolbar commands,
such as Install toolbar, refer to toolbars in the main docking areas, not window toolbars.

Toolbar classes can containmethods and variables. As withmenu classes, themethods you place behind each control do the real
work in a toolbar. You can add methods to the toolbar class itself and to each control or button. When you click on a control in
your toolbar, Omnis runs the $event() method behind the tool.

Toolbar Wizards

Under the Class Wizards option in the Studio Browser there are a number of templates that you can use as the basis for your
own toolbars. They include a File, Standard, and View template which you can use in a window toolbar: the methods behind the
controls in these toolbars call methods in the current window.

To create a new toolbar using a wizard

• Select your library in the Studio Browser

• Click on the Class Wizard option, then click on the Toolbar option

• Select the toolbar template you require and click on the Create button

• Follow the instructions on screen

The following toolbar templates are available:

• File
toolbar contains buttons to Open and Close

• Standard
toolbar contains Save, Revert, Print, Page Setup, and Help buttons

426



• View
toolbar contains buttons to switch between icons and details view

NOTE: all these toolbars are designed to be installed on a window menu bar and not the main Omnis toolbar since each button
in the toolbar contains an event method that calls a method which you have to add to the parent window.

You can also create a new toolbar class using the New Class>>Toolbar option in the Studio Browser. Having created the toolbar
class, you can drag components from the Component Store and drop them into the toolbar editor.

Toolbar Controls

You can add asmany buttons and controls as you like, and you can use the separator control to put space between groups of tools.
The following toolbar controls are available:

• Check Box

• Color Picker

• Combo Box

• Dropdown list

• Font List

• Font Size List

• Line Style Picker

• Pattern Picker

• Popup List

• Popup Menu

• Push Button

• Radio Button

• Spacer

You can drop a control anywhere within the active area or between existing controls. Once you’ve placed controls in a particular
order, you can drag them to the left or to the right to reposition them on your toolbar. Dragging a control from one toolbar class
to another copies the control to the destination class.

If you place several radio buttons together, without separators, they behave as a group. That is, when you select one radio button
in a group the currently selected one will be deselected. Popup lists and menus look like buttons, but when you click on them in
the installed toolbar a list or menu drops down.

Combo boxes

Combo boxes can be used in unified toolbars on macOS. They have the rounded edit field appearance, like the finder toolbar
search box.

The $iconid property is available for combo boxes in toolbars, but applies to macOS only. It specifies the icon drawn to the left of
the control, where a click opens the menu containing the combo box list.

• When set to zero, the icon is the standard macOS search icon

• When set to a valid value, the 16x16 icon selected replaces the search icon

• When set to an invalid value, the control just shows a down arrow like a combo box

To use a combo box for searching (for example), check for evAfter with the next event of evOK; this is generated when you hit
return with the focus in the combo box.

427



Radio Button Groups

On macOS, if $splitbuttonbars is set to kTrue, a group of radio buttons (of kToolRadioButton type) will be displayed as separate
buttons with their respective labels; the default is kFalse where radio buttons are displayed in a compact group. The property only
applies to toolbars onmacOS, includingmain toolbars, floating toolbars and for unified window toolbars where kTBOptionmacO-
SOmnisTopToolbar is true.

Toolbar Separators

Toolbar separators or “spacers” have a property $flexible that can be set to kTrue when $blank is kTrue, as follows:

• If true, and $blank is also true (that is, no dividing line is shown), and the toolbar is on a window, the separator expands in
width to use docking area space not occupied by other toolbar objects. If more than one separator is flexible, the unused
space is shared equally between them.

A typical use of $flexible is to place a single separator in the toolbar, and set $blank and $flexible to kTrue. The result is that any
controls to the right of the separator become right justified.

Toolbar Icons

You can add an icon to most types of controls, all except the list and combo types. You can specify an icon for a control in its
$iconid property. The icons can be SVG files from an iconset (or PNGs from an iconset, the #ICONS system table, or the OmnisPIC
or USERPIC icon data file in legacy apps only). See Selecting an Icon for more details about specifying icons, SVG icons and
iconsets.

Controls that you can check or uncheck, such as radio buttons and check boxes, display different icons for the different checked
and unchecked states. You can create icons for all these states using the standard naming for icons in an Icon set (in legacy apps,
all possible states for these controls are stored in the OmnisPIC icon data file).

The $iconcolor property for a toolbar button (or menu line) sets the icon color when using a themed SVG icon. The $defaulticon-
color property for a toolbar class (or menu) sets the icon color when using themed SVG icons and the $iconcolor property of the
item is kColorDefault. If $defaulticoncolor is also kColorDefault, then themed icons use the text color.

Tooltips

You can add tooltips to individual toolbar controls in the $tooltip property for the control. To hide and show tooltips for the toolbars
in Omnis and your libraries you can set the $showtoolbartips Omnis preference.

Combo boxes can have a content tip when there is no text label drawn in the toolbar; the content tip uses the value of the text
property.

Toolbar Methods

You can add Class methods to the toolbar class itself to control the toolbar when it is opened, and you can add Tool methods to
the controls in your toolbar: a toolmethod is executedwhen the corresponding tool or control is clicked on in the installed toolbar.

You can add up to 501 methods to each tool or control in your toolbar, and a further 501 methods to your toolbar class. You enter
themethods for tools (buttons) and toolbar classes using themethod editor, by double-clicking on the control or the background
of the toolbar editor.

Toolbar classes contain a $construct() and a $destruct() method by default. You can add code to these methods that control the
installing and closing of the toolbar. In addition, all controls except spacers have an $event() method in which you add the code
you want to run when the tool or control is clicked on. For example, you could use theOpen window instance command in a tool
method to open a window, or you could use the Print report command to print a report to the current destination.

Installing Toolbars

You can install a toolbar class at any time from the toolbar editor itself; this is useful if you want to see how the toolbar looks while
you’re designing it. However, in your finished application you can use the Install toolbar command or the notation to install a
toolbar. You can also add any toolbar class to the docking area of a window using the $toolbarpos property.

The $initialdockingarea property of a toolbar class determines which docking area the toolbar is installed into. Toolbars install into
the top docking area of the main Omnis application window by default.

428

/developers/resources/onlinedocs/WebDev/03jscomps.html#selecting-an-icon


If you have enabled the $allowdrag property for toolbar class, you can drag the installed toolbar out of the docking area; the toolbar
is now floating. If you have enabled the $allowresize property in the toolbar class, you can resize the floating toolbar.

You can Right-click on a docking area and select the Show Text option from the context menu to show the text for each toolbar
control.

Docking Areas

You can install a toolbar into the top, bottom, left, or right docking area in the main Omnis application window. Note that most
list-type controls, such as the Dropdown list and Combo box types, are not displayed in a toolbar if it is installed into the left or
right docking area. They display as expected when the toolbar is at the top or bottom, or is floating.

You can right-click on a docking area to open its context menu which lets you show and hide the text labels for any installed
toolbars. You can show text for the IDE toolbars as well as your own custommenus.

You can view and change the properties of the main docking areas using the Notation Inspector and the Property Manager.

To view the docking areas in the Notation Inspector

• Press F4/Cmnd-4 to open the Notation Inspector

• In the Notation Inspector, expand $root and the $prefs group

• Expand the $dockingareas group

Toolbar Docking Area Height

The library preference $windowsizeexcludesdockingarea allows you to ignore the height of the toolbar docking area when spec-
ifying the position of a window. If true (the default in new libraries), the width and height of a window exclude the relevant
dimension of the toolbar docking area (this does not affect windows under macOS with a standardmacOS top toolbar since they
are excluded from the docking area automatically).

Window Toolbars

A Toolbar class can be added to a window class, rather than themain application window. OnWindows it is added to the window
docking area (top. Left, right, or bottom), whereas on macOS the toolbar is added to the title bar of the window. There are a
number of window class properties that control toolbars:

Property Description

$enablemenuandtoolbars If true, all main toolbars and menus are enabled when this window is on top
$toolbarnames The names of the toolbar classes used in the window docking area
$toolbaroptions Set of toolbar options; see below. Note that you can only assign this property when $toolbarpos is set, that

is, not kDockingAreaNone. Also note that kTBOptionmacOSOmnisTopToolbar can only be toggled when
designing a window

$toolbarpos The position of the toolbar in the window; this can be any of the kDockingArea… constants:
kDockingAreaBottom, kDockingAreaLeft, kDockingAreaNone, kDockingAreaRight, kDockingAreaTop (that
is, except kDockingAreaFloating)

Toolbar Options

The $toolbaroptions property affects the appearance and style of the window toolbars. The following constants are available,
which can be selected in the Property Manager in design mode:

Constant Description

kTBOptionDefault Use settings stored in Omnis config file
kTBOptionLargeIcons Show large icons
kTBOptionmacOSCompressed Any macOS title bar toolbar which is using the unified style will automatically minimize the space

between toolbar items; see below
kTBOptionmacOSExpanded Any macOS title bar toolbar will appear below the window title and the window title will be centered;

see below
kTBOptionmacOSOmnisTopToolbar On macOS, for window styles that support macOS style top toolbars, use Omnis style rather than

macOS style for the top toolbar; this option is only applied when opening the window; see below
kTBOptionNone Small Icons, no text

429



Constant Description

kTBOptionShowText Show text
kTBOptionVarTextWidth Button width depends on text width

Expanded Toolbars (macOS)

TheOmnis configuration item useToolbarStyleExpanded in the ‘macOS’ section of the cofig.json file enables the legacy expanded
toolbar style instead of the default toolbar style (typically unified). This only applies to macOS 11 and later, but when set to true
the window toolbar style will use the legacy expanded style, i.e. toolbars sit under the window title. By default, this is false and
toolbars will use the new automatic style on macOS 11 and later, i.e. toolbars are unified and to the right of the window title.

kTBOptionmacOSExpanded

When selected kTBOptionmacOSExpandedwill place any toolbar displayed in the title bar of a window onmacOS Big Sur or later
below the title with the title centered as with previous versions of macOS. This setting is overriden by the global configuration
file ‘useToolbarStyleExpanded item in the ‘macOS’ group in config.json (added in Studio 10.2). When set to true all windows on
macOS will use the expanded style. By default on macOS Big Sur and later a toolbar in the title bar will appear unified and be
positioned next to the title.

kTBOptionmacOSCompressed

When selected kTBOptionmacOSCompressed will minimize the space between toolbar items for a macOS unified toolbar,
i.e. where the toolbar title appears to the left of the toolbar items. The text label for items are also hidden. This option only has
effect where the unified toolbar is supported (macOS Big Sur and later). For this option to be active the kTBOptionmacOSEx-
panded or kTBOptionmacOSOmnisTopToolbar option cannot be set. Space can be added between toolbar items by using a
blank kToolSpacer toolbar component.

Toolbar Style for macOS

When the window style supports it, window toolbars default to being standard operating system toolbars that are part of the
window title bar. All toolbar controls are supported under Mac OS X 10.5 apart from the combo box toolbar controls (which cannot
be supported due to focus issues).

You can access the old toolbar styles using the kTBOptionOSXOmnisTopToolbar option in the $toolbaroptions property of the
window class. If true, the $toolbarbutton property adds a button in the title bar of the window to hide and show the toolbar (Mac
OS X only, this only applies when the window has a Mac OS X style top toolbar).

The method $toolbarbuttonclick() sends a click to the toolbar button on the window instance (Mac OS X only, this only applies
when the window has a Mac OS X style top toolbar).

Accordion Control

Group Icon Name (type) Description

Navigation Accordion Control (Xcomp) List of expandable options

The Accordion control presents a list of hyperlink options, each of which has a header link that, when clicked, expands to show
more information to the end user. In addition, each option in the list can include a further link option or an icon which users can
click on. You can control how the options in the list expand and collapse, creating a very interactive selection tool for end users.

Populating the Accordion

The contents for theAccordion control is providedby a list variable specified in its $datanameproperty. The list should have at least
two columns to specify the Heading text and the expanded content or text, while you can add a third column for the additional
Link text or icon. You can set the $headingcolumn, $contentcolumn, and $headinglinkcolumn properties, to specify which list
columns are used for the Heading text, Text content, and Link text, respectively.

For example, the following method defines a list with three columns to contain the Heading text, the content text, and the link
text. You would typically add multiple lines in the list, which could be static data or loaded from a database.

430



# define iAccList (List) iAccHeading, iAccText, iAccLink (Chars)
Do iAccList.$define(iAccHeading,iAccText,iAccLink)
Do iAccList.$add(\

"Heading 1",con("Some Text",chr(13),"over multiple lines ",\
style(kEscColor,kRed),"with word wrap",chr(13),\
"and some more lines",chr(13),"and some more"),"Action 1")

# and so on, to populate the Accordion list of options

The column specified in $headinglinkcolumn can be a Character or Long Integer to either represent some hyperlink text or an
icon id. In addition, when $headinglinkcolumn specifies an icon id, you can include another column in the list to add a tooltip for
each icon. The column containing the tooltips is specified in $icontooltipcolumn.

For example, the following method is very similar to the previous example, but this time the link column is defined as a Long
integer and icon IDs are added to the list contents.

# define iAccList2 (List), iAccHeading, iAccText (Chars), and iAccIconId (Long Int)
Do iAccList2.$define(iAccHeading,iAccText,iAccIconId)
For lNum from 1 to 100 step 1
Do iAccList2.$add("Heading A",con("Text ",lNum,chr(13),"over multiple lines ",style(kEscColor,kRed),"with word wrap"),1701+k16x16)

The icons can be added to the #ICONS system table in your library, or stored in an icon set.

Note in the example above, that your content column can contain styled text, assuming the $styledtext property for the control
is set to kTrue. The content column can also contain multiple lines of wrapping text, using a carriage return (chr(13)) as the line
delimiter.

Expand mode and Animation

The $expandmode property specifies what happens when the user expands or closes an entry in the Accordion control. The
property is a constant as follows:

Constant Description

kACCexpandModeZeroOrOne Zero entries or one entry must be open; when you open an
option, any previous option will collapse automatically

kACCexpandModeOne One entry must be open; the first option will open by default,
then when you open another option, the previous option will
collapse automatically

kACCexpandModeZeroOrMore Zero or more entries can be open; options must be opened and
closed manually

kACCexpandModeOneOrMore One or more entries must be open; the first option will open by
default, then further options can be opened and closed
manually

If kTrue, the property $fadetext forces the text to fade in or out when the entry is opened or closed, while the $animationsteps
property specifies the number of steps used to animate the opening or closing of an entry in the list (in the range 1-64).

Accordion Events

When the user clicks on the hyperlink (present if hyperlink column is present) the control generates evClick, with pLineNumber
set to the clicked line number. Like many other list types, you could trap the line selected in the $event() method for the control,
and return the value of the heading text, the option text or some other value in another column in the list to make a selection in
subsequent code.

Breadcrumb Control

Group Icon Name (type) Description

Navigation Breadcrumb Control Displays “location” within the hierarchy of
an application

431



The Breadcrumb control can be used to display the end user’s “location” within the hierarchy of an application, as well as allowing
the end user to navigate back up the system by clicking on one of the “crumbs” or the “Home” crumb. A breadcrumb control
is often seen in the context of a website, as secondary navigation, but it can used to enhance the UI for many types of desktop
applications, such as consoles and dashboards.

Figure 141:

The Breadcrumb control can be displayed in different styles: Arrow (as above), Rounded rectangle, or plain Text; this is set in the
$crumbstyle property. The following is the rounded style, showing the third crumb highlighted when the pointer is over it.

Figure 142:

The following shows the plain text style, showing the fourth crumb highlighted when the pointer is over it.

Figure 143:

Properties

The content for the other crumbs in the control are taken froma list assigned to its $datanameproperty. The list has three columns:
crumb_text (Character), crumb_id (integer), crumb_icon_id (Character) – the icon ID is the name of an icon in an icon set assigned
to the library. The first crumb in the control is referred to as the “Home” crumb and is always visible; its text and icon are defined
in the $homecrumbtext and $homecrumbiconid properties. The first line in the data list is the first animated crumb to pop out
from the Home crumb, with subsequent list lines being successive crumbs in the control.

The Breadcrumb control has the following properties:

Property Description

$homecrumbiconid The icons id used for the home crumb
$homecrumbtext The text shown on the home crumb.
$crumbstyle The drawing style of the breadcrumb, a constant:

kCrumbStyleText kCrumbStyleRoundRect
kCrumbStyleArrow

$textcolor The crumb text color
$crumboutlinecolor The outline color of breadcrumbs
$crumbcolor The color of a breadcrumb
$activecrumbcolor The color of the active breadcrumb
$activecrumbtextcolor The text color of the active breadcrumb
$showactivecrumb If kTrue the active crumb (the final crumb on the path)

is shown in the active color

Events

The Breadcrumb control reports the evBreadCrumbPathChanging event which is sent when the user selected a crumb in the
path, with the event parameters pBreadCrumbID, which is the id of the crumb (column 2 in the crumb list definition), and pNew-
BreadCrumbList the proposed new path list.

This event can be discardedwithQuit Event (Discard Event) whichwill prevent the default actionwhich is to shrink the path based
on the crumb selected.

432



Example

The following code will create a breadcrumb as shown in the examples above.

# where bread_crumb is a list assigned to $dataname of the Breadcrumb control
Do bread_crumb.$define(crumb_text,crumb_id,crumb_icon_id)
Do bread_crumb.$add("Clothing",1,"")
Do bread_crumb.$add("T-Shirts",2,"")
Do bread_crumb.$add("Red-T-Shirts",3,"")
Redraw bread_crumb

There is an example app to demonstrate the Breadcrumbwindow control in the Samples section in theHub in the Studio Browser,
and on the Omnis GitHub repo at: https://github.com/OmnisStudio. Search for Omnis-Breadcrumb.

Button Area

Group Icon Name (type) Description

Buttons Button Area Invisable area that responds to user clicks

A Button Area is in essence an invisible button and behaves exactly like a pushbutton. See Pushbutton for details about button
areas.

Calendar Control

Group Icon Name (type) Description

Other Calendar Control (Xcomp) Presents dates in a standard calendar
format

The Calendar control presents the current month and today’s date in a standard calendar format. The component has many
useful properties that let you control the overall appearance of the calendar, such as fonts, colors, and the display style for days
and headers. To display today’s date in runtime, you need to set the $currday property. For example, to set the current day of the
calendar component to today’s date you could use:

# method contains instance var iCurrentDate (DateTime) with default value of #D
Do $cinst.$objs.calendar.$currday.$assign(iCurrentDate)

Modern UI Style

From Studio 11 onwards, the UI in the Calendar external component has been enhanced to display dates using a modern inter-
face. The $uistyle property must be set to kCalUIstyleModern to enable the new UI; the kCalUIstyleClassic settingmaintains the
existing drawing style (which is the default). The following properties are only available when $uistyle is set to kCalUIstyleModern:

Property Description

$navcolor The color used for the navigation bar
$navfont The font used for the navigation bar
$navfontsize The fontsize used for the navigation bar
$navtextcolor The color of the text in the navigation section
$showmonthnav If true, if the navigator bar is shown
$weeknumbercolor The color for the background of week numbers if shown
$weeknumbertextcolor The text color for week numbers if shown
$showweeknumber If true, the week number column is shown
$setdayicon Sets the day icon

The following existing properties are ignored if $uistyle is set to kCalUIstyleModern: $daymode, $currdaymode, $headingmode,
$otherdaymode.

433

https://github.com/OmnisStudio


Navigation bar

When the $showmonthnavproperty is set to kTrue thenavigationbar is shown. Clicking on the right or left arrow in thenavigation
bar will change the month view.

If you click on themonth displayed in the navigation bar themonth selector is shown in themain calendar, and likewise selecting
the year in the navigation bar the year selector is shown in the main calendar. Selecting a cell from any selector returns the
calendar to the previous selector and eventually to the default mode.

If $allowchange is set to false, the left and right navigation buttons are removed and various navigation selectors unavailable.

If $showweeknumbers is set to kTrue, week numbers are displayed down the left side of the calendar; the color of the week
number text and background is controlled using the $weeknumbertextcolor and $weeknumbercolor properties, respectively.

Calendar Events

The Calendar component reports two events: evDateChange, sent when the date changes, and evDateDClick, sent when the
user double-clicks on a date cell. Both these events pass the pCurrentDate event parameter. You can detect these events in the
$event() method of the component; assuming you’re using a variable iCurrentDate as above you could do:

On evDateChange
Calculate iCurrentDate as pCurrentDate
# then Do something else

Calendar Example

The following example uses the calendar component, and provides lists to set the month and year, and buttons to display the
next or previous months.

The following methods initialize the calendar window and format the display of the calendar component.

# $construct() method of the calendar window
# window contains iCurrentDate (DateTime), iMonth (Char), iMonthList (List), iYear (Number), iYearlist (List)
Calculate iCurrentDate as #D
Do method $setdroplists
# $setdroplists method in the window
Do iMonthList.$define(iMonth)
Calculate assignloop as dpart(kMonth,iCurrentDate)
For loop from 1 to 12 step 1
Calculate tmp as con("1 ",loop," 90")
Do iMonthList.$add(dname(kMonth,tmp)) Returns line
If assignloop=loop

Do iMonthList.$line.$assign(iMonthList.$linecount)
Calculate tmp as dadd(kMonth,-1,tmp)
Do $cinst.$objs.back.$text.$assign(

con("< ",dname(kMonth,tmp))) ## sets the Previous butt
Calculate tmp as dadd(kMonth,2,tmp)
Do $cinst.$objs.next.$text.$assign(

con(dname(kMonth,tmp)," >")) ## sets the Next butt
End If

End For
Do iYearList.$define(iYear)
Calculate assignloop as dpart(kYear,iCurrentDate)
For loop from 1970 to 2030 step 1
Do iYearList.$add(loop) Returns line
If assignloop=loop

Do iYearList.$line.$assign(iYearList.$linecount)
End If

End For
Do $cinst.$objs.calendar.$currday.$assign(iCurrentDate)

The calendar example window has a list for selecting amonth and one for the year. Themethods for these two lists are as follows:

434



# $event() method for the Month selection list
On evClick
Do iMonthList.$line.$assign(pLineNumber)
Do iMonthList.$loadcols()
Calculate iCurrentDate as con(dpart(kDay,iCurrentDate),

' ',iMonth,dpart(kYear,iCurrentDate))
Do method $setdroplists
Do $cinst.$objs.month.$redraw() ## redraw the lists
Do $cinst.$objs.year.$redraw()

# $event() method for the Year selection list
On evClick
Do iYearList.$line.$assign(pLineNumber)
Do iYearList.$loadcols()
Calculate iCurrentDate as con(dpart(kDay,iCurrentDate),

' ',dpart(kMonth,iCurrentDate),' ',iYear)
Do method $setdroplists
Do $cinst.$objs.month.$redraw() ## redraw the lists
Do $cinst.$objs.year.$redraw()

In addition, the calendar example window has pushbuttons for showing the Next and Previous months. The $event() method for
the Previous button is as follows:

On evClick
Calculate iCurrentDate as dadd(kMonth,-1,iCurrentDate)
# or Calculate iCurrentDate as dadd(kMonth,1,iCurrentDate)

# to advance the month by one
Do method $setdroplists
Do $cinst.$objs.month.$redraw() ## redraw the lists
Do $cinst.$objs.year.$redraw()

Check Box

Group Icon Name (type) Description

Buttons Check Box Displays On or Off choices with a check
mark (also Yes or No, and 1 or 0 values)

The Check box can represent boolean data, that is, they can display On or Off choices, Yes or No, and 1 or 0 values. The field you
associate with the check box by setting its $dataname should be a Number or Boolean field. Checking a check box sets the value
of the field to one; ‘unchecking’ or clearing the check box sets the value to zero. You enter the text to display to the right of the
check box in the $text property for the object. Omnis calls the field method for a check box when the user clicks on the field.

The images for the check box on and off states (i.e. the box ticked and not ticked) are stored in the Omnispic icon data file in the
‘Multistate 2’ page (Multistate 3 for macOS Classic).

Check boxes report the evClick event, but no parameters are passed. You can detect the evClick event in the $event() method for
the object.

For example, in a login screen the user can enter a username and password, with the option to store their details by checking
a check box. The check box is associated with the iRemember variable which is a Boolean. When the user checks the box, the
variable is set to true and this value is used in the methods that set up the user account; specifically, if the check box is set, the
user information could be stored on the client machine using a cookie component. Here is the method that could handle this:

# part of the $checkuser method
If iRemember ## if check box checked then store user info
Calculate $cinst.$objs.cookie.$userdata as con(iUserName,"@:@",iPassword)

End If

435



Horizontal Mode

The Check Box has a “horizontal” modewhichmakes the check box look and behave like a slider switch, which animates between
the on/off state. The $buttonmode setting kCheckBoxHorizonal enables the horizontal behavior.

The existing appearance properties $textcolor, $forecolor and $iconid specify the text color, forecolor, and icon for the selected
state, and $backcolor is the background of the switch, while the properties $secondaryforecolor, $secondarytextcolor, and $sec-
ondaryiconid specify the appearance for the off state of the control.

The horizontal check box animates by default but this can be disabled by setting $animateui to kFalse. The animation is disabled
when the horizontal check box is used in a complex grid.

When button mode is kCheckBoxHorizonal the $text property is a comma separated list allowing you to specify the text for the
off and on states of the control. For example, $text = “PERSONAL,BUSINESS”, or $text = “OFF,ON” will display the check box as
follows:

Figure 144:

There are a number of new theme colors to control the appearance of the horizontal check box; by default the theme colors are
set to kColorDefault.

Color Description

horizontalcheckbox the appearance group name for this control.
background background color of the control.
switchon background color of the switch in the ‘on’ state
switchontextcolor text color of the switch in the ‘on’ state
switchoff background color of the switch in the ‘off’ state
switchofftextcolor text color of the switch in the ‘off’ state

There is an example app to demonstrate the Check Box window control, including the horizontal mode, in the Samples section of
theHub in the Studio Browser, and on theOmnis GitHub repo at: https://github.com/OmnisStudio. Search forOmnis-CheckRadio.

Round Check Boxes

The $buttonstyle property canbe set tokCheckBoxRound to create a round checkbox. The stylewill create themaximumpossible
circle within the control’s rectangle taking into account its height and width. The style animates the fore color of the circle when
switching between true and false values (this can be turned off via $animateui).

The kCheckBoxRound button style supports a fill pattern or a transparent pattern set using $backpattern. If filled, the circle takes
the colors from $forecolor and $secondaryforecolor for the checked (true) or unchecked (false) values, respectively. If transparent,
the circle is not drawn and only the icon for the checked or unchecked state is displayed.

The round style uses $iconid and $secondaryiconid to control the icon displayed within the circle for the checked (true) or
unchecked (false) values, respectively. Furthermore, when using themed SVG icons, you can use the $textcolor and $secondary-
textcolor (for the checked and unchecked values, respectively) to set the color of the icons, which is white by default. For example,
you could specify a green check icon when the checkbox is true and a red cross icon when the checkbox is false.

The default values for fore colors and text colors are inherited from the OS, for example, on macOS a round circle with nuanced
blue is shown for true and a gray circle for false values alongside white icons.

436

https://github.com/OmnisStudio


Check List

Group Icon Name (type) Description

Lists Check List List with check box line selection

The Check list displays a check box against each row in the list field. The user can select a line by checking the check box for a
line. They are most suited to single columns of data or values in which the user can check multiple values or choices. If a check
box is checked the corresponding line in the underlying list variable is selected. To create a check list, enter the name of your list
variable in $dataname, and enter the $calculation for the list, or a variable name for a single column list.

Clock Control

Group Icon Name (type) Description

Other Clock Control (Xcomp) Clock face showing the current time

The Clock control lets you show the current time in the current time zone on the client. There are many properties, most of them
self-explanatory, that let you control the appearance. For example, you can specifywhether the clock face is analog or digital using
$digital and display it in 24 hour mode using $24hour, you can change the colors of the hour, minute, and second hands and the
background color, you can set the time zone to be displayed using $timezone and $timezoneadj, and you can add an icon to the
face using $iconface, $iconid, and $scaleicon.

The clock component passes 3 events detected in the $event() method for the object: evHoursChange, evMinutesChange, and
evSecondChange which in turn pass the parameters pHours, pMinutes, and pSeconds respectively.

The analog and digital clock face let you show or hide the hours, minutes, and seconds. The $construct() method of the window
is as follows:

# window contains instance vars iShowHours,iShowMins,iShowSecs (all Boolean type)
Calculate iShowHours as kTrue ## set the default settings
Calculate iShowMins as kTrue
Calculate iShowSecs as kFalse
Do method $setprops
# $setprops method sets the 2 clocks according to
# current check box settings
Calculate $cinst.$objs.clock.$showhours as iShowHours
Calculate $cinst.$objs.clock.$showminutes as iShowMins
Calculate $cinst.$objs.clock.$showseconds as iShowSecs
Calculate $cinst.$objs.digiclock.$showhours as iShowHours
Calculate $cinst.$objs.digiclock.$showminutes as iShowMins
Calculate $cinst.$objs.digiclock.$showseconds as iShowSecs

Each of the check box options on the window has the following $event() method:

On evClick
Do method $setprops

Color Palette

Group Icon Name (type) Description

Other Color Palette Color picker allowing color selection

The Color Palette control, or Color Picker, allows the user to select a color. The type of palettes or color picker is specified in design
mode using the $palusermodes property. The control has two methods:

437



• $setpalmode()
$setpalmode(iMode) sets themode of the palette; iMode can be an integer in the range 1 – 5, or an Omnis constants: kStan-
dardPal=1, kRGBPal=2, kBrightnessPal=3, kDropperPa=4l, kUserPal=5

• $colorind()
$colorind(iIndex,iMode[,iColor,bRedraw=kFalse]) sets or returns color selected in the palette; parameter iIndex is an integer
0-255, or -1 to get current color (you must use -1 if color not in 256 colors); iMode is 0 to get color, 1 to set color, or 2 to get
current color index; iColor is color to set at index

The different values for iMode for $colorind() are:

iMode value Description & parameters

0 (iIndex, iMode) gets the color (from the current color if
iIndex==-1 or the color at index position iIndex)

1 (iIndex, iMode, iColor, bRedraw) sets the color (from the current
color if iIndex==-1 or at index position iIndex) to iColor (and RGB)
and redraws the control if (bRedraw)

2 (iIndex, iMode, iCnt, StartColor, EndColor, bRedraw) sets a
gradient color range starting from iIndex, for iCnt iterations,
using the colors StartColor ending at EndColor with optional
redraw bRedraw

3 (iIndex, iMode) iIndex ignored, simply returns the currently
selected cell index

4 (iIndex, iMode, iAppRef) if iIndex==0 it copies the control color
table into the app iAppRef, else it copies the iAppref color table
into the control

5 (iIndex, iMode, bIsAlpha) copies the default Omnis color table
into the control, if bIsAlpha is set the color table will support
alpha

6 (iIndex, iMode, bIsAlpha) copies the default Omnis color table
into the control, if bIsAlpha is set the color table will support
alpha: the color table will show the substitute transparent color
option (small green T)

7 deprecated: embedded system colors are no longer supported
8 deprecated: embedded system colors are no longer supported
9 (iIndex, iMode, iNewIndex) sets the controls current index to

iNewIndex
10 (iIndex, iMode, findColor) given the RGB color findColor, this

search the colour table and sets the current table index if the
color can be found

11 (iIndex, iMode, iColor) sets the initial color of the palette to iColor,
rather than using kDefaultcolor; parameter 1 is unused and
should be passed as 0

When the palette opens in RGBmode, the entry field has the focus, and selects all of the text. As you type, the color value updates.
You can press return in one of the entry fields to set the color property, or Escape to close the color picker. In addition, when the
focus is on one of the normal selection arrays, pressing an arrow key removes the mouse capture, so you can navigate using the
arrow keys.

Combo Box

Group Icon Name (type) Description

Lists Combo Box Combined dropdown list and entry field

A Combo Box is a combination of dropdown list and an entry field. When viewed on an open window, you can choose an item
from the list or type anything you want into the entry box. You might therefore put the salutations Mr, Mrs, Ms, Miss in the list,
and leave the end user free to enter Dr or any other entry when needed. You can open a combo by clicking on the drop arrow, or

438



tabbing to the field and pressing Alt plus the down arrow key; pressing just the down arrow key cycles through the choices in the
dropdown list. Selecting a line with the mouse or pressing the Tab or Esc key closes the list.

When you create a combo box you must specify the name of the data field in the $dataname property and the name of your list
variable in the $listname property. Enter a $calculation to format the list for display. The $contenttip property lets you add text to
the field to help the end user understand what content should be entered into the entry part of the field. Combo boxes support
$keyevents which means you can detect what character or function keys are typed into the entry part.

When using data from a list variable you should leave the $defaultlines property empty. Some of the properties of a combo box
refer to the entry field part or the list part. For example, on the Appearance tab you can specify the number of lines displayed
when your combo box drops down by setting the $listheight property.

The $bordericonstyle property allows you to add an icon to the left side of the field part of a Combo box; note that border icons
cannot be shown on right side due to the drop arrow icon in the list (the $studioide propertymust be set to kTrue to display border
icons).

The $contentpadding property allows you to add padding around the content inside the control.

Disabling the Automatic Search

By default, the content of the Combo box list is used to populate the edit field based on the content of the edit field when the
dropdown list is opened. However, if the $disablesearchonopen property is set to true, the automatic search is disabled.

This property also applies to toolbar Combo boxes. For Data Grids, this property is used for columns with $columntype kDataGrid-
ComboPicker.

Setting the focus

You can use $ctarget.$assign() to set the focus on a Combo box in a window toolbar. In versions prior to Studio 11, you could not
programmatically set the focus on a toolbar combo box, but you can using $assign() and the following code to set the focus:

Do $ctarget.$assign($cinst.$toolbars.tCombo.$objs.combo) ## or
Do $ctarget.$assign($itoolbars.tCombo.$objs.combo)

In addition, $ctarget.$assign() works when the window has no current field, but this does not work during $construct for any field.
Therefore, you can use Queue set current field for toolbar combo boxes (and on Windows, toolbar droplists). To do this, use the
code

Queue set current field $cinst.$toolbars.t1.$objs.combo

which does work when executed during the window $construct.

Background theme on macOS

When the $backgroundtheme property is set to kBGThemeControl Combo boxes look and behave as they should on macOS.

Complex Grid

Group Icon Name (type) Description

Lists Complex Grid Grid that can contain other fields and
controls

A Complex Grid can display multiple rows and columns of data taken from a list variable, but also allows data entry. To create a
complex grid, you place a Complex Grid control on your window and drag other fields, including standard Entry fields, Droplists, or
Check boxes, into the row and header sections of the complex grid field. A Complex grid is a container field having its own $objs
and $bobjs object groups which contain the foreground and background objects inside the grid field. In addition, the $dividers
group contains the dividers for the grid field.

Significant properties of complex grid fields, excluding the various header and border style/color properties, include:

439



• $canclickvertheader
If true, the vertical header of the grid will accept clicks and highlight selected lines, provided that the $enterable property
of the grid is kFalse

• $canresizecolumns
If true, the user can use the mouse to resize the columns of the object

• $canresizeheader
If true, the header on the complex grid can be resized

• $canresizerows
One of the kResize… constants indicating how the user can use the mouse to resize the rows of the object

• $enterable
If true, the grid is enterable

• $extendable
If true, the grid automatically extends to allow the user to enter more lines

• $firstsel
The number of the first selected character or line in the current contents; only when the grid is not enterable

• $firstvis
The number of the first visible character or line in the contents

• $lastsel
The number of the final selected character or line in the current contents; only when the grid is not enterable

• $lastvis
The number of the final visible character or line in the contents

• $multipleselect
If true, the complex grid allows the user to select more than one line

• $showheader
If true, the grid has a header

• $showhorzheader
If true, the grid has a scrollable horizontal header

• $showvertheader
If true, the grid has a scrollable vertical header

• $hiliteline
the grid lines highlight during drag and drop

• $dropbetweenlines
the complex grid highlights between lines during drag and drop

• $extendedgridlines
If kTrue, the grid lines of the final row extend to the base of the grid

Grid row focus alpha

When Complex grid rows receive the focus they are highlighted with an alpha version of the selection color. The amount of alpha
usedwhen hilighting the row is controlled using the appearance properties $gridfocusedrowalpha and $gridunfocusedrowalpha.

The highlightmethod used in versions prior to Studio 10.22 can be reinstated by setting the item newSelectedRowDrawing in the
‘complexgrid’ section of the config.json file to false.

Objects in a Complex Grid

Every field or object in a complex grid has the $gridsection property which tells you the section the object is in, and $gridcolumn
which tells you its column. The fixed left-most column is column zero: the other columns are numbered from one and are sepa-
rated by the dividers. Every field in the header is in column zero. The $top and $left properties of an object is relative to the top
left-hand corner of its grid section.

Every field or object contained in a complex grid has the $container property which returns, in this case, the name of the grid field
the object belongs to.

To insert a field in a complex grid from amethod you use the notation

440



Do MyGrid.$objs.$add(section,column,type,top,left,height,width) Returns NewFieldRef

The “mingridpos” item in the “complexgrid” section of the config.json file specifies how close grid lines in a complex grid can be
to one another. Zero allows them to overlay each other, giving the appearance of hidden columns. A positive value allows them
to be further apart. A negative value is treated as zero.

Resizing Rows

The end user can change the height of the rows in a complex grid by dragging the row dividers. By default, dragging a row
divider without pressing the Shift key resizes the single row above the row divider. To make all rows have the new row height,
press the Shift key while dragging a row divider. This is the default behavior when the “shiftRequiredToResizeAllRows” item in
the “complexgrid” section of config.json is set to true. If the item is set to false, the behavior is reversed; press the Shift key while
dragging a row divider in order to resize the single row above the row divider. Dragging a row divider without pressing the Shift
key gives all rows the new row height.

The $getrowheight([irow]) method returns the height of the specified row. If iRow is not specified, the height of the current row
is returned.

Events for Complex Grids

Each contained field receives its normal event messages such as evClick, evBefore, evAfter, and the field event handler can pass
these events to the $control() method contained in the complex grid.

Complex grids receive the events evRowChanged and evExtend which you can handle in the $event() method for the grid field.
The evRowChanged event is sent whenever the user clicks in a different row andwhen thewindow is opened. The evExtend event
is sentwhenever a row is added to a gridwith the $extendableproperty set. These events return thepRow event parameterwhich
holds a reference to the row changed or the new row. Thus pRow.$line gives you the row number and pRow.ListColName returns
the value of the cell. Note the events evCellChanging and evCellChanged are available for string and data grids only, not complex
grids. The event evClipChangedData is sent to the field when the clipboard has changed the data in the grid.

The evColumnDividerMoved event is sent to a Complex Grid when a column divider has been dragged. The event has two param-
eters: pDivider, the divider column number (same ID as in $dividers), and pDividerMoveBy, the number of pixels the divider was
moved by; note this can be negative. You can discard the event to stop the grid divider being moved.

Grid Field Exceptions

Generally, theproperties of a complexgrid apply to thewhole grid or to a single rowor column. However, you can set theproperties
of a single cell in the window instance by setting an exception for the grid cell. To do this you use the notation

Do MyGrid.$objs.fieldname.row.property.$assign(value)

For example, if you wanted to show cells in Grid1 column cBal in red if the value is negative, you could use the following code
which runs when the user tabs out of the cell

On evAfter
Calculate row as pRow.$line
If cList.[row].cBal < 0

Do $cinst.$objs.Grid.$objs.fBal.[row].$backcolor.$assign(kRed)
Redraw {Grid}

You could use this event handler for the cBal field in the grid, but the interior fields could pass the events up to the $control()
method in the complex grid field.

On evAfter
Calculate row as pRow.$line
If $cobj.$name = 'fBal' & cList.[row].cBal < 0

Do $cobj.[row].$backcolor.$assign(kRed)
Redraw {Grid}

You can clear exceptions using the $clearexceptions() method which acts on a cell, row, column or the whole grid, as follows

441



# clear all exceptions
Do $cinst.$objs.GridName.$clearexceptions()
# clear exceptions for a row
Do $cinst.$objs.GridName.$clearexceptions(RowNum)
# clear exceptions for a column
Do $cinst.$objs.GridName.$objs.FieldName.$clearexceptions()
# clear exceptions for a cell
Do $cinst.$objs.GridName.$objs.FieldName.RowNum.$clearexceptions()

You can attempt to set an exception for any property, although in practice this may not be satisfactory for some properties. Ap-
pearance properties, and button text for example should however all work as expected. For example, exceptions can be imposed
for $width and $height for grid objects referenced via $obj and $bobj, however in this case, support for objects in $obj is limited
to non-enterable tables only.

Sliding Columns

Complex grids can have Left or Right sliding columns. The $hasslideoutcolumn property controls the sliding columns on the
complex grid, taking one of the following constants: kTableColumnsNormal, kTableColumnsLeftSlide, kTableColumnsRightSlide,
or kTableColumnsLeftRightSlide.

The method $slideoutcolumn(kTableSlideDirection…, iRow=-1, kTableColumn…) sets iRow: if iRow=-1 the current row is hid-
den/shown/toggled, while kTableColumn… controls if the row’s left or right column slides out. The kTableSlideDirection…
constants are: kTableSlideDirectionToggle, kTableSlideDirectionHide, or kTableSlideDirectionShow.

Complex grids support mouseover(kMHorzCell) returning the column clicked allowing you to detect clicks in slide out columns.

There is an example app todemonstrate SlidingColumns in complex grids in the Samples section of theHub in the StudioBrowser,
and on the Omnis GitHub repo at: https://github.com/OmnisStudio. Search for Omnis-ComplexGridSlide.

Data Grid

Group Icon Name (type) Description

Lists Data Grid Grid to display text and numerical data

The Data Grid component allows you to display text and numerical data and is very similar to the String grid: see String grid.

Droplist

Group Icon Name (type) Description

Lists Droplist Single column dropdown list

A Droplist (or Dropdown list) can contain a single column of data only. Most types of list can contain a single column, but some
types such as list boxes, dropdown lists, combo boxes, or check box lists are best suited for displaying short single columns of data
or are restricted to single column lists. The data inside a short list can come from your database loaded into a list variable, or you
can include a number of lines that always appear in the list by default.

To create a Droplist list with default lines, add a Droplist control to your window and specify a list of values in the $defaultlines
property. When you click on the droplist the default lines will appear. You can add default lines for dropdown, combo box, and
tree list fields. Alternatively, you can assign a list variable to the $dataname property of the list field.

Droplists report the evClick event which you can detect in the $event() method for the control. This event returns the parameter
pLineNumber containing the line number of the list row clicked.

The following example method is from a banking example; a droplist lets you select the account on the Transaction pane. The
method behind the droplist loads the Account Id according to the selected line, assigns the stored values to the variables in the
window instance, and redraws the fields on the client.

442

https://github.com/OmnisStudio


# $event() method for droplist
# iAccountList2 is the inst var for the droplist
On evClick
Single file find on fAccounts.id (Exact match) {iAccountList2.[pLineNumber].2}
Calculate iAccountName as fAccounts.type
Calculate iTransactions as fAccounts.transactions
Calculate iFinalBalance as fAccounts.balance
Do $cinst.$senddata(iTransactions,iAccountName,iFinalBalance)
Do $cinst.$objs.transaction.$redraw()
Do $cinst.$objs.accounts.$redraw()
Do $cinst.$objs.view_accname.$redraw()
Do $cinst.$objs.final_balance.$redraw()

Background Theme

MacOS

The $backgroundtheme property controls how dropdown lists look and behave on macOS, as follows:

• If the theme is kBGThemeControl, and provided the list has <= 1000 lines, the dropdown list looks and behaves as a popup
menu (the standard type of dropdown list on macOS).

• If the theme is kBGThemeWindow, the dropdown list behaves like a normal dropdown list, and has a standard themed
macOS appearance. In the case where the list has 1001 lines or more, and theme kBGThemeControl, the look and behavior
becomes that of kBGThemeWindow.

Windows

The color and fill pattern of aDroplist onWindows respects the $backgroundthemeproperty and only defaults toWindows system
colors when the theme is set to kBGThemeControl. For other background themes it uses the appropriate colors and fill pattern,
and for kBGThemeNone, it uses the foreground and background colors and fill pattern.

FishEye Control

Group Icon Name (type) Description

Navigation FishEye Control (Xcomp) Displays a row or column of clickable
icons

The FishEye control presents a row or column of icons to allow the end user to select an option by moving the mouse over the
control and clicking on an icon. When the end user’s mousemoves over the control, individual icons are enlarged and a text label
is displayed for each icon.

Populating the FishEye

The contents for the FishEye control is provided by a list variable specified in its $dataname property. The list should have at least
two columns, one for the ID of the icons to be displayed in the control, the other column for the text labels for the icons. You can set
the $iconcolumn and $textcolumn properties to specify which columns are used for the icons and text, respectively. $iconcolumn
is set to column 1 by default, so your text labels could be in column 2.

The icons can be added to the #ICONS system table in your library. To achieve the bestmagnification effect in the FishEye control,
you should include the 48x48 version of each of the icons you wish to use.

The following method defines the list for a FishEye control and adds some lines; you would normally add multiple lines, which
could be static data or loaded from a database.

# define iFishList (List), iFishIcon (Long int), iFishText (Char)
Do iFishList.$define(iFishIcon,iFishText)
Do iFishList.$add(1704+k48x48,"Window")
Do iFishList.$add(1719+k48x48,"Form")
Do iFishList.$add(1712+k48x48,"Object")
# and so on to build the list of options

443



Position and Expand direction

The $position property determines how the icons and text in the control expand when the mouse hovers over the control, and
together with the $edgefloat property you can position the FishEye and set the direction in which it expands. $position can be
set to one of the kFisheyePos… constants, and $edgefloat can be set to a kEFposn… constant. For example, with $position set to
kFisheyePosBottom, and $edgefloat set to kEFposnLeftBottom, the FishEye control is positioned at the bottomof thewindowand
the icons and text will expand upwards (as shown). You should experiment with the different $position and $edgefloat settings
to achieve the effect and positioning you want.

Magnification and Stepping

The $magnification property specifies the factor by which the FishEye control increases the size of the icon under the mouse; it
should be set to a real number between 1.0 and 16.0. The greater the number, the greater the magnification.

The number of icons that expand to the left and to the right of the icon under the mouse is specified by $steps; it should be an
integer between 0 and 16. Therefore a low number, such as 0 or 1, will appear to make individual icons “popup” and you pass the
mouse over the control, whereas a larger number will display amore gradual stepping effect. Again, you need to experiment with
the $magnification and $steps properties.

The $magnifyall property controls whether or not all the icons are expanded; it is set to kFalse by default which produces its
characteristic gradual stepping effect as the mouse moves over the control. If true, the items are only displayed when the mouse
is over the control, and they all have a fixed square size ($magnification*$height for horizontal positions or $magnification*$width
for vertical positions) and $steps is ignored.

Text Labels

You can specify the color of the text in $textforecolor. You can set the color and pattern for the background of the labels in
$textbackcolor and $textpattern. In addition, you can specify the transparency of the label background by setting the $textalpha
property; this is a numeric value in the range 0-255, where 0 is completely transparent and 255 is opaque.

FishEye Events

Clicking on an icon in the FishEye control generates an evClick event with pLineNumber set to the line number of the clicked
entry. You could return the value of the label or some other value in another column in the list based on the line selected.

Graph2 Control

Group Icon Name (type) Description

Graphs Graph2 Graph component with multiple chart
types

The Graph2 component is described in detail in Omnis Graphs chapter in the Extending Omnismanual.

Group Box and Scroll box

Group Icon Name (type) Description

Containers Group Box Groups other fields on your window

A Group box and Scroll box let you group other fields on your window. You can create a Group box or Scroll box from the Com-
ponent Store and drag other fields within their borders; so they do not contain or display data themselves, but they can contain
other data fields and controls.

444

/developers/resources/onlinedocs/ExtendingOmnis/08Graph2.html#chapter-8omnis-graphs


You can edit the label for a Group box in its $text property. Group and Scroll boxes can contain methods including a $event()
method to detect events. Group and Scroll boxes are container fields so you can access the fields inside the box in your code
using notation: see Container Fields.

You can apply a background or border color, or add a gradient pattern to scroll box fields. If you want to make entry fields within
the scroll box appear to be transparent, you can apply a gradient to the scroll box, place the fields within the scroll box and set
their background theme to parent.

A Group box or Scroll box can act as a side panel: see Side Panels under Page pane.

Headed List Box

Group Icon Name (type) Description

Lists Headed List Box List with button style headers

A Headed List Box displays data from a list variable in a table format. You can add button style headers to each column of the
list which the user can click on to sort the data. You can also make the columns sizeable, and set other properties that control its
appearance. A headed list can have a non-scrollable footer row, which could contain column totals, for example.

In addition to the general list box properties, such as $multipleselect, the headed list has the following properties

• $dataname
the name of the list variable

• $calculation
the calculation to format the columns for the list; you can use the con() function to concatenatemultiple columns separated
by the kTab character

• $maxeditchars
the maximum size of the edit field for editing a column, or 0 if columns cannot be edited

• $enableheader
if true the column headings act like buttons

• $canresizeheader
if true the columns can be sized at runtime

• $boldheader
if true the headings are bold

• $showcolumnlines
if true the list draws lines between the columns at runtime

• $designcols
the number of columns, maximum of 30 columns; you must set this property to the required number of columns before
being able to set the $calculation and $columnnames with the appropriate column

• $columnnames
a comma-separated list of heading text for the columns; you can set the column names in the dialog that opens when you
click the property dropdown

• $align
allows you to determine column alignment

• $columnalignmode
provides runtime alignment control

• $headerfillcolor
the color of the header; defaults to kColor3DFace

• $headertextcolor
the color of the text in the header; defaults to kColorDefault, that is, the text color of the list

• $colcount
a runtime only property, which is the number of columns in the headed list

445



• $columnwidths
a runtime only property, allowing the column width to be set in a quoted comma-separated list of pixels values

• $showheaderlines
If true (the default), header separator lines are drawn in the header

• $hidefooter
If true, the footer row is hidden; set this to false to show the footer and set the contents using the $footer runtime property

The property $headerfontsize specifies the font size for the text in the header; if this is zero, the header text font size is the same
as $fontsize. This means that Omnis can use a small font size for the header, like the Mac Finder.

You can use the style() function to style the text in the header button for each column specified in $columnnames. Note the styled
text in $columnnames has to be assigned in $columnnames at runtime.

Entering the Calculation

The $calculation property for headed lists can be edited via a droplist button, which opens a dialog containing two tabs. The first
tab has a grid allowing you to enter the variable name or calculation for each column. The second tab allows you to enter the long
form of the calculation in the form con(var1,sep,var2,sep,…),where sep is either kTab or chr(9). You can use the Notation Helper or
Catalog to enter variable names into this dialog.

Setting ColumnWidths

You can set the column widths for Headed lists (and string and data grids) using the runtime only property $columnwidths. This
property returns a comma separated list of columnwidths in pixels. When you use the $assign()method to assign to this property,
you must put the comma separated list in quotes. For example

# Item reference HeadedListRef set to headed list instance
Do HeadedListRef.$columnwidths returns HeadedCols
# returns something like ‘30,40,55’
Do HeadedListRef.$columnwidths.$assign('20,30,40')
# assigns the column widths to the headed list instance

In order to display a 16x16 icon in the header in a Headed List, you need to set a minimum column width of 21 pixels, to allow for
the width of the icon and the padding Omnis adds to a column.

The $resizecolumn property specifies the column that is resized appropriately when the width of the control changes, such as
when using $edgefloat properties to resize the list when the window size changes. A value of zero means no column is resized,
but the last column extends if necessary.

The $autosizecolumn(iColumn)method can be used to resize the specified column in the headed list, based on the maximum
width of the data in the column.

Text Alignment

The $align text property lets you set the alignment of all the columns in the list. At runtime, you can override the alignment for
individual columns using the method

• $setcolumnalign()
$setcolumnalign(columnNumber, alignment) sets the alignment to kLeftJst, kRightJst, or kCenterJst, and returns kTrue for
success

and you can return the current alignment for a column using

• $getcolumnalign()
$getcolumnalign(columnNumber) returns the alignment of the specified column

Note that headed list boxes do not support the style() function with type parameters kEscLTab, kEscCTab and kEscRTab.

The property $columnalignmode provides additional runtime control over $setcolumnalign(), and can have the following values:
kAlignModeHeading, kAlignModeBody, kAlignModeAll and kAlignModeNone. These determinewhether the heading, body, both
or neither are affected by calls to $setcolumnalign(). Note that the call to $setcolumnalign() always stores the new alignment

446



value in the list; $columnalignmode determines if the stored value is used. When the stored value is not used, $align determines
the alignment.

When you create a headed list, you must set the $dataname property to the name of a list variable, and if necessary, enter the
formatting expression in $calculation. You setup the column header text in the $columnnames property. You can specify the
number of columns in the design object in $designcols. You can set the column widths by dragging columns with your mouse;
shift-drag resizes the column to the right of themouse pointer so you can use this for the last column. You can set $maxeditchars
if the columns are to be editable.

You do not need a $calculation if the columns in the headed list are an exact mapping of the columns in the data list. If not, use
the $calculation to format the columns in the headed list box. Theymust contain columnnames from your list and special column
delimiters. You can use the con() function to format the calculation, and insert column delimiters using chr(9), the tab character.
For example, to format three columns the calculation could be

con(Col1,chr(9),Col2,chr(9),Col3)

You can also use the style() function to change the style and color of specific columns. For example, to give Col1 a blue spot icon,
make Col2 red and right-justified, and Col3 italic you would enter the following calculation

con(style(kEscBmp,1756),Col1,chr(9), style(kEscColor,kRed),Col2,chr(9), style(kEscStyle,kItalic),Col3)

Sorting Columns

The method $setsortcolumn(iColumnNumber,bDescending) specifies the current sort column and direction. This controls the
drawing of the sort arrow in the heading.

Progress Bar

You can display a Progress Bar in a column inside a Headed List box control, for example, to indicate a percentage value. To enable
a progress bar to be displayed, you can use the style() function and the kEscBar text style. When enabled, a progress bar with 1 or
2 segments is drawn across the whole column width, so no other content is allowed in the column.

kEscBar can take 3 or 5 parameters: the background color, segment 1 width (%), segment 1 color, then optionally segment 2 width
(%), and segment 2 color.

For example, you can use the following in the calculation for a headed list column to draw a red segment of width iPercent % of
the column width over a gray bar sized to the column width:

style(kEscBar,kGray,iPercent,kRed)

In this example, iPercent is a column value in the data list for the headed list.

Displaying Ellipses

Ellipses are shown when there is not enough space to display all the content in a headed list cell (also in the text for a tree list
node); this applies for headed lists with more than one column. The $disableellipsis property allows you to disable ellipses for
individual list fields, if required. This is in addition to the existing $clib.$prefs.$disableellipsis library preference which allows you
to disable ellipses for all Headed Lists (and Tree Lists).

Tooltips

The length of text in tooltips for Headed list boxes is unlimited (note in versions prior to Studio 11, the length was limited to 255
characters). Although there is no limit imposed on the tooltip length, in practice the absolutemaximumwould be 32000, and the
longest reasonable size to use would be around 2k.

Headed List events

The $event() method for a Headed List receives specific event messages. In addition to the general entry field events evClick,
evDoubleClick, evAfter, evBefore, and the drag and drop events, there are specific events to report clicks on the column headers
and when the list data is edited.

447



Column Headers

When the header is enabled by setting $enableheader, user clicks on the header buttons generate the evHeaderClick event
with the column number held in pColumnNumber. evHeadedListHeadResize is generated immediately after a column has been
resized.

Editing the List

When text editing is enabled by $maxeditchars, a headed list box receives three events in a specific order, together with parame-
ters containing the list line, column number and new text entered.

• evHeadedListEditStarting
with parameters pLineNumber, pColumnNumber, is sent on the first click in the selected cell which puts the cell into edit
mode; discarding the event prevents editing

• evHeadedListEditFinishing
with parameters pLineNumber, pColumnNumber, pNewText, is sent if the user enters a new value by hitting return or
clicking away from the edit field; discarding the event leaves the field in edit mode, for example if pNewText is invalid. Note
that youmust store the new valid text in the list at this point: Omnis cannot do this since the data is a calculated expression

• evHeadedListEditFinished
with parameters pLineNumber, pColumnNumber, is sent when the edit is completed

You could use the following event handlers for these events

# $event() method for the headed list box
On evHeadedListEditStarting
If pColumnNumber=2 ## bar editing in this column

OK message (Icon,Sound bell ) {Cannot edit this column}
Quit event handler (Discard event)

End If
On evHeadedListEditFinishing
If pNewText=''

Quit event handler (Discard event)
Else

Calculate cList.pLineNumber.pColumnNumber as pNewText
End If

On evHeadedListEditFinished
# do anything necessary here

Display Order Events

There is an event, evHeadedListDisplayOrderChanged, with an event parameter pDisplayOrder (containing the $displayorder, see
below), which the headed list box receives when the display order has been changed using drag and drop.

Even after changing $displayorder, column numbers in all properties and events related to the headed list box are the original
column number specified in the library in designmode. This means that changing $displayorder does not require changes to the
methods that manipulate the headed list box.

Mouse Events

You candetectwhich column themouse is over in a headed list. The functionmouseover(kMHorzCell) returns the columnnumber
of the headed list if the mouse is over the headed list.

Editable text

You can allow the user to edit the text in a headed list box field. The $edittext(column number) method puts the field into text
edit mode if there is a currently selected line, and the field is the current field. Editing is enabled by $maxeditchars.

448



Dynamic Column Headers

End users can reorder the columns in headed lists by clicking and dragging the column headers, as appropriate.

The headed list field has a runtime property called $displayorder which is a comma-separated list of column numbers, indicating
the order in which columns are displayed by the headed list. Initially, $displayorder is set to 1,2,…, up to and including the value of
$colcount, that is, the number of columns in the list. This is reset to the initial value whenever you change the number of columns.
You can set this property using the notation, to reorder the columns.

In addition, headed lists have a property called $candragdisplayorder. If true, and $enableheader is also true, the user can drag
and drop a column in the header to reorder the columns in the headed list.

When the user changes the order of the column headers, the column order stored in $displayorder is changed accordingly. If you
allow the user to drag and drop in the column heading, you can then use $displayorder to save and restore the order the user has
selected.

Footer Row

A headed list can have a footer row, which could contain column totals, for example, or any other data or text. Set the $hidefooter
property to false to show a footer row at the bottom of the headed list (true/hidden by default); this is displayed in a fixed, non-
scrollable bar under the scrollable part of the headed list.

The footer bar content is controlled using the $footer runtime property, which can be assigned a row variable. For example:

# iList (List), iCol1 (Int), iCol2 (Char), iRow (Row)
Do iList.$define(iCol1,iCol2)
Do iList.$add(1,2)
Do iList.$add(2,4)
Do iRow.$define(iCol1,iCol2)
Do iRow.$assigncols(iList.$totc(iCol1),iList.$totc(iCol2))
Do $cinst.$objs.List.$footer.$assign(iRow)

HelpMethods

The HelpMethods library contains various functions to implement a built-in Help system for your desktop applications.

Hyperlink Control

Group Icon Name (type) Description

Navigation Hyperlink Control (Xcomp) List of hyperlink options

TheHyperlink control (or hyplinks) allows you to present a list of options to the end user, where each option in the list is aweb-style
hyperlink. The control is used in the Studio Browser, but you can use it in your own applications.

The options presented in the hyperlink control list are based on the contents of a list variable, which must be defined with three
columns in the following format:

Col1 Col2 Col3

Group (Number) Command (Number) Name (Character)

The following method will construct a list for displaying in the hyperlink control.

Do hyperlist.$define(group,cmd,nam)
Do hyperlist.$add(1,1,"first entry - group 1")
Do hyperlist.$add(1,2,"second entry - group 1")
Do hyperlist.$add(1,3,"third entry - group 1")

449



Do hyperlist.$add(0,0,"")
Do hyperlist.$add(2,1,"first entry - group 2")
Do hyperlist.$add(2,2,"second entry - group 2")
Do hyperlist.$add(2,3,"third entry - group 2")

When the hyperlink control is clicked, the evLinkClicked event is generated with the pLinkgroup and pLinkid parameters. When
the mouse enters or leaves the control the evMousePos event is generated with the pEntered parameter. The $event() method
for the control can contain a method to respond to the selected link, for example:

On evLinkClicked
Switch pLinkgroup

Case 1 ## group 1
Switch pLinkid
Case 1
# Do something...

Case 2
Case 3

End Switch
Case 2 ## group 2
Switch pLinkid
Case 1
# Do something else...

Case 2
Case 3

End Switch
End Switch

The hyperlink control has the following properties.

• $topmargin and $leftmargin
Number of pixels from top or left of control before links are shown

• $showarrows
If true the scroll arrows are shown if the list of options/links extends beyond the border of the control

• $iconid
iconid of image that can be used as a background skin for the control; if $scale is kTrue the icon is scaled to fit the control

• $hilitecolor
Color of the text for the link under the mouse

• $extraspace
Extra number of pixels used to separate links in the list

• $canceltimer
(Runtime only) Releases mouse capture if the control is tracking the mouse. Sometimes needed on evLinkClicked, e.g. Do
$cobj.$canceltimer.$assign(kTrue)

• $vertical
if kTrue the links are shown in a vertical format (the default); when kFalse, the control displays a horizontal scrolling list of
options

Separator Line

You can add a separator line in the list of options in the Hyperlink control; this only applies when $vertical is kTrue. To include a
separator line, set the text in the $dataname list to a single - (hyphen) character; the line draws across the width of the control,
inset by the left margin. The group id (in column 1) contains the color of the line; kColorDefault means use the IDE line color (as
defined in appearance.json). For example:

Do ihlkSubList.$add(kColorDefault,0,-)

450



Icon Array

Group Icon Name (type) Description

Lists Icon Array Displays list of items as clickable icons

The Icon Array allows you to display a list of items whereby each item is identified by a single icon. These choices are displayed as
large or small icons which the user can click on or drag to select a number of items. Each icon also has a short text description
which the user can edit, and you can add a button background. The data for an icon array is supplied from a list variable which
contains the icon id and text label for each icon. The Studio Browser uses an icon array to display its large icon view.

There is a Standard field called ‘Icon Array’ as well as an External component (in the Deprecated group: see Deprecated Com-
ponents). They behave in a similar way and have many properties in common. The standard built-in component is described
here.

In addition to the general list field properties such as $multipleselect, the icon array has the following properties

• $dataname
the list variable with at least two columns

• $maxeditchars
the maximum size of the edit field, or 0 if the text cannot be edited

• $smallicons
true for 16x16 icons, false for 48x48

• $showtext
displays text labels

• $buttonbackground
if true shows the icons on buttons

• $smalltextwidth
the width in pixels of the text in small icon mode; must be at least 20

• $hiliteline
if true lines highlight in single selection lists during drag and drop

• $autoarrange
adjusts the number of icon columns when the field size changes

• $enabledeletekey
allows the Delete key to delete the currently selected icons

• $largetextwidth
the width in pixels of the text, when displaying large icons; to use the default width, set this property to zero

• $extraspacing
the extra spacing in pixels added to each icon

Programming Icon Arrays

You must set up a list variable containing the data for your icon array. You can write event handling methods to respond to user
clicks, and drag and drop in the field.

Setting up the List

Youmust define the list variable for an icon array with at least two columns, the first column for the icon id and the second column
for the text label. You can use icons from the OmnisPIC.df1 or USERPIC.df1 data files, or #ICONS in your library. You can see the
id numbers in the Icon Editor, which you can also use to add your own icons to USERPIC.df1 or #ICONS. You can define and build
the list in the window $construct() method.

# declare variables IconId (Number 0dp), IconName (Character), and IconLIst (List)
Do IconList.$define{IconId,IconName}
Do IconList.$add(605,'Trash can')
Do IconList.$add(603,'Back arrow')
Do IconList.$add(601,'Pin')
# etc...

451



As a further refinement, you can set the $smallicons property to true and adjust the $smalltextwidth property to limit the length
on the node text.

Editing in the Array

In addition to the general entry field events evClick, evDoubleClick, evAfter, evBefore, as well as the drag and drop events, there
are specific events for editing an icon array list and for deleting selected lines if the delete key is enabled.

When text editing is enabled by $maxeditchars, the field receives three events in order, together with parameters holding the list
line and the new text entered.

• evIconEditStarting
with the parameter pLineNumber, is sent on the first click in the selected cell which puts the cell into edit mode; discarding
the event prevents editing

• evIconEditFinishing
with parameters pLineNumber and pNewText, is sent if the user enters a new value by hitting return or clicking away from
the edit field; discarding the event leaves the field in edit mode, for example if pNewText is invalid

• evIconEditFinished
with the parameter pLineNumber, is sent when the edit is completed

Handlers for these events might be as follows

On evIconEditStarting
If pLineNumber<10

OK message (Icon,Sound bell ) {Cannot edit these lines}
Quit event handler (Discard event)

End If
On evIconEditFinishing
If pNewText=''

Quit event handler (Discard event)
End If

On evIconEditFinished
# do anything necessary here

If the Delete key is enabled, two events are sent to the field:

• evIconDeleteStarting
is sent to the field and Delete is pressed. Discarding the event prevents the delete occurring.

• evIconDeleteFinished
is sent if the delete goes ahead, after all selected lines in the list have been deleted.

Editing the text in an Array

Icon arrays have the following method to allow end users to edit the contents of the field:

• $edittext()
puts the field into text edit mode; if there is a currently selected line, the field is the current field, editing is enabled by
$maxeditchars and $showtext are true

JPEG Control

Group Icon Name (type) Description

Media JPEG Control (Xcomp) Displays JPEG images

The JPEG control lets you store and display JPEG graphics data. The image data is held in an instance variable (or row variable
column) of Picture type specified in the $dataname property. The JPEG component reports no special events.

452



For example, you could use a simple window to display JPEG files chosen from a list. When the window is instantiated, a list of
images is built and shown in a heading list. The window contains three instance variables: iImageList (List), iImageName (Char),
and iImage (Picture). The window actually contains a large jpeg component and a small one to show a thumbnail image, but
both fields are assigned the variable iImage.

# $construct() method of the window
Set main file {fImages}
Do iImageList.$define(fImages.Name)
Set current list iImageList
Build list from file
Do iImageList.$redefine(iImageName)

The $construct() method in the window builds the list of images, but the $event() method behind the heading list loads the
selected image. The method loads the image from the Omnis database and assigns it to the instance variable; the large image
and the thumbnail are then redrawn.

# $event() method for the heading list
On evClick
Set main file {fImages}
Do iImageList.$loadcols()
Single file find on fImages.Name (Exact match) {iImageName}
If flag true

Calculate iImage as fImages.Image
Do $cinst.$objs.thumb.$redraw()
Do $cinst.$objs.bigimage.$redraw()

End If

The $noscale property specifies whether or not the image is scaled; when set to kTrue, the true height, width, and proportions of
the image aremaintained, whenkFalse, the image is scaled to fit the size and shapeof the component itself. The JPEGcomponent
has one or two additional properties under the Custom tab in the Property Manager; some of these you can set in design mode,
while others are runtime properties. When set to kTrue, $palette specifies that the image uses the color palette stored with the
image. $imageheight and$imagewidth contain theheight andwidth of the current imagedata. $fast specifies that faster though
less accurate processing of the image occurs. $nosmooth disables smoothing of the image; when set to kFalse, smoothing occurs
which smooths hard edges in the image and decreases the file size. When set to kTrue, the $allowclipboard property lets the user
paste an image into the field from the clipboard on the client.

The $writejpeg(cFilename) method writes a JPEG file to the database from the current image data with the filename and path
specified in cFilename.

Labeled Fields

Group Icon Name (type) Description

Labeled Fields Labeled Fields Fields and label combined into one object

The Labeled Entry Field and LabeledMasked Entry Field are compound fields combining the respective standard entry field type
with a Label object, suitable for creating an entry form containing multiple fields: see Single Line Entry Field and Masked Entry
Field for details about these field types.

List Box

Group Icon Name (type) Description

Lists List Box Displays list variable contents

The List box control lets you display a single column list of data or more complex tabular data in a list format. Omnis lists can
display up to 400 columns and an unlimited number of rows. For short, single-column lists you can use the $defaultlines property,

453



otherwise the data for a list field would be constructed in a list variable. The List Programming chapter describes in detail how
you can build data using Omnis list variables and methods.

When you create a list box, youmust enter the name of your list variable in the $dataname property of the list box field. Youmust
also enter a string calculation into the $calculation property to format the data into columns. The calculation should be in the
format:

jst(column1,width,column2,width,...)

The $calculation for a list box field specifies the column(s) to appear in the field and the width of each column as the number
characters, using the jst() function. You can include any number of columns from your list variable in your list field, and in any
order.

The jst() function

The calculation for your list field can use the jst() function to set the column names and their widths. For example, you could enter

jst(NAME,10,SALES,5)

This calculation puts the NAME variable in a column 10 characters wide and the SALES variable in a column 5 characters wide.

You can include the X modifier to truncate the data in a particular column. For example

jst(COMPANY, '20X', NAME, '22X')

This calculation puts the COMPANY variable in the first column and truncates any data that is longer than 20 characters. It then
puts the NAME variable in the second column and truncates any data that is longer than 22 characters.

You can right justify a column, perhaps one containing numbers. For example

jst(NAME, ‘20X’, TEL, -18)

This expression left justifies the NAME variable in the first column which is 20 characters wide, and right justifies the value of the
TEL variable in a column 18 characters wide.

Note that for single-column lists you need only include a single field or variable name in the $calculation property, that is, you
don’t need to use the jst() function. If you omit the calculation altogether, no data will appear in your field.

You may need to adjust the column widths or the text properties. For example, you should use a non-proportional font such as
Courier if you are using two or more columns in a list box. This ensures the columns line up across the list.

When you select a line in a list box, this normally deselects all other lines, but with the $multipleselect property set, you can select
any number of lines. Dragging or shift-clicking selects contiguous lines, while Ctrl/Cmnd-clicking selects non-contiguous lines.
You can deselect individual lines with Ctrl/Cmnd-click or all lines by clicking in the white space at the end of the list.

If you open your window and the list or grid field is empty, this probably means that either the list variable behind the field is
empty, or you have not entered the $dataname or $calculation property correctly.

Queue Click

The pLineNumber event parameter is set for evClick and evDoubleClick events when generated viaQueue click orQueue double
click to a list or list sub-class.

Searching Lists

In versions of Omnis prior to Omnis Studio 5, you were able to tab into or click on a list, such as a list box or headed list field, and
search the first column of the list by typing a few characters. The focus in the list would jump to the line containing the characters
you typed. In this case, Omnis stored the characters you typed into a search buffer, regardless of the delay between each character
you typed, and tried to find a match in the list. You could continue to type extra characters and Omnis would add these to the
search buffer. In addition, you could use the + and – keys to find the next and previous matches in the list, and you could use * to
represent wildcards in your search.

The old list searching behavior is enabled only when $oldlistsearching is set to kTrue (the property is an Omnis root preference).
By default, $oldlistsearching is set to kFalse meaning that the old list searching behavior no longer works in the various list fields,
including list boxes and headed list fields. You can still search in a list field by typing a few characters, but if there is a delay in your
typing the search buffer is reset and you are able to type another string to search the list again. The +, - and * keys (plus, minus,
and asterisk) are treated as normal search characters, rather than having a special function.

454

06listprog.html#chapter-6list-programming


List Line Colors

The “alternatelinecolorplatforms” color setting in the appearance.json file allows you to enable alternating colors for list lines. This
option is an integer that indicates the platforms on which the odd and even list row colors are used for relevant lists with back-
ground theme kBGThemeControl. The values are: 0 for no platforms, 1 for macOS (the default), 2 for Windows, 3 for macOS and
Windows.

Selected List Line Colors

The $selectiontextcolor and $selectionbackcolor properties specify the color of the text and background of the selected list lines;
these properties apply to standard List boxes, as well as Icon arrays, Headed lists, Checkbox lists, Complex grids, and Tree lists.

The $selectionbackcolor property is the back color of selected lines; kColorDefault means use the default color. When not kCol-
orDefault the specified color only applies when the control has the focus. The $selectiontextcolor property is the text color of
selected lines; kColorDefault means use the default color. When not kColorDefault applies irrespective of whether the control has
the focus.

Line Background Colors

The $linebackgroundcol property specifies the column number in the data list for the control ($dataname) that contains color
values that override the default background color of each line; the value zero or kColorDefault in this column means the normal
background color for the line is used. (This property is also available Headed Lists and Check box lists.)

Background theme on macOS

Lists with a background theme of kBGThemeControl draw their line background using alternating colors, like the Mac Finder.
Lists also display selected lines in the same way as the Mac Finder.

List Row Buttons

You can add a set of buttons to the left and/or right side of a row in a standard List or Headed List control. The buttons would
typically act on the data in the row, such as opening another window to edit the row data, or deleting the row. There is an example
app called Row Buttons in the Samples section of the Hub in the Studio Browser.

The row buttons slide out as the mouse enters the left or right side of the current row in the list, or as the Shift+Control+Left or
Right arrow keys are pressed when a line in the list is selected. Selecting a button closes the whole row of buttons, and the name
of the selected button is sent to the event method for the list. Row buttons work best with a larger row height (font size for the
list), or when $linehtextra is set, which allows you to add extra pixels to the height of each line in a List box (or Headed list).

Figure 145:

455



Adding Row Buttons

List controls (and Headed lists) have the $rowbuttons property which stores the definition for the left and right buttons in the list
row. When you select the property in the Property Manager in design mode a dialog opens allowing you to specify the buttons
for the row. The button definition stored in $rowbuttons will be applied to every row in the list.

Figure 146:

In the edit dialog, you can add a left or right button using the left or right + icons. Clicking on a button makes it current (shown
underlined) allowing you to change its attributes. You can move a button in the row order using the left and right arrow buttons.

The image icon allows you to add an icon, which is an SVG image from an icon set (PNG is not supported); the name of the icon
becomes the name of the button, which is shown in the top-left of the dialog, and used in the notation to reference the button.
The pencil icon allows you to set the background color of the button. The check icon allows you to disable the button. You can
also add a tooltip for a button.

You can delete a button by selecting it and clicking the trash icon.

Setting Row Buttons

The $setrowbuttonsmethod allows you to specify the left or right buttons for a list row at runtime, giving you more control over
the buttons for individual list rows; for example, you can call this on the evClick event for the list.

The definition for $setrowbutton is as follows:

• $setrowbutton( bLeftIcon,[ cIcnIDName, iTintColor, bDisabled, cTooltip] ) adds a row button.
bLeftIcon: kTrue for a left button, kFalse for a right button
cIcnIDName: the name of an SVG icon for the button
iTintColor: color of the button background
bDisabled: kTrue if the button is disabled
cTooltip: the tooltip for the button

You can clear the whole row of buttons by sending bLeftIcon as either kTrue or kFalse without any further parameters.

Do $cobj.$setrowbuttons(kTrue) ## clears the left buttons
Do $cobj.$setrowbuttons(kFalse) ## clears the right buttons

The following will add a button:

456



# adds a button only for row 2
If $cobj.$line=2
Do $cobj.$setrowbuttons(kTrue,"language",kDarkRed)

End If

Events

The evRowButtonClicked event is sent to the list control when a row button is selected, and pRowButton will contain the icon
name of the button clicked.

On evRowButtonClicked
If pRowButton="language"

# discards the event for a button with the icon 'language'
Quit event handler (Discard event)

End If
# process the button click

Marquee Control

Group Icon Name (type) Description

Other Marquee Control (Xcomp) Displays scrolling text

TheMarquee control lets you display continuously scrolling text areas in a window; you could use Marquee for news headlines or
stock prices, or anything that needs to grab the user’s attention.

You can enter the text for the marquee object in the $message property. You can use the style() function to embed icons and
colors in the scrolling text message.

You can set the text and background color using $textcolor and $backcolor, and set up the font using $font and $fontsize. You can
set the $speed of the scrolling message (the lower the value, the slower the scrolling) and you can set the $steps which controls
howmuch themessage jumpswhile scrolling. You can scroll themarquee in the opposite direction by specifying a negative value
for $steps.

Masked Entry Field

Group Icon Name (type) Description

Entry Fields Masked Entry Field Entry field with ‘mask’ to format data

The Masked Entry Field is the same as a Standard Entry field except that it has additional properties that control or ‘mask’ the
format of the data entered into the field.

Property Description

$formatstring data entry formatting string for the field
$formatmode type of formatting string for the field, either Character, Number, Date, Boolean
$inputmask input mask for the field

The $formatstringproperty stores a set of characters or symbols that formats thedata in amasked entry field for display, regardless
of how the data is stored. The $inputmask property contains a string that formats data as the user enters it into a field. When a
user enters data into a field controlled by an input mask, Omnis rejects any characters that do not conform to the format you’ve
specified in the mask.

To enter a format string for a masked entry field, you need to specify the type of data represented in the field by setting its $for-
matmode property: you can set this to Character, Number, Date, or Boolean. You can enter a format string manually or use one
from the dropdown list in the $formatstring property in the Property Manager; the default formats in this dropdown are stored in
a range of system tables: #TFORMS, #NFORMS, #DFORMS, #BFORMS. The symbols you can use in $formatstring are described
in the Format Strings and Input Masks section in theWindow Programming chapter.

457

/developers/resources/onlinedocs/Programming/12winprog.html#format-strings-and-input-masks


Modify Report Field

Group Icon Name (type) Description

Reports Modify Report Field Embeds a report class in a window

A Modify Report Field lets you display a report class on an open window. This allows end users to change certain aspects of
the report class at runtime, including the height of the Record section, the contents of headers and footers, the position and
color of graphics on the report, and so on. When you create a modify report field you specify the name of the report class in the
$classname property of the field. Any changes made to the report class in the Modify report field and saved in the class, and
similarly, any changes made directly to the report class in your library are visible in the Modify report field when it is next opened.

You can hide or show the outline of the paper and the rulers with $showpaper and $showrulers. You can hide or show the cur-
rent or all connections for associated report sections with $showcurconns and $showallconns, and you can set the width of the
connections shown in the left margin by setting $connswidth. You can show the report sections as narrow lines by enabling
the $shownarrowsections property. You can also change these properties at runtime. The $disablesystemfocus property let you
disable the system focus indicator in the field.

To make the modify report field fill the entire window you can set its $edgefloat property to kEFposnClient.

Along with the common $redraw() method for a field, an instance of a report modify field has the methods $sortfields() which
opens the Omnis Sort fields dialog for the report contained in the field, and $pagesetup() which opens the standard Page Setup
dialog.

A modify report field generates an evSelectionChanged event which you can detect in the $event() method for the window field.

Applying changes to selected objects

To change individual objects inside amodify report field at runtime you need to set its $applyselected property. When the $apply-
selected property is set to kTrue any property changes you direct at themodify report field, such as font and appearance changes,
apply to the currently selected object inside the modify report field. For example, a window could contain a modify report field
(its $classname property is set to contain a simple summary style report that lists data from a Customers file), a button, and an
instance variable that stores a reference to the modify report field.

The pushbutton contains the following $event() method. Note that the variable iModReportField stores a reference to themodify
report field on the open window.

On evClick
Do iModReport.$applyselected.$assign(kTrue)
Do iModReport.$textcolor.$assign(kRed)
Do iModReport.$applyselected.$assign(kFalse)

When you open such a window, select an object inside themodify report field, and click on the pushbutton, themethod changes
the text color of the currently selected object to red. Note that you have to set the $applyselected property to kFalse when you
have finished your changes.

Font and Color Tools

Rather than using pushbuttons to change aModify Report Field as above, you can create your own set of toolbars and install them
in your window containing the report field. The Component Store contains a number of toolbar controls and pickers for setting
fonts, lines, and colors that you can use with the modify report field. A further example will demonstrate using toolbars with the
modify report field.

You can create a toolbar class containing the appropriate font, line, and color pickers, add suitable icons from the icon data file
or #ICONS (or use the default ones), and add it to your window. Each toolbar control would contain a method that applies the
current settings from the control to the selected object in the modify report field. The following method is for a font list control
on the toolbar.

# method contains item reference var iModFieldRef set to

$iwindows.ModReportFieldWin.$objs.ModReportField
On evClick
Do iModFieldRef.$applyselected.$assign(kTrue)
Do iModFieldRef.$font.$assign($cinst.$objs.FontList.$contents)
Do iModFieldRef.$applyselected.$assign(kFalse)

458



Note that the toolbar class also contains an instance variable of type Item reference that stores a reference to the modify report
field on the open window, and that the method sets $applyselected. The methods behind the other tools on the toolbar are very
similar; here’s the method for a color picker:

# $event() method for forecolor picker control
On evClick
Do iModFieldRef.$applyselected.$assign(kTrue)
Do iModFieldRef.$forecolor.$assign($cobj.$contents)
Do iModFieldRef.$applyselected.$assign(kFalse)

Note that the current selection in a picker control is returned in its $contents property, therefore as the user makes a selection
you can use $cobj.$contents to return the value.

Graphics Tools

At runtime, a modify report field has the $tool property which you can set to allow users to place graphics or background objects
on your report; you cannot add fields and other foreground objects to a modify report field. You can create another toolbar that
uses the $tool property and add it to your window. The toolbar class can contain various button controls, with suitable icons from
the icon data file or #ICONS.

Each button in your toolbar class contains a single method that assigns to the $tool property and switches the cursor to the
appropriate tool. For example, a 3DRectangle button could contain the followingmethod; note that the toolbar class also contains
an instance variable of type Item reference that stores a reference to the modify report field on the open window.

# method contains item reference var iModFieldRef set to $iwindows.ModReportFieldWin.$objs.ModReportField
Do iModFieldRef.$tool.$assign(kRect3D)

When you open this window, select one of the tools, and move the cursor over the modify report field, the cursor changes to a
cross-hair. The user can draw objects on the modify report field which are saved to the underlying report class automatically.

To use the modify report field to its fullest potential you need to build a number of toolbars that allow the user to change every
aspect of the report class, including margins, page setup, sort fields, as well as the color and style of objects on the report. The
modify report field is used extensively in the Ad hoc report library supplied with Omnis.

Multibutton Control

Group Icon Name (type) Description

Buttons Multibutton Control (Xcomp) A round, animated popout button that
opens to show a number of additional
options

The Multibutton control provides a round, animated popout button that opens to show a number of additional options, each
represented by an icon. The button reports the evButtonClicked event with the pButtonid parameter being the selected button.
The following image shows the closed state (left) and open state of a multibutton, in this case opening to the right:

Figure 147:

The Multibutton Control is in the Buttons group in the Component Store (it is an External Component but is pre-loaded). The
Multibutton Control has the following properties (shown on the Custom tab in the Property Manager):

459



• $buttoncolor
The background color of the control

• $buttonopen
kTrue if the control is open

• $expanddirection
the direction the control expands, a constant: kMBexpandRight, kMBexpandLeft, or kMBexpandCenter

• $iconstr
comma separated list of icon ids that are displayedwhen the control is opened, the number of icons determines the number
of options; you can provide icons with a transparent background so the background color is seen; see below

• $openicon
the ID of the icon shown to ‘open’ the control; this is shown in the closed state and can be a different icon as those displayed
in the popped out list of buttons

• $closeicon
the ID of the icon shown to ‘close’ the control; this replaces the icon specified in $openicon

The multibuton reports the evButtonClicked so you can use this in the $event method for the control and test the value of pBut-
tonID which is the id of the selected button starting at 1 for the first button in the popped out list of buttons.

Specifying Icons

In general, you should use SVG images for button icons to achieve good scaling of icon images. The $iconstr property is a comma
separated list of icon ids that are displayed when the Multibutton control is opened, that also specifies the number of button
options in the control.

You can use PNG icons for theMultibutton control, andwhen using $iconstr the icon id for PNG icons can use the form <id>x<size>
where size is one of the available standard icon image sizes, that is, 16, 32, or 48. For example, 2033x48 can be used to specify the
bitmap icon with ID 2033 and its 48x48 version. If no size is specified, then the default icon size is used.

Multi Line Entry Field

Group Icon Name (type) Description

Entry Fields Multi Line Entry Field Entry field allowing multiple lines with
scroll bars

The Multi Line Entry Field is the same as a standard, Single Line Entry Field except that it has multiple lines and a scroll bar
allowing the end user to enter larger amounts of text. See the description for the Single Line Entry Field for details of entry field
properties.

Limiting Line count

The runtime-only property, $linecount, allows you to limit the number of lines of text/data that can be entered into a multi-line
field. For example, setting $linecount to 2 would only allow 2 lines of text to be entered into the field.

The following example code for the $eventmethod of amulti-line edit field shows how you could only allow two lines of text to be
entered by setting iMaxLines to 2:

# set up variable iMaxLines (Integer)
On evClipChangedData,evKey
Process event and continue
If $cobj.$linecount>iMaxLines

Calculate $cobj.$contents as iPrevData
Sound bell
Quit event handler

End If
Calculate iPrevData as $cobj.$contents

460



Navigation Menu

Group Icon Name (type) Description

Navigation Navigation Menu (Xcomp) Cascading menu with images and text
options

The Navigation Menu is an external component that allows you to build interactive cascading menus within your windows, pro-
viding a navigation method similar to that found on some websites. The component is available for Window classes and for the
JavaScript client, and they are more or less identical, so please refer to the description for the JavaScript Nav Menu Control for
details. (Please note that there is an example for window classes for this component in the NavigationMenu app in the JavaScript
Component Gallery on the Omnis website.)

OBrowser

Group Icon Name (type) Description

Media OBrowser (Xcomp) Embed a web page into a window or
enables HTML controls

TheOBrowser external component allows you to embedweb pages into your thick client windows, as well as providing the ability
to add custom HTML controls to window classes. Even though the OBrowser control is a fully featured web browser, it is really
only intended for targeted use with specific web pages, rather than use as a general web browser (you should note that there is
no sandbox support). You could use it in your application, for example, to present the end user with information in a web-style
layout, such as a Help system or FAQ, or you could embed a landing page that is hosted on your website.

OBrowser is available for both Windows and macOS and both platforms use the Chromium Embedded Framework (CEF) as
the underlying browser which provides good support for HTML5 and CSS3. OBrowser supports the standard CEF configuration
settings using the cefSwitches item within the Omnis config.json file.

To add an OBrowser control to your window class, locate theOBrowser Control in theMedia group in the Components Store and
drag it onto your window.

Setting web pages

To navigate to a page in the OBrowser Component, set the property $urlorcontrolname to a full URL with a prefix either http://,
https:// or file://, such as ‘https://www.omnis.net’. Note that in design mode, OBrowser will navigate to the page (assuming there
is a network connection if required), but the page will not respond to clicks, keyboard input etc.

Once a page is open in a runtime window, the user can interact with the page as would be expected, although an attempt to
open a popup window will fail. The value of the $urlorcontrolname property does not change while the user navigates through
pages. Instead, the read-only property $currenturl contains the URL of the page currently open.

Two more read-only properties provide more state information:

• $cangoforward
If true, you can use $forward() to move to the next URL in the browser back-forward list.

• $cangoback
If true, you can use $back() to move to the previous URL in the browser back-forward list.

The $contextmenuremovebackforward property allows you to hide or show the Back and Forward navigation items from the
context menu.

Methods

OBrowser has the following methods related to using it as a web browser:

461

/developers/resources/onlinedocs/WebDev/03jscomps.html#navigation-menu-object


Method Description

$forward() $forward() navigates forwards to the next URL in
the browser back-forward list. Returns a
Boolean, true for success

$back() $back() navigates backwards to the previous
URL in the browser back-forward list. Returns a
Boolean, true for success

$reload() $reload() reloads the currently displayed URL.
Note that if you want to re-open the assigned
$urlorcontrolname, you need to re-assign the
original value to $urlorcontrolname.

$startdownload() $startdownload(iDownloadId,cDestPath) starts
the file download with id iDownloadId, storing
the file at cDestPath. You must execute either
$canceldownload() or$startdownload() in
response to the evBrowserStartDownload event.
Typically you would prompt for a file path, and
then call $startdownload().

$canceldownload() $canceldownload(iDownloadId) cancels the file
download with the specified iDownloadId. You
can call this in response to
evBrowserStartDownload, to cancel the
attempted download. You can also call this any
time between calling $startdownload() and
receiving evBrowserFinishedDownload.

$setdataurl() $setdataurl(vData,cMediaType[,cWidth,cHeight])
assigns a data URL for the supplied data, with
the specified media type, to
$urlorcontrolname.vData can be either:binary -
the data represented by the URLor another type
- OBrowser converts the data to character if
necessary, and then UTF-8, to become the data
represented by the URL.cMediaType is a MIME
type specifying the type of the data
e.g. text/plain or image/png.cWidth and cHeight
are optional. They are only relevant if vData is
binary, and the data is an image. In this case, the
data URL represents an img of the specified
cMediaType, sized using the CSS sizes width and
height e.g.$setdataurl(image, “image/png”, ”, ”)

Events

OBrowser generates various events, described in the following sections.

evBrowserLoadStateChange

Sent to the control when it starts or ends loading its content. This event has one event parameter in addition to pEventCode:

Parameter Description

pLoading If true, the control is loading content.

evBrowserFrameLoadError

Sent to the control when an error occurs while it is loading a frame. This event has three event parameters in addition to pEvent-
Code:

Parameter Description

pUrl The URL being loaded
pFrame The browser frame. Empty means the main frame

462



Parameter Description

pErrorText Text describing the error

evBrowserOpenUrl

As mentioned earlier, an attempt to open a popup window will fail. This event is sent to the control when a navigation action by
the user wants to open a URL in a new browser window. This event has one event parameter in addition to pEventCode:

Parameter Description

pUrl The URL for which opening a popup will fail

evBrowserStartDownload

Sent to the control before starting a file download. Your code must respond by calling one of two OBrowser methods described
later: $startdownload() or $canceldownload(). This event has four event parameters in addition to pEventCode:

Parameter Description

pDownloadId An integer that identifies this download request
pSuggestedName The suggested name for the file
pMIMEType The MIME type of the file
pUrl The URL of the file to be downloaded

evBrowserDownloadProgress

Sent to the control periodically while a download is in progress. This event has three event parameters in addition to pEventCode:

Parameter Description

pDownloadId An integer that identifies this download request
pTotalBytesExpected The total number of content bytes expected. -1 if the total is

unknown
pBytesReceived The number of content bytes received so far

evBrowserFinishedDownload

Sent to the control when a download has finished. This event has two event parameters in addition to pEventCode:

Parameter Description

pDownloadId An integer that identifies this download request
pErrorText Either empty, meaning the download completed successfully, or

error text describing why the download failed

OBrowser Configuration

The OBrowser object has a section in Omnis configuration file (config.json) named “obrowser”. This has entries as follows:

Entry Description

cefSwitches An array of character strings. Each string in the array is a switch
passed to CEF when initialising CEF, e.g. –disable-logging

clearCacheWhenLoaded Boolean. True if the CEF cache is cleared when OBrowser is first
loaded. The cache is in a sub-folder of the Omnis data
folder:chromiumembedded\\cache

clearLocalStorageWhenClearingCacheBoolean. True if HTML5 local storage is cleared while clearing the
cache.

463



Entry Description

defaultHtmlcontrolsFolderInDataFoldermacOS only. Boolean. Default is false. If you set this to true, Omnis
looks for the htmlcontrols folder in the data folder rather than the
program folder (provided that the htmlcontrolsFolder member is
absent or empty). This allows you to add your own HTML controls
and the Omnis Runtime app to remain code signed.

htmlcontrolsFolder Character string. By default, the HTML controls are located in the
htmlcontrols folder in the Omnis program folder. You can override
this by providing a full pathname in this entry.

htmlControlPort Omnis assigns the port for the OBrowser control dynamically, so it is
generally not necessary to set the port for OBrowser

locale The locale to be used for CEF (the framework used by the obrowser
external component to provide its functionality). Defaults to empty,
meaning use the locale (as returned by the Omnis locale() function)
of the Omnis program. If not empty, it must be a locale string that
can be used to set the locale of CEF e.g. it_IT. This affects for example
the context menus displayed for HTML pages rendered by obrowser.
See below

logSeverity Integer. CEF log level:0: Default logging1: Verbose logging2: Info
logging3: Warning logging4: Error logging99: Logging
disabledWhen logging is enabled, the log is written a file in a
sub-folder of the Omnis data
folder:chromiumembedded\\log\\cef.log

messageTimeout Integer. The timeout in tics (1/60th second units) for synchronous
communication between OBrowser and the HTML control. Not all
communication is synchronous, but certain messages (e.g. get data)
need to be. This defaults to 60 (a second, which should be more than
enough). When you are debugging your control you may want to
make this much larger, to give yourself time in the debugger.

remoteDebuggingPort Integer. The TCP/IP port number on which the debugger listens, set
to 5989 by default. Set this to zero to disable debugging.

candebug macOS only. Boolean. If true, context menus for the control allow you
to open the developer tools.

useOmnisTraceLogForConsoleBoolean. Default true. If true, console messages from pages hosted
by obrowser are redirected to the Omnis trace log.

Drag and Drop in oBrowser

You can drop theURL content fromoneOBrowser control to another OBrowser control, as well as drop that content onto a Picture
field. In this case, the URL of the OBrowser control is used to populate the destination field.

To allow drag and drop of content in the OBrowser control, you need to set its $dragmode property to kDragContent and set
$allowjsdraganddrop to kFalse (which disables JavaScript drag and drop and allows drag and drop in the window class). This will
enable an OBrowser control to generate drag events, that is, evDrag, evCanDrop, evWillDrop, evDrop, and evDragFinished which
can be handled in your event methods.

On evCanDrop, the drag field parameter will contain the source field and on evWillDrop the drop field will contain the destination
field. When dropping onto a field the drag field parameter of evDrop will contain the source control. No drag data is provided,
however the current URL for the source drag field will be available via the $urlorcontrolname property.

Debugging code in OBrowser

You can debug code running in the OBrowser component in the Omnis Trace log, rather than in the Debug console in your
browser. Console log messages sent from OBrowser go to the Omnis trace log by default. You can prevent this, and use the
normal JavaScript console in your browser, by setting the configuration item “useOmnisTraceLogForConsole” in the “obrowser”
section of the Omnis configuration file config.json to false.

You can attach the Chrome dev tools to your oBrowser instance, or JS Remote Form design window. To do this, open Chrome
and visit chrome://inspect/#devices, make sure “Discover network targets” is enabled, click the “Configure” button and add “lo-
calhost:5989” (replacing 5989 with the oBrowser remote debug port if you have changed “remoteDebuggingPort” in config.json).
The oBrowser instances will be listed which you can inspect.

464



Debugging on Windows

To debug code running in the OBrowser component under Windows, you have to set various security settings to allow debug
mode. You can set the security settings in the Omnis config.json file, and start Omnis normally (and if you pass the parameters
on the Omnis command line, they are ignored).

You can add the following entry to the “obrowser” section of config.json:

"obrowser": {
"cefSwitches": [

"allow-file-access-from-files",
"disable-web-security"

]
}

The entry is an array of actual switch values to be passed to the Chromium Embedded Framework.

Chromium Safe Storage Prompt (macOS only)

On macOS, when first running an updated version of Omnis Studio, where a previous version was installed, the user will be pre-
sented with a prompt when oBrowser is loaded: “Omnis wants to use your confidential information stored in”Chromium Safe
Storage” in your keychain – To allow this, enter the “login” keychain password.”

TheChromiumSafe Storage keychain item is used togrant access to the sharedChromiumencrypteddata store for secure storage
of cookies. It is recommended that access is granted to allow cookies to be encrypted.

The prompt can be disabled by adding the use-mock-keychain CEF switch to the Omnis configuration. To do this, add the follow-
ing entry to the “obrowser” section of config.json:

"obrowser": {
"cefSwitches": [

"use-mock-keychain"
]

}

It is important to note that if this is disabled cookies will NOT be secure.

Setting Locale

The “locale” attribute in the “obrowser” section in config.json allows you to set the client’s locale. For example:

"obrowser": {
"locale": "it_IT"

}

The locale attribute allows you to specify a language to be used in OBrowser (e.g. in contextmenu entries), and it can also be used
to change the Accept-Language header, which servers can take into account to serve a language-specific page. For example,
if the locale is set in config.json to it_IT and the $urlcontrolname property is http://www.google.com, Omnis will load Google’s
search engine page in Italian. When locale is not specified in config.json, a locale of en-GB is used by default. Note that the
Accept-Language is only “for information” for the server, therefore, the server can send back a web page in English even if you
requested another language.

In addition, the $acceptlanguagelist property can be set to a comma-delimited ordered list of language codes (ISO-639, without
any white space), that is used in the Accept-Language HTTP header. For example, it-IT will try loading a web page in Italian,
however the server determines whether the web page it sends back is in the requested language in Accept-Language or not. If
$acceptlanguagelist is not specified (the default), then the value of the locale attribute in “obrowser” in the config.json is used. If
specified, it will override the value in the attribute.

It is important to note that the $acceptlanguagelist will take effect only uponOBrowser component initialization. Thismeans that
you will need to set $acceptlanguagelist, close the window containing OBrowser in order to destroy the OBrowser instance and
re-open the window so OBrowser re-initializes and uses the recently set $acceptlanguagelist values.

465



Certificate Errors

The $ignorecertificateeerrors property handles errors when OBrowser encounters errors with the website certificate. If true, a
URL with certificate errors will be allowed to be loaded. If false (the default), an error will be raised and sent via the evBrowser-
FrameLoadError event. When an error is raised, the message in pErrorText will be “ERR_CERT: The certificate for this server is
invalid: <errorcode>”. This message can be tested to provide a prompt to the user to allow them to proceed to the insecure page
after setting this property to true.

Browser Console Errors

If the $donotredirectconsoletotracelog property is true (the default), browser console messages generated by OBrowser are not
redirected to the Omnis trace log. Set this to false if you wish to see consolemessages in the Omnis trace log (shown in the Studio
Browser or via the Tools menu).

$disablepluginsmacos property (macOS)

The pre-Studio 10.x version of OBrowser on macOS had the property $disablepluginsmacos, but this is now obsolete and will not
show in the Property Manager. The notation for this property will not cause an error in your code but it has no effect.

localStorage on macOS

OBrowser onmacOS overrides the localStorage for file URLs (only). It writes the localStorage keys & values to a file called localStor-
age.json in the clientserver/client/ folder.

Cookies

The Chromium Embedded Framework used by OBrowser stores cookies in a SQLite database called Cookies, which is located in
the user App Data folder, such as on Windows:

C:\Users\<username>\AppData\Local\Omnis Software\OS<version>\chromiumembedded\cache

Or in the /Application Support folder at /chromiumembedded/cache on macOS. This database can be managed using a SQLite
DAM session.

Video in OBrowser

The type of videos that you can play embedded into a web page and displayed in OBrowser may be limited by the codec used to
encode the videos. The CEF does not support all codec types, such as h264 since this requires royalty payments, and so is disabled
in CEF. Supported formats are shown here: https://www.chromium.org/audio-video

HTTP headers

The $headerlist property is a runtime-only property allowing you to set the HTTP headers tor the embedded browser in OBrowser.
It takes a two-column list of HTTP headers to be added, or removed, for each URL request. Column 1 is the header name (without
trailing colon). Column 2 is the header value, which you can set to #NULL to remove the header.

The list is applied in line order, so you canmodify an existing header by removing it and then adding it. The list is applied to every
request made after assigning $urlorcontrolname to a URL. The referer header cannot be changed using this method.

OmnisIcn Control

Group Icon Name (type) Description

Media OmnisIcn Control (Xcomp) Displays an icon from an Omnis icon data
file

The OmnisIcn control lets you display any icon stored in the OmnisPIC or USERPIC icon data files, or the #ICONS system table.
Icons can have a transparent background. This control is included for backwards compatibility only, since Omnis image data files
and #ICONS can only contain standard resolution icon images, and should therefore not be used for new applications.

466

https://www.chromium.org/audio-video


Paged Pane

Group Icon Name (type) Description

Containers Paged Pane Multiple pages or panes containing fields
and other controls

The Paged Pane provide a number of pages or panes which can contain fields and other controls; they are similar to tab panes
except that the panes do not have tabs. However, you can switch the current pane or page using a Tab Strip, a set of radio buttons,
a pushbutton, or some other field that is linked to the Paged pane. In addition, a Paged pane can act as a Side Panel: see Side
Panels.

In design and runtimemode you can set the number of panes in $pagecount, and change the current page using $currentpage;
you can select the controls on different panes using the Field List. The $movepage property allows you to move a page pane in
design mode, which is useful when adding new panes and you need to reorder existing panes.

To set up a paged pane, set $pagecount to the number of pages you need. You can add the fields and background objects to each
page, changing the current page by setting $currentpage. At runtime, you can change panes in amethod that sets $currentpage
as required. Using a tab strip, you could set the page in a paged pane field to the selected tab, using the following event method
on the tab strip:

# $event() method for the tab strip field
On evTabSelected
Do $cwind.$objs.PagePaneId.$currentpage.$assign([pTabNumber])

Alternatively, you can design your own Next and Back buttons that cycle through the pages. For example:

# $construct() method for the window
# declare variable cCurPage initial value 1
# declare variable PageRef of type Item reference
Set reference PageRef to $cwind.$objs.PagePaneId

# $event() method for Next button
On evClick
Calculate cCurPage as PageRef.$currentpage + 1
If cCurPage > PageRef.$pagecount

Calculate cCurPage as 1 ## if last pane, go to first
End If
Do PageRef.$currentpage.$assign(cCurPage)
Quit event handler (Discard event)

Paged Pane Buttons

When set to kTrue, the$showpagebuttonsproperty adds apage indicator to apagedpane (at thebottom in the center) to indicate
which page is currently shown. The page indicator contains the same number of dots as there are panes in the control. The end
user can change the current pane by clicking on the page counter.

Figure 148:

When set to kTrue, the $animatui property causes the pages slide to the left or right when the page changes; when set to kFalse,
the page pane will change instantly when the page button is clicked.

467



Listing the objects on panes

The $listobjects([iPaneNumber]) method returns a list of objects contained within the specified pane, including all foreground
and background window objects. If iPaneNumber is omitted, the list contains information about the objects on all panes in the
Paged pane field. The list has three columns: object name (empty for background objects), ident of the object, and pane number.

If you mark a field or object as “all panes”, it will be included in the list regardless of the pane number specified.

Page names

The $alltabcaptions property contains the values of the $pagename property of the pages.

Side Panels

A Side panel is a commonUI element inmany dashboard style designs. A Side panel is a vertical panel down the side of a window,
containing clickable options, such as a menu of options or other content, that can pop out on the left or right side of a window. A
side panel can be shown automatically, when the user hovers the pointer over the left or right edge of the window, or linked to a
button or menu option to allow the side panel to be opened or closed manually by the end user. When a side panel is opened it
is animated.

There is not a separate Side Panel component, rather a side panel is a property of a window component ($sidepanel, see below),
so for example, you can create a Side panel using a Page pane. To create or enable a side panel, you need to set the $edgefloat
property of a control to either kEFposnLeftToolbar or kEFposnRightToolbar and the $sidepanel property will become enabled.
Any window object that can be marked as a left or right toolbar will have the $sidepanel property and therefore can be enabled
as a side panel. However, from a practical point of view, it would normally make sense to use a container type field, such as a Page
pane, Scroll box, or Group box as a side panel, since you can then add other controls to the container which the end user can
interact with.

The following example window contains a Scroll box on the left, enabled as a side panel, which contains a vertical tab strip con-
taining a number of clickable options; in this case, the small “hamburger” button can be used to hide or show the side panel.

Figure 149:

You can also place one container type control inside another container and enable the second control as a side panel; for example,
you could place a scroll box inside a page pane and make the scroll box a side panel. Using containers and other controls in this
way, you can create some highly interactive interfaces or layouts in your application, such as the following:

Properties

When a window component is marked as a left or right toolbar (via $edgefloat), the $sidepanel property is enabled, and once
enabled, you can set the property to kTrue to enable the side panel behavior. You can then set the $sidepanelmode property (the
“peek” mode) so the side panel is shown and hidden automatically when the end user hovers their pointer over an area to the left
or right of the window. The threshold for the peek area is 20 pixels on the left and right panels.

The $sidepanelmode property can be set to either a “push” or “cover” mode, as follows:

468



Figure 150:

• kSidePanelModePush
this mode pops out the panel automatically and pushes or moves the other controls and content on the window either to
the right or left.

• kSidePanelModeCover
this mode pops out the panel automatically which is placed over the top of the other controls and content on the window.

• kSidePanelModeNone
the default modemeaning the side panel will not pop out automatically, when the end user hovers over the window edge,
but the $showpanel method can be used to show the side panel

When a Side panel is set to “push” mode, the panel does not push any components in the window off the edge of the screen,
rather Omnis will adjust the bounds of the window area, that is, the width, and any components that have their edge floats set
will be resized accordingly to fit the available window area.

When set to a mode, moving the mouse to where the side panel is fixed, either the left or right side of a window or a container,
the panel will automatically animate or pop out. Moving the mouse out of the panel will autohide the panel.

When a side panel is closed (not visible), the panel is internally disabled for tabs. This prevents Omnis from tabbing to any controls
within a hidden panel. When disabled, no events are sent.

Side panels support $dragbordermeaning if the panel is opened and the border of the control is dragged, closing and re-opening
the panel will open to the new dragged size.

Methods

Having enabled a control to behave as as side panel, by setting $sidepanel to kTrue, you can hide and show the panel manually,
in your code, using the $showpanel method. In this case, you can set the $sidepanelmode property to kSidePanelModeNone and
show or hide the panel using a button and this method.

• $showpanel( iAction, [iMode] )
performs an action (iAction) such as kSidePanelActionShow on a side panel object. The panel mode (iMode) is optional, is
the display mode (as above) such as kSidePanelModeCover and only used when showing a panel

469



The side panel action constants are:

• kSidePanelActionlHide
hides the side panel

• kSidePanelActionShow
shows the side panel

• kSidePanelActionToggle
either hides or shows the side panel depending on its current state

For example, the following code for a button shows a scroll box name ‘panel’ that is enabled as a side panel:

On evClick
Do $cinst.$objs.panel.$showpanel(kSidePanelActionToggle,kSidePanelModePush)

Design Mode

In design mode, you can hide or show the side panel(s) using the window context menu, which would allow you to design the
remainder of the window without the side panel getting in the way. When you Right-click on a window that has side panels
enabled, the Show Panels submenu option allows you to hide or show the Left and/or Right side panels in design mode. If no
panels are enabled for the window or container, the menu items are not present. In addition, clicking on a side panel in design
mode will show a small semi-transparent button (shown below), which also allows you to hide or show the panel.

Figure 151:

Example

There is an example app to demonstrate Side Panels in the Hub in the Studio Browser, and on the Omnis GitHub repo at: https:
//github.com/OmnisStudio. Search for Omnis-SidePanels.

Picture Control

Group Icon Name (type) Description

Media Picture Control Displays image data from a picture
variable

The Picture control lets you display image data retrieved from a server database (or an Omnis data file in legacy apps, which
supports true color shared picture mode). The control requires an instance variable (or row variable column) of Picture type
specified in the $dataname property. Pictures can have a horizontal and/or vertical scrollbar and scaling is controlled using the
$noscale property. If set to kTrue, the $cachepicture property enables the client to store a copy of the image suitable for drawing
without conversion, which provides faster drawing on the client, but more memory is used.

470

https://github.com/OmnisStudio
https://github.com/OmnisStudio


Events

In addition to the general field events evBefore and evAfter, pictures respond to evClick and evDoubleClick events which you
can detect in the $event() method for the component.

Note that evClick and evDoubleClick are sent to the $event method in a Picture control only in enter data mode, while for some
other controls (e.g. Lists, Edit fields) clicks are sent regardless of the enter data mode.

Note that evClick and evDoubleClick are sent to the $event method in a Picture control regardless of enter data mode. You can
set $active to kFalse to prevent the events from triggering.

The Pics2 tutorial library (in the welcome/tutorial/final folder) contains the PicsWindow class that uses the Picture control to
display images from a SQLite database.

Icon ID and Color

The $iconid property allows you to use an icon froman iconset in thePicture control, for example, to create a background image for
a window. The $iconcolor property can be used to specify a color for a themed SVG icon. Setting either $dataname or $calculation
takes precedence over $iconid.

Image Interpolation

By default, Omnis interpolates (smooths) an image when rendering it on ultra-high definition displays. The $nointerpolation
property allows you to disable interpolation (set it to kTrue), whichmay not be required for certain types of image, for example, for
displaying a bar code (macOS only). $nointerpolation is kFalse by default which means all images will be interpolated.

Popup List

Group Icon Name (type) Description

Lists Popup List Single-column list allowing easy user
selection

The Popup list is most suited to short single-column lists fromwhich the user can select a single choice. The user can click on the
field to dropdown the list. When you create a popup list youneed to enter the nameof your list variable in the $datanameproperty
for the field. Enter the name of the variable in your list column in the $calculation property. Use the constant kDefaultBorder for
the $effect property to ensure the list has the default border style for the current operating system.

You can open a Popup list with either the Space or Return key. In addition, on macOS, you can close a popup list with the Space
key. When a popup list is closed, you can navigate through its values using the Up and Down arrow keys to select a value. In this
case, an evClick event will be sent as you navigate up and down (the same as for Combo boxes).

Popup Menu

Group Icon Name (type) Description

Menus Popup Menu Displays a menu class on a window

A Popup menu is a type of window field that opens a menu when you click on the field. You can create a popup menu using any
previously definedmenu class, and you can use any of the standard Omnismenus, such as File and Edit, as a popupmenu. When
you create a popup menu field you enter the name of the menu class in the field’s $menuname property.

You can use the constant kDefaultBorder for the $effect property to ensure the menu has the default border style for the current
operating system. All its other properties are the same as any normal window field. You set up the properties of the menu itself
in the menu class.

471



Progress Bar

Group Icon Name (type) Description

Other Progress Bar (Xcomp) Indicates progress of a counter

The Progress Bar control lets you display a progress bar in a window. The value of the progress bar is specified in the $val property
which is typically linked to the value of a counter in a looping command. You can specify the range for the progress bar in the $min
and $max properties. You can specify the $backcolor of the bar as well as the $progresscolor. The current value of the progress
bar can be displayed either a series of blocks (when $blocks is kTrue) or a continuous strip. Furthermore, the progress bar can be
either vertical or horizontal by setting the $vertical property.

Note that the progress bar control has no events or built-in methods of its own. Rather you control it by assigning to the $val
property in your code.

For example, a window could contain four progress bars named prog1 to prog4 and a simple looping method behind the push-
button to activate the progress bars.

# $event() for button
On evClick

For loop from 1 to 100 step 1
Do method $setprog (loop)

End For
For loop from 100 to 1 step -1
Do method $setprog (loop)

End For

The $event() method for the button steps from 1 to 100 and back to 1 sending the current value in the loop parameter to the
$setprog class method which in turn assigns the current value to the $val property for each progress bar.

# $setprog() method
# contains pValue parameter
Do $cinst.$objs.prog1.$val.$assign(pValue)
Do $cinst.$objs.prog2.$val.$assign(pValue)
Do $cinst.$objs.prog3.$val.$assign(pValue)
Do $cinst.$objs.prog4.$val.$assign(pValue)

Pushbuttons and Button Areas

Group Icon Name (type) Description

Buttons Push Button Button that responds to user clicks

Pushbuttons are control fields that activate either user-defined methods (or standard Omnis database commands such as Find,
Next, and Previous; for desktop apps using the Omnis datafile only). When you click on a user-defined button, Omnis triggers the
evClick event and runs its $event() field method.

Button areas behave in exactly the same way as pushbuttons except that they are invisible on an open window (shown with a
dotted or gray line in designmode). Button areas let you place an invisible and clickable control area on top of a graphic, or behind
the whole window, for example.

You set the text for a pushbutton in the $text property. Under Windows, you can use the “&” character before a letter to specify
a key to use with Alt key to push the button from the keyboard instead of with the pointer. For example, if you specify the text
“&Cancel Tour”, you can use the Alt-C key combination to activate the button.

If you want to display more than one line of text on a pushbutton, use two forward slashes // to separate the lines. For example,
setting the $text property to “Hello//World” results in a pushbutton displaying Hello andWorld on separate lines.

Pushbuttons have the following Action properties.

472



Property Description

$buttonmode mode or type of pushbutton or button area; buttons are
user-defined by default which means you can add your
ownmethod

$actedata if true the button is active during enter data; note the
button will not work if this is set to false, in particular on
modeless enter data windows

$actnomethod if true the button is active when no methods are running;
note the button will not work if this is set to false

$inactnorec if true the pushbutton is inactive when there is no current
record (applies to Omnis data files only)

Pushbuttons have the following Appearance properties.

Property Description

$nogray if true the button does not gray when inactive
$noflash if true the button area does not flash when clicked (button

areas only)
$buttonstyle the drawing style of the button
$iconid id of the icon used for picture buttons
$iconcolor the icon color when a themed SVG icon is used

Styled Text

Styled text can be used in the $text property for push buttons (and radio buttons and check boxes) when the $styledtext property
is kTrue.

Button Mode

When you create a pushbutton from the Component Store its $buttonmode is set to kBMuser by default, i.e. its mode is user-
defined. This means you can enter your own $event() method behind the button which will run when the user clicks on the
button.

Most of the buttonmodes are only appropriate to desktop apps using anOmnis data file since they run standardOmnis database
commands (such as Insert, Find, Next, and OK). You would have to create your own buttons to insert or next through data in a
SQL database, or use one of the wizards to create a SQL window with ready-made buttons. The $buttonmode property is also
available for Button Areas, and all modes are supported except for the color, linestyle, and pattern picker modes.

Button Style

The $buttonstyle property controls the drawing style or appearance of a push button, and can be set to one of the following:
kSystemButton (the default style), kUserButton, kNoBorderButton, kHeadingButton, kComboButton, kRoundButton, kLargeR-
oundButton, or kIDEButton.

For headed lists and tree lists, $buttonstyle is the style of the header button, either kSystemButton or kUserButton.

IDE Button Style

The kIDEButton button style is used to style buttons in the Omnis IDE, but you can use the style in your apps if you want. The
appearance for the kIDEButton buttonstyle is defined in the “IDEbutton” section in the Appearance configuration file (appear-
ance.json). You can override the border and text colors set in the theme, by setting them to a color other than kColorDefault, but
note that a disabled button always uses the disabled text color. Note that any changes you make to this will be reflected in the
IDE.

Buttons styled with kIDEButton support hot tracking on bothmacOS andWindows, which can be controlled via the “hottracking”
item in the “IDEbutton” section: 1 means buttons are hot on macOS, 2 means buttons are hot on Windows, 3 means buttons on
both macOS andWindows are hot, and zero means hot tracking is not used on any platform.

473



Button Timer

You can add a timer to a pushbutton using the $timeout property to delay the evClick event. This is a runtime only property, and
only assignable when the button has text.

You can assign a positive integer N to start a countdown timer that runs for N seconds, appending the time left to the button text;
you can assign zero to stop the timer. When the timer expires, the button receives an evClick event with pTimeout set to kTrue to
indicate the timer has finished. When $timeout is active, the text for the button updates once a second.

When sending evClick for the timeout, no evAfter is generated for the current field (this ensures the timeout event is received).

Click behavior on macOS

On macOS (for Studio 8 onwards) pushbuttons flash when they are clicked; this is the default behavior for macOS buttons. You
can disable this behavior by setting the “macOSbuttonNewTextDrawingStyle” item in the “macOS” section of config.json to false.

Radio Groups and Buttons

Group Icon Name (type) Description

Buttons Radio Button Round button that can be either on or off

Buttons Radio Button Group Round buttons that can be either on or off
in mutually exclusive group

The Radio Button Group and Radio Button present a number of mutually exclusive buttons that can be either on or off: selecting
one of the radio buttons deselects all other buttons in the group. The Radio Button Group field provides a ready-made group of
buttons, whereas Radio Button fields have to be created individually and grouped together by numbering them consecutively
(set their $order property to consecutive numbers). In this respect, Radio Button Groups are easier to create andmove about the
window.

There is an example app to demonstrate the Radio Button window control in the Hub in the Studio Browser, and on the Omnis
GitHub repo at: https://github.com/OmnisStudio, search for Omnis-CheckRadio.

The field you associate with a Radio group or set of Radio buttons should be numeric (when using a number of radio button fields,
they should all have the same $dataname). You enter the text to be displayed to the right of each radio button in the $text property
for the object; for the radio group this is a comma separated list of text values.

Clicking a radio button sets the value of the field/variable in $dataname to zero for the first button, one for the second button, two
for the third button, and so on.

The Radio Group field has the following properties:

• $text
Comma separated list of values specifying the text for each button, e.g. Item 1,Item 2,Item 3,Item 4

• $buttoncnt
The number of buttons in the group

• $columncnt
The number of columns to split the group of buttons, e.g. using values $buttoncnt=4 and $columncnt=2 gives you a group
of 2x2 buttons

• $horizontal
if kTrue the Radio group will display the controls in a horizontal order; if kFalse the group is displayed vertically

• $iconid
0 causes the control to display a default radio button according the current OS; alternatively this can be set to a multistate
icon, including a size constant

• $iconcolor
the icon color when the icon is a themed SVG icon; default is kColorDefault

An evClick event is sent to the $eventmethod for the fieldwhen the control is selected or a value altered using the keyboard (using
tab and space bar to select a button). The value of the variable specified in $dataname is updated when a button is selected.

474

https://github.com/OmnisStudio


Round Button

Group Icon Name (type) Description

Buttons Round Button (Xcomp) Round Button showing progress or
individual values

The Round Button control (RoundButt) provides a graphical & highly configurable button for your windows. You can use the
Round Button to show the progress of a process, or to show individual values in a group of data points such as percentages. The
Round button control uses transparency so requires a minimum of Windows 8 or higher.

Figure 152:

The Round button has a number of properties which can be set at runtime to indicate progress.

• $centerimage
an optional image which will be clipped inside the circular progress bar, including the amount specified in $progressgap.

• $progressalpha
the alpha value of the progress bar: 0-255 with zero being transparent

• $progresscolor
the RGB color of the progress bar

• $progressgap
the gap between the inside of the progress bar and the center image

• $progressstartangle
the starting angle of the progress bar: 0-359 with zero at the top

• $progressvalue
the current value of the progress bar as a percentage: 0-100 with 100 being progress complete, that is, the progress bar is a
complete full circle

• $progresswidth
the width of the progress bar in pixels

As well as these properties to configure the appearance of the control, the control responds to a standard click which you add
event processing to.

475



Screen Report Field

Group Icon Name (type) Description

Reports Screen Report Field Displays the output of a report

The Screen Report Field lets you display the output of a report on a window, rather than sending the report to the default Preview
screen. You use the Send to a window field command to direct output to a screen report field. The user can copy data from a
screen report field instance by dragging the pointer or mouse on the report to select some data.

The screen report field has all the properties of a standard window field in addition to the $showpaper under the Appearance tab
in the Property Manager. If you set $showpaper to true, it changes the field to page previewmode.

The current page count is reported in the $pagecount property (read only), while $currentpage is the currently displayed page
and is assignable at runtime. When more than one page is visible, the value indicates the page that is most visible.

This type of field does not have a $dataname or $classname, and it does not generate any events of its own apart from the events
for a standard field.

You could put the followingmethod behind a pushbutton on your window or a toolbar control to print to your screen report field.

On evClick
Set report name ReportName
Send to a window field {ScreenReportFieldName}
Print report

The screen report field has two methods:

• $zoom(bZoomOn=kTrue)
enables zoommode when the screen report field is in page previewmode

• $redirect(bPrompt=kTrue)
redirects the current report by prompting for a different print device, rather than the device specified in default preferences

Printing the report to PDF

You can use the $print() method and the bToPDF and cPDFPath parameters to print the report in a Screen Report field to a PDF
file. When bToPDF is kTrue and a path is specified in cPDFPath, a PDF file is created in the specified location. For example:

Do ScreenReportField.$print([bToPDF=kTrue,cPDFPath='<path>'])

If cPDFPath is empty, a prompt is shown allowing the end user to specify a path for the PDF file. If the parameters are omitted or
bToPDF is kFalse the method prints the report displayed in a screen report field to the current report destination, e.g. the Screen
or Printer.

Scroll Box

Group Icon Name (type) Description

Containers Scroll Box Group other fields in a scrollable area

The Scroll Box allows you to group fields in a scrollable area, and is similar to the Group box. See Group box.

Shape Field

476



Group Icon Name (type) Description

Shapes Shape Field Shape with some field properties; for
other shapes see Background Objects

The Shape field is a graphic object (rectangle, line, or text) that has some general field properties, such as $visible, $active, and
$enabled. Therefore, you can hide a shape field, make it inactive, or disable it just like an ordinary field. Shape fields can contain
methods including a $event() method to detect events, so you can detect when the mouse enters or leaves the field.

You can specify the $effect, $bordercolor and $linestyle properties to apply border style effects to shape fields.

Sidebar Control

Group Icon Name (type) Description

Navigation Sidebar Control Displays a list of options with groups

The Sidebar Control displays a list of options with groups. It can be built on the fly or loaded from a database as the window is
instantiated. The list must contain lines that define the group names and the items in the group, in the following format:

Line # List columns

1 Group 1 name
2 Item 1 name, IconID, Value
3 Group 2 name
4 Item 1 name, IconID, Value
5 Item 2 name, IconID, Value
6 Group 3 name
7 Item 1 name, IconID, Value
8 Item 2 name, IconID, Value
9 Item 3 name, IconID, Value

You can create and build the list in the $construct() method of the window using a method similar to the following. The list
iSidebarList is an instance variable in the window, along with the column variables iGroup, iIconID, iName, iID. The iID variable is
used in other methods in the window to pass which item in the sidebar is chosen.

# $construct() of window
Do iSidebarList.$define(iGroup,iIconID,iName,iID)
# the remainder of method builds content of sidebar list
Do iSidebarList.$add("Yellow",0,"") ## Group 1
Do iSidebarList.$add("Yellow",k32x32+1,"Yellow",1)
Do iSidebarList.$add("Red",0,"") ## Group 2
Do iSidebarList.$add("Red",k32x32+2,"Red",2)
Do iSidebarList.$add("Green",0,"") ## Group3
Do iSidebarList.$add("Green",k32x32+3,"Green",3)

The sidebar component reports the evIconPicked event which passes the pLinenum parameter containing the line number in
the list corresponding to the item selected. When considering the value of pLinenum you have to take account of all groups and
items in the list. Using the list above pLinenum will be value 2 (ie line 2 in the list) for the first item in the group 1, value 4 for the
item in group 2 and value 6 for the item in the third group.

You can detect the evIconPicked event in the $event() method for the sidebar and branch your method according to the item
selected. The following method

# $event method for sidebar component
On evIconPicked
Do iSidebarList.$line.$assign(pLinenum)
# selects the list line according to item selected in sidebar
Do iSidebarList.$loadcols()

477



# loads the values in the selected list line, including iID
Switch iID ## branches according to value of iID

Case 1
Do something..

Case 2
Do something..

Case 3
Do something..

End Switch

Single Line Entry Field

Group Icon Name (type) Description

Entry Fields Single Line Entry Field Field into which users can insert data or
view existing data

A Single Line Entry Field (or Edit field) is a type of window field into which users can insert data or view existing data. For window
classes, there are several types of entry fields available, which are separate controls: the Single Line Entry Field, theMulti Line Entry
Field, and Masked Entry field. You can modify a window entry field to create a display or local field that you can use to display
data.

Entry Field Properties

Entry fields have the following properties, in addition to the standard properties, such as $active, $enabled, and $dataname (see
below):

Property Description

$allowcopy If true, when the field is active
and disabled,the user can set
focus to the field, select text
with mouse or select all, and
copy to clipboard. Note that
the field does not generate
click events when it is active,
disabled and $allowcopy is
kTrue

$animateui If the library preference
$animateui is true, all objects
that support $animateui will
animate aspects of their
interface. The object property
only applies when the library
preference is false.

$autocorrectspelling If true, and the user types a
separator (e.g. space or
comma) when no text is
selected, the control replaces
a misspelt word immediately
before the selection with a
correctly spelt word

$autofind If true, the field is an
automatic find field

$autotablen The number of characters
entered before automatically
tabbing out of the field

478



Property Description

$bordericonstyle The style applied to plain
border styles. You can set
border integrated icons, icon
colors and tints

$borderradius Radius for rounded border
corners. 1 to 4 pixel values
separated by -, in order
topleft,topright,bottomright,bottomleft.
If bottomleft is omitted it is
topright. If bottomright is
omitted it is topleft. If topright
is omitted it is topleft

$calculated If true, the field is calculated
$contentpadding Padding inside a border. 1 to 4

pixel values separated by -, in
order left,top,right,bottom. If
bottom is omitted it is top. If
right is omitted it is left. If top
is omitted it is left

$contenttip Text which is displayed in the
field when it is empty, to help
the user understand what
content should be entered

$disabledefaultcontextmenuIf true, the default context
menu for the object will not
be generated in response to a
context click.
$disabledefaultcontextmenu
for $clib and $cobj must both
be false for the menu to be
generated

$disablediacriticalpopup If true, long holding a
character will not show a
popup if diacritical character
alternatives are configured for
the character

$fadewhendisabled If true, the field fades its
content when $enabled is
kFalse

$fieldstylefocused The style in system class
#STYLES assigned to this field
in addition to $fieldstyle when
the control has focus

$gridsection The type of the complex grid
section containing the object.
One of the kGrid… constants

$negallowed Only applies when the
dataname is a numeric type. If
true, the entry field allows
negative values

$passwordchar If set, the object draws this
instead of each value in the
data, allowing private entry of
passwords; if set, the data
length cannot exceed 255
characters. Using * (asterisk)
on macOS or Windows with
themes enabled, draws a solid
circle

479



Property Description

$righttoleft If true, the edit field edits text
with a right-to-left reading
direction; the edit field is then
suitable for languages such as
Arabic

$showellipsis If true, show an ellipsis if the
text is too long (only applies
when the control is read-only,
$horzscroll and $righttoleft are
both kFalse, $align is kLeftJst
and $passwordchar is not set)

$shownulls If true, the field displays null
values using the text ‘NULL’

$showspellingerrors If true, the control underlines
spelling errors using a dotted
line

$stripspaces If true, the control strips
leading and trailing spaces
from the data before storing it
in the dataname

$stripthousandonpaste If true and a number field,
thousand characters will be
stripped from clipboard
content on paste

$text The text or calculation stored
with the object

$tooltippos A kTooltipPos… constant that
specifies where $tooltip
appears relative to the control:
kTooltipPosBottom,
kTooltipPosLeft,
kTooltipPosMouse,
kTooltipPosRight, or
kTooltipPosTop

$unqindex If true, the field corresponds to
a unique index

$uppercase If true, the entry field is upper
case only

$vertcentertext If true, single line text (or any
text in a kText background
object) is vertically centered in
the height of the field. If false,
the text is vertically positioned
according to the rules of
Omnis Studio 5

$zeroempty If true, the field shows a value
of zero as an empty string

$dataname for Windows Controls

The variable specified in the $dataname property of a window controlmust be an instance variable, or in some cases a column in
a row instance variable in the form VarName.ColumnName. You can click into the $dataname property in the Property Manager
and type the first letter or few letters of a variable and then select its name from the list that drops down. For example, to select
an instance variable in the window class, type “i” to display a list of all instance variables and select one from the list.

Alternatively, you can type the name of a new variable, press Return and define the new variable in the ‘Create Variable’ dialog,
adding its Scope, Type (and Subtype if applicable), Initial value, andDescription. See Variables formore information about creating
and using variables.

480

03programming.html#variables


Password Entry Fields

Single line entry fields have a property $passwordchar which specifies the character to be displayed for every character entered
in the field. When the property is set, the data in the field cannot exceed 255 characters, and while the focus is on the field the
Cut and Copy items on the Edit menu are disabled.

Local Fields

A local field is a field that depends on the value of the prior field in the tab order. Omnis redraws these fields immediately after
redrawing or changing the prior field. You usually use local fields to display data changed as a result of an entry in a preceding
field. Omnis will not automatically execute the field procedure on recalculation. You can have more than one local field running
in sequence after a non-local field.

Using a local field after a list box, you can set up a spreadsheet-like edit bar for a selected list line. When you select a line in a list,
the local field changes to display that line; you can then edit the line and put the updated line back into the list.

A calculated display field following a field you specify as part of the text or calculation should have the local property to ensure
up-to-date display of the display field value.

Entry and Display Field Calculations

You can specify a validation expression for the data in the field. You can use input masks to force the user to input data in certain
basic formats, butmore complex logical constraints require an expression. Tomake a calculated field youmust set its $calculated
property to true. You can enter an Omnis expression into its $text property. When the user leaves the field, Omnis validates the
data using the expression. If the expression evaluates to false, Omnis beeps and returns the cursor to the field. For display fields,
the $text property lets you enter a character or numeric value or Omnis expression that is displayed in the field.

Display and Inactive Fields

A display field is a type of window field that you use to display data only, that is, the user cannot enter data into a display field.
To change a standard entry field into a display field you change its $enabled property to false; to display data in the field you set
its $calculated property to true and enter the data in its $text property. The user can’t tab to a disabled display field or click in
it and enter data, but a display field still accepts mouse events, such as mouse leave events. To make a field completely inactive
you need to change its $active property to false, regardless of its $enabled setting. Such an inactive field does not receive mouse
events and you cannot enter data into it.

Disabled Field Appearance

The $fadewhendisabled property controls whether the contents of a disabled window field are greyed out or not: this affects the
Entry, Masked Entry Field, and Multiline Entry Field window field types (kEntry, kMaskedEntry, kMultilineEntry). When kTrue (the
default is kFalse), and if the field’s $enabled property is kFalse, the field content will be partially greyed out.

There theme colors “fadewhendisabledcolor” (defaults to kColorWindow) and “fadewhendisabledalpha” in appearance.json (and
the theme templates) allow you to control the color and transparency of $fadewhendisabled: “fadewhendisabledalpha” is the
amount of alpha used when fading to kColorWindow (default is 140).

Floating Edges and Positioning

The $edgefloat or “floating edge” property for window components, including entry fields, allow the components to be resized
automatically when the end user resizes thewindow at runtime (note awindow also has $edgefloat). The $edgefloat property can
be set to one of the kEF… constantswhich determineswhich edges of the component, if any, will “float” or reposition automatically
when the window is resized. The following kEF… constants are available for entry fields:

Constant Description

kEFnone No floating edges
kEFall All edges floating
kEFbottom Bottom edge floating
kEFbottomAndCenterLeftRightA combination of kEFbottom

and kEFcenterLeftRight
kEFcenterAll All edges floating, keeping the

control centered in its parent

481



Constant Description

kEFcenterLeftRight Left and right edges
floating,keeping the control
centered horizontally in its
parent

kEFcenterTopBottom Top and bottom edges floating,
keeping the control centered
vertically in its parent

kEFleftRight Left and right edges floating
kEFleftRightAndCenterTopBottomA combination of kEFleftRight

and kEFcenterTopBottom
kEFleftRightBottom Left,right and bottom edges

floating
kEFright Right edge floating
kEFrightAndCenterTopBottomA combination of kEFright and

kEFcenterTopBottom
kEFrightBottom Right and bottom edges

floating
kEFrightTopBottom Right,top and bottom edges

floating
kEFtopBottom Top and bottom edges floating
kEFtopBottomAndCenterLeftRightA combination of

kEFtopBottom and
kEFcenterLeftRight

All $edgefloat constants prefixed with kEFposn… will reposition the control in the specified region of the window; as you select
one of these constants in design mode the control will snap to the chosen region, and when the window is resized at runtime
the control will “stick” to this region. The kEFposnClient constant stretches the control to fit the available area within its parent or
subform. The following kEFposn… constants are available for entry fields:

Constant Description

kEFposnBottomToolBar Place field in bottom toolbar
position

kEFposnClient Place field in the client position
kEFposnFooter Field is the horizontal footer
kEFposnHorzHeader Field is the horizontal header
kEFposnJoinFooter Field is located where the

horizontal footer and vertical
header meet

kEFposnJoinHeaders Field is located where the
horizontal and vertical headers
meet

kEFposnLeftToolBar Place field in left toolbar
position

kEFposnMainHeader Field is the main header
kEFposnMenuBar Place field inmenu bar position
kEFposnRightToolBar Place field in right toolbar

position
kEFposnStatusBar Place field in status bar position
kEFposnTopToolBar Place field in top toolbar

position
kEFposnVertHeader Field is the vertical header

Copying Text from Disabled Fields

When set to kTrue, the $allowcopy property allows the end user to copy data from a disabled field ($enabled is kFalse). When the
field is enabled, the setting of $allowcopy is ignored.

482



Control Characters

You can specify that control characters are visible in Edit fields (at runtime only): this also applies to Multi-line edit fields, as well as
the editable field part of Combo boxes, Data grids, and String grid controls. A library preference $showcontrolcharacters enables
this for the whole library, or you can set the property for individual controls of those types: you can set the property in the Property
Manager or in your code.

Do \$cobj.\$showcontrolcharacters.\$assign(kTrue)
Do \$clib.\$prefs.\$showcontrolcharacters.\$assign(kTrue)

When set to true, control characters are drawn using a suitable symbol, rather than space which is the default (when the property
is false). Control characters are characters with a value less than Space (with the exception of carriage return for window controls
which use CR as a line delimiter) and Del (0x7f).

Strip Control Characters from Edit Fields

If the $pastestripscontrolcharacters property is true, then all unused control characters are removed when pasting character data
into the edit field, or the editable part of combo boxes, data grids, or string grids. This property applies to Edit Fields (Single-line
entry), Multi-line Edit fields, Masked Entry fields, and Token Edit fields (as well as Combo boxes, Data grids, and String grids). Plus
there is a library preference $pastestripscontrolcharacters to strip control characters for all controls.

The Control characters that are stripped include 0-0x1f and 0x7f. All control characters are “unused” except for the carriage return
line delimiters used by certain fields.

The library preference $clib.$prefs.$pastestripscontrolcharacters defaults to kTrue in a new library, and kFalse in existing (con-
verted) libraries.

Strip Spaces

When set to kTrue, the $stripspaces property ensures that all leading and trailing spaces are stripped from the data before storing
it in the variable or field. This property is set to kTrue to maintain compatibility with previous versions, which means leading and
trailing spaces are stripped from data. If however you want to retain the exact data that is entered by the user, including any
leading and trailing spaces, you need to set this property to kFalse.

Strip Thousand Separators

If the edit field is a number type field and the $stripthousandonpaste property is kTrue, when the end user pastes data from the
clipboard the data is checked for thousand separators and if present they are stripped allowing the content to be pasted into the
field.

Content Tips

Entry fields have the $contenttip property which is a text string which is displayed in the entry field when it is empty and before
the end user has entered any text. Using content tipsmay help the user understandwhat content should be entered into fields in
the forms in your application. For example, for a Last name field you could enter ‘Enter your last name’ into $contenttip to prompt
the end user for their last name. As soon as the cursor enters the field the content tip will disappear.

The text in a content tip can be styled. When you enter the content tip in the Property Manager, a text editor allows you to select
various styles including bold, italic, underline, and colors for the text. You can use the style() function to format the text when
assigning a value to $contenttip, such as con(style(kEscColor,kRed),‘Enter your last name’).

There is an example app called Field Border Icons and Content Tips in the Samples section of the Hub in the Studio Browser.

Animated Content Tips

Content tips for entry fields can be animated,meaning thatwhen enabled and the focus enters the field, the content tip inside the
field will ‘float’ or move up above the field. You can, for example, use an animated content tip instead of a separate label control,
which also creates a more interactive UI.

To allow animated content tips, the $animateui property supported for Entry fields, Multi-line Edit fields, Token Entry fields, and
Combo boxes (the entry field part). When set to kTrue for these field types, and when the focus enters the field, the content tip
will float above the field. When animated, the content tip will shrink to 80% of the edit field font size, and use the same font colors
as the edit field.

This feature is not supported for Entry fields or Combo boxes that are inside a Complex grid.

483



Content Padding

The $contentpadding property allows you to add padding around content inside an Entry Field. It is specified in pixels, with 1 to
4 pixel values separated by -, in the order left, top, right, bottom; if a single value is specified it is applied to all four sides. If the
bottom value is omitted, the top value is used. If the right value is omitted, the left value is used. If the top value is omitted, the
left value is used. For example, a value of ‘3-2-1’ gives a 3 pixel gap on the left, a 2 pixel gap on the top and bottom, and a 1 pixel
gap on the right.

Show Ellipsis

If $showellipsis is true, an ellipsis is shown in the field if the text is too long; the property only applies when the control is read-only
(i.e. the data is not being edited), $horzscroll and $righttoleft are both kFalse, $align is kLeftJst and $passwordchar is not set. Note
that the edit field always includes at least the first character of the text, so very narrow edit fields will sometimes show truncated
text, but in most cases this will not be apparent.

Field Border Icons

You can add icons to the left and right border of Entry fields to provide a visual hint or feedback, adding to the ease of use for
the end user. For example, you could show a check mark icon to indicate when a field has been correctly filled out. There is an
example app called Field Border Icons and Content Tips in the Samples section of the Hub in the Studio Browser.

Field border icons can be added to all window class entry field types, including Single Line Entry fields, Multi Line Entry fields,
Masked Entry fields, and Token Entry fields; the new property only applies when the field border style in $effect is set to kBorderC-
trlEdit (that is, when $fieldstyle is the default CtrlEditText), kBorderCtrlList, or kBorderPlain. Note that the icons are for display
only, and do not report any events, so for example, you cannot add code to them to react to clicks.

Figure 153:

You can set the color of the icon (if using an SVG), the background color of the icon area, and the vertical alignment. By default
the background color is the same as the control. The content area of the edit field is adjusted inside the frame to accommodate
icons if set. If the control is below 20 pixels in height the icon will scale down.

The $bordericonstyle property stores the left and right icon configurations for an Entry field, including the iconid of the left and
right icon (which can be a SVG or PNG specified by character or integer iconid), plus the icon color and background color (e.g. kCol-
orDefault or a RGB value). The single property stores the settings for the left and right icons, which you can specify in the Property
Manager:

484



Figure 154:

The $setbordericonstylemethod allows you to set the left or right icon for an entry field, or clear the icon(s); the method has the
following syntax:

• $setbordericonstyle(bLeftIcon[,cIcnIDName,iIcnTintColor,iBackTintColor])
bLeftIcon should be kTrue to enable a Left icon, or kFalse for a Right icon
cIcnIDName is the name ID of the icon (can be a string for a SVG icon)
iIcnTintColor, iBackTintColor are the colors for the icon and background

The following code for a field eventmethod shows awarning icon on the right if no content is added, otherwise if content is added
a check mark icon is shown:

On evAfter
If len($cobj.$contents)<=0
Do $cobj.$setbordericonstyle(kFalse,"cancel",kDarkRed)
Sound bell
Quit event handler (Discard event)
Else
Do $cobj.$setbordericonstyle(kFalse,"check_circle",kDarkGreen)
End If

To clear an icon, you pass bLeftIcon as either kTrue (left icon) or kFalse (right icon) with no value for cIcnIDName, as follows:

Do $cinst.$objs.FIELD.$setbordericonstyle(kTrue) ## clears the left icon

Emoji and Symbols in Edit Fields (macOS)

On macOS, the standard Emoji and Symbolsmenu item from the Edit menu is supported for Entry fields. This will display the
Character Viewer to allow entry of emoji, symbols, accented letters and characters from other languages. Note this does not
support drag and drop from the character viewer into Omnis.

You can remove theEmoji andSymbolsmenu itemby setting the “useCharacterPalette” item in the “macOS” section of config.json
to false.

Dictation for Edit Fields (macOS)

End users can enter text into an edit field on macOS using the built-in Dictation feature, which tries to convert audible speech
intomeaningful text. To allow dictation to occur the focus must be in the edit field, whichmust itself be editable, i.e. not disabled,
and dictationmust be enabled on the client computer. Dictation is available wherever text input is required, that is, in Single- and
Multi-line edit fields, the edit part of Combo boxes, and edit fields in Complex grids.

485



Disabling Dictation

Support for Dictation is turned on in Omnis by default, so to disable it you need to edit the Omnis configuration file. There is a
“useDictation” option in the “macOS” group in config.json, which must be set to false to disable dictation; note you have to quit
Omnis in order to apply the change to the config.json file. Dictation will be disabled when you restart Omnis.

"macOS": {
"useDictation": false

}

Using Dictation in Edit fields

To enter dictation mode, place the cursor in the edit field and select the Start Dictation option from the Edit menu on macOS,
or press the Function key twice (Fn + Fn). This will open the dictation popup (usually at the insertion point, or in the center of
the screen) and put the computer in listening mode. Dictation can be stopped or cancelled by clicking on Done in the popup, or
using the Stop Dictationmenu option.

Dictation Level

There are two levels of dictation provided bymacOS: Standard orVoice Control (inmacOSCatalina or later). These can be enabled
from System Preferences->Keyboard->Dictation, or System Preferences->Accessibility.

Standard dictation (the default) requires an internet connection and provides speech to text translation using Apple’s servers. On
older systems, the text is not translated until the Done button is pressed on the popup. On newer systems text is translated and
placed into the field while the end user is speaking. Dictation will end automatically when text is entered from the keyboard or
the field loses the focus.

Voice Control has been introduced in macOS Catalina to improve on and replace the earlier Enhanced Dictation feature. Speech
can be dictated in Studio via Voice Control when Dictation is enabled in Studio. Voice Control is enabled via the Accessibility
SystemPreference. When an edit field in Studio is accepting input and Voice Control is active then speech input will be translated
into text via the Voice Control speech engine.

Diacritical Characters

End users can enter various characters with diacritical marks by using a popup. The new Diacritical Character popup is available
on end user windows (window classes) in any entry field that accepts text including Single Line Entry fields, Multi Line Entry fields
and Combo boxes, as well as in most edit boxes in the Studio IDE, including the Method Editor. (Note this feature is not available
for JavaScript Edit controls in remote forms, although if your app is running on a mobile device the soft keypad may provide a
similar function for entering diacritical characters.)

To enter a diacritical character, the end user needs to hold down the character key, and if the character has additional diacritical
options, a popup will be shown containing that character with a range of diacritical marks applied from which a selection can be
made. For example, the end user can hold down on the ‘a’ character key and a small dialog will popup containing a number of
diacritical variations for the ‘a’ character, as shown:

Figure 155:

When the popup is shown the end user can press the Left and Right arrow keys tomove back and forth, and then press Return to
select a character. Clicking the mouse or pointer on a character will also select a character. In addition, the top row in the popup
contains a number index and pressing a numeric keywill select the corresponding character. The Shift key can also be used along
with the character key to enter an uppercase diacritical character.

Pressing Escape or clicking away from the popup will dismiss the popup.

When a character is selected, the popup is dismissed and the last typed character in the original field will be replaced with the
selected character.

486



Popup Content

The popup content varies from language to language. To support different languages a new folder called “Keyboard” has been
added to the “Local” folder in the Omnis tree. If you remove this folder no diacritical popup will be shown.

Five languages are supported: English, French, German, Italian, and Spanish. There is a file for each of these languages: en.json,
fr.json, de.json, it.json and es.json. When the popup is required, Omnis will load the popup content based on the language of the
client, for example, when using English on the client the en.json file is loaded from the Keyboard folder.

You can add more files to this folder to support more languages. The json files have the following structure:

"diacritical": {
"A" : "A À Á Â Ä Æ Ã Å Ā",
"C" : "C Ç Ć Č",
"E" : "E È É Ê Ë Ē Ė Ę",
"I" : "I Î Ï Í Ī Į Ì",
"L" : "L Ł",
"N" : "N Ñ Ń",
"O" : "O Ô Ö Ò Ó Œ Ø Ō Õ",
"S" : "S Ś Š",
"U" : "U Û Ü Ù Ú Ū”

}

Omnis will search this file for the character key being held down and using the above table present a popup with the various
options and index numbers.

You can disable this feature for individual fields in a window class by setting the $disablediacriticalpopup property to kTrue, which
is on the Action tab.

macOS Keyboard Layout

On macOS, the user has an option to show a keyboard language menu allowing them to switch between different STANDARD
language keyboard input layouts.

With the option diacriticalpopupuseosxkeyboardlayout in config.json set to true, depending on the selected keyboard layout in
macOS, Omnis will ignore its own ‘current’ language setting and load a file from the keyboard folder. A ‘language to filemapping’
must also exists in config.json.

For example, if Omnis is in English but diacriticalpopupuseosxkeyboardlayout is true, and the user has selected French from the
standard keyboard layout menu in macOS, Omnis will load the ‘fr.json’ file for the diacritical character popup content.

"diacriticalpopup": {
"diacriticalpopupuseosxkeyboardlayout": true,
"com.apple.keylayout.British": "en",
"com.apple.keylayout.German": "de",
"com.apple.keylayout.French": "fr",
"com.apple.keylayout.Spanish": "es",
"com.apple.keylayout.Italian-Pro": "it",
"com.apple.keylayout.Italian": "it"

}

Slider Control

Group Icon Name (type) Description

Other Slider Control (Xcomp) Draggable button to set a value

The Slider control provides a graphical thumb component that the user can drag to control the numeric setting of another com-
ponent in your window, e.g. a volume control, progress bar, or a setting of some kind.

There is a control called ‘Slider Control’, as well as an External component called ‘Slider Pal’ (in the Deprecated group: see Dep-
recated Components). They behave in a similar way and have many properties in common. The standard built-in component is
described here.

487



The current value of the slider is specified in the property $val; at design time you can enter a default value, and at runtime $val
holds the current value according to where the slider is positioned. You can specify the range for the slider in the $min and $max
properties. Most of the other properties are self-explanatory and handle the appearance of the slider component. The Slider
reports 3 events: evNewValue, evStartSlider, and evEndSlider which you can detect in the $event() method for the component.
These events all pass the current value of the Slider in the pNewVal parameter. As the user drags the Slider thumb the evNewValue
event is trigered and pNewVal is sent to the $event() for the Slider.

For example, awindowcouldhave 3 sliders that let theuser choose a color by setting theRed, Green, andBlue value of a field that is
used to display the color. Each slider has the followingproperties set: $min=0, $max=255, $val=0, $markfreq=64, $bigrange=kFalse.
The window contains 3 instance variables iRed, iGreen, and iBlue for the current Red, Green, Blue value, and next to each slider
there is a display field showing the current value of the appropriate slider.

# $event() behind RedSlider
On evNewValue
Calculate iRed as pNewVal
Do $cinst.$objs.Red.$redraw()
Do method $setcolor

The $event() methods for the green and blue sliders are almost identical except that they act on their respective color variables
and display fields. The color of the display field in the window is set using a class method $setcolor as follows:

# $setcolor class method
# CurrentColor is name of the display field
Do $cinst.$objs.CurrentColor.$backcolor.$assign(rgb(iRed,iGreen,iBlue))

As a further refinement to the example, you could make the Red, Green, and Blue fields enterable to allow the user to choose the
color either using the slider or by entering a value.

The only code you need to add is behind each of the entry fields; note that you need to set the value of the slider to the value the
user enters into each field, as well as limiting the value entered to 255. For example the $event() method for the Red field is as
follows:

On evAfter
If iRed>255

Calculate iRed as 255
Do $cinst.$objs.Red.$redraw()

End If
Do $cinst.$objs.RedSlider.$val.$assign(iRed)
Do method $setcolor

The$event()methods for thegreenandblue entry fields are almost identical except that they act on their respective color variables
and entry fields.

Split Button

Group Icon Name (type) Description

Buttons Split Button Standard button with a dropdownmenu

The Split Button control combines a standard button with a dropdownmenu, allowing you to provide multiple, alternate actions
grouped together in a single button control. The window control is very much like its JavaScript equivalent which is described
here.

String and Data Grids

488

/developers/resources/onlinedocs/WebDev/03jscomps.html#split-button


Group Icon Name (type) Description

Lists String Grid Grid to display character data only

String and Data grids can display data from a list variable in an enterable table format. String grids display character-based data
only, whereas Data grids can display any type of data. You can scroll these grid types horizontally and vertically, and you canmake
the first column and/or first row non-scrolling headers if required. If you tab out of the last column in the last row in a data or
string grid, a new row can be added to the grid.

String Grids

You can use string grids to display character-based data from a list. The row height and column width are set at design time, but
columns can also be sized at runtime if the first row is fixed. String grids have the following properties

• $dataname
the source list variable

• $defaultheight and $defaultwidth
the default row height and column width in pixels

• $cellleftpadding
allows you to add content padding to the left of all cells in the grid

• $designcols and $designrows
number of columns and rows displayed in design mode

• $fixedrow and $fixedcol
sets top row or first column as a fixed header or column

• $extendable
if true a new row is added when you tab out of the last column of the last row

• $columnwidths
specifies a comma separated list of column widths in pixels; when you assign a list to this property it must be in quotes,
runtime only

A string grid instance has the read-only properties

• $gridrows and $gridcols
the number of rows and columns

• $gridhcell and $gridvcell
the current cell column and row number

When you create a string grid, set the $dataname property to the source list variable. Set the number of list rows and columns in
$designrows and $designcols, then add the list-building method behind the grid field.

You can make the first column and row fixed and non-scrolling by setting $fixedrow and $fixedcol. This sets the first row and
column of your list data as the column and row headers. In addition, setting $fixedrow lets you size the columns both at design
and runtime by dragging in the column header. Dragging individual columns overrides any values set in $defaultwidth. If you
want to have variable columnwidths at design time, but not have a fixed row, set $fixedrow back to false after sizing the columns.
If you change $defaultwidth aftermanually sizing the columns, amessage asks whether youwish to keep the non-default widths.

Data Grids

Data grids are very similar to string grids with regards to their appearance, but with some extra features.

• data can be of many types, even pictures

• the row height adjusts to fit the data

• column header names are added as a property

489



When you create a data grid, set $dataname to the source list variable, set $autosize if you want the row height to adjust to fit the
data, then set the number of list rows and columns in $designrows and $designcols, and add the list-buildingmethod behind the
grid field.

Youuse $fixedrow to adjust the columnwidths at design time. You can enter the columnheadings in the $columnnames property
in the dialog that pops up when you click on the property dropdown; note you must set the $designcols property to the number
of columns you require in the grid before being able to add the corresponding column headings.

With the $autosize property on, character-based columns will size to a maximum of 5 lines deep; for larger amounts of data cells
will scroll. Columns containing pictures will size to fit the picture. Different data types are displayed in different ways in a data
grid: Boolean data types become droplists with true/false options, and lists are shown as droplists. Character, number, date and
all other types map to edit fields.

Binary and List data cells

If the property $showbinarylength is set to kTrue, the window class data grid displays the length of binary data, and also allows
the droplist button for a cell to open a modal window to edit list, row and binary columns.

Programming Data and String Grids

String grid cells are normally enterable except those in a fixed row or column. The grid receives specific events when the user
clicks in the grid; it does not receive evClick and only receives evBefore and evAfter when entering or leaving the field. When the
user clicks in a data cell, two events are sent, as follows

• evCellChanging
returns pHorzCell, pVertCell, and pCellData event parameters

• evCellChanged
returns pHorzCell, and pVertCell event parameters

Note these events are not available for complex grids. The parameters pHorzCell, pVertCell are the column and row numbers and
pCellData is a character variable holding the contents of the updated cell. You can use the evCellChanging event to validate cell
data entered by the user. If you discard the event the data is not changed.

# $event() method for the grid field
On evCellChanging
If pCellData = ''

OK message {You must enter a value}
Quit event handler (Discard event)

End If

If the user tabs out of the last column of the last row and the $extendable is set, the evExtend event is sent with the parameter
pRow. You can use this to set up the new row with default data or stop the grid extending, as follows

# $event() method for the grid field
On evExtend
If $cobj.$gridrows > 20

OK message {This grid cannot have any more lines}
Quit event handler (Discard event)

Else
Calculate pRow.Column1 as Default Val

End If

For the fixed column of a data grid, the function mouseover(kMLine) can be used to report the line number of where the drop
occurs when the end user has dragged the row to reorder the list.

Scrolling Tips for String and Data Grids

The following properties control string and data grid scrolling.

• $vscrolltips
if true, enables vertical scrolltips showing the current row number when scrolling; the scrolltip contains the value of column
1 of the current row while scrolling

490



• $hscrolltips
if true, enables horizontal scrolltips showing the current column number when scrolling; the scrolltip contains the value of
row 1 of the current column while scrolling

• $cellbordercolor
the grid cell borders

• $gridendcolor
the color of empty grid where no data appears at the end of the grid

• $gridhcell and $gridvcell
return the current cell using (row,column) coordinates; the first row of the grid is row 1, the first column is column 1

You can replace the default scrolltips for string and data grids by intercepting the evScrollTip event, and providing your own
scrolltip string, evScrollTip has three event parameters:

• pIsVertScroll
if true, the current scrolltip is on the vertical scroll bar, otherwise it is on the horizontal scroll bar

• pScrollPos
the list row number for vertical scrolling, otherwise the column number for horizontal scrolling

• pScrollTip
the scrolltip text, if you do not assign a value the default scrolltip is used

You can also use the Quit event handler command with the discard event option if you do not want Omnis to display a scrolltip.

Subwindows

Group Icon Name (type) Description

Subwindows Subwindow Embeds another window in the main
window

ASubwindow is a field that can contain anotherwindowclass. You canput anywindowclass into a subwindowfield; in this context,
the window class inside a subwindow field is referred to as the subwindow class, and the window containing the subwindow field
is referred to as the parent window. The subwindow class can contain any number of fields or window objects, such as a group of
radio buttons, a set of standard pushbuttons, or it might contain a single field only, such as a complex grid field. The window class
can contain its ownmethods which in effect become themethods for the subwindow field. Subwindow fields let you design sets
of window objects and their associated methods, store them as separate window classes, and reuse them on different windows
as subwindow fields with all their variables and methods encapsulated.

In designmode, the subwindow field appears as a single object, so you cannot access the fields contained in the subwindow class.
The title bar and size borders of the subwindow class are ignored.

In runtime, the fields contained in the subwindow field appear on the open window as standard fields and are part of the normal
tabbing order. A subwindow field is a container field, but it does not contain the $objs and $bobjs groups like other container
fields; its objects are treated as part of the parent window.

When you create a subwindow field, you need to set the $classname property to the name of a window class or select one from
the droplist; normally you should leave the $dataname property empty. When you place the subwindow field it will resize to
accommodate the subwindow class. You can edit the subwindow class at any time by right-clicking on the subwindow field and
selecting Subwindow Class from the context menu.

If you enable the $nobackground property, under the Appearance tab, the background of the subwindow field becomes the
same color and pattern as the parent window. Normally, the text style of individual fields inside your subwindow class is retained.
However, you can force these fields to use the text style of the subwindow field if you enable their $subwindowstyle property in
the original window class.

Openingawindowcontaining a subwindowfield or anynumber of subwindows creates an instanceof eachwindow,whichbelong
to the same task as the parent window instance and contains all the variables of its class. Omnis calls the $construct() methods
of all the subwindow classes first in tabbing order, then the $construct() method of the parent window instance. The reverse
happens on closing the parent window, with the subwindows being destructed after the parent window instance. It is important
not to include an Enter data command in a subwindow $construct() method as this affects the opening of the parent window.

491



You can send parameters to the subwindow’s $construct() method by including a list of parameters in the $parameters property
when you create or modify the subwindow field.

A subwindow instance inherits the properties and methods of its class and superclasses, as well as having the normal properties
of a window field. They are available only within the instance and not to the parent window since the subwindow is private to
itself. Within a subwindow instance, $cobj refers to the current internal subwindow field rather than the container field. From an
internal field method, you can access subwindow field properties using $cobj.$abc, whereas subwindow class methods such as
$control() must be accessed using $cinst.$control().

Floating Fields

Fields inside the subwindow can have their $edgefloat properties set so that they resize with the parent window.

There is a setting “floatWindowSubclass” (default true) which allows you to override the Subclass window floating behavior. The
setting is in the “defaults” section in config.json. You can set this to false to revert to the previous floatingbehaviourwith subclasses
(i.e. not floating if width or height are overridden).

Subwindow Events

To the parent window, the subwindow is a single field and never has the focus, but does receive some events. Field events in the
subwindow are sent only to the subwindow $event() method and not to the parent window. If the nobackground property is not
set, click and scroll events on the subwindow are sent to:

• the subwindow $event() method

• the subwindow field $event() in the parent window

• the parent window $event() method

• the task $control() method

Mouse enter and mouse leave events are sent only to the subwindow $event(), while mouse up, mouse down on the subwindow
are passed to the parent window.

Drag and drop

It is possible to drag and drop data to and from the fields inside a subwindow as though they were in the parent window, and also
to and from the subwindow field itself provided $nobackground is off. When dropping data from the subwindow pDragValue will
usually be set up, or alternatively you could use a custom $contents to hold the drag value (since a subwindow has no default
$contents property).

You cannot use the ‘drag field’ mode tomove an internal field out of a subwindow. You can use the ‘drag field’ and ‘drag duplicate’
modes tomove or duplicate the complete subwindow. When you duplicate a subwindow field, a new instance of the subwindow
class is constructed.

The drag and dropmodes for the subwindow field belong to the field rather than to thewindow inside the field. They are therefore
not known when the subwindow is designed, so the subwindow’s methods need to either switch off unsupported modes in the
$construct() method or be capable of supporting all modes.

Nesting Subwindows

You can nest subwindows up to 999 levels deep, although in practice you probably won’t reach this limit. Beyond this level, the
most deeply nestedwindow/field is not set upwhen thewindow is opened and becomes a display field showing an errormessage.

A subwindow can contain a grid field and vice versa. When a grid contains a subwindow, there is only one instance of the subwin-
dow in the grid field, and not one per line. When a row of the grid is redrawn the current field values are set up and the subwindow
is redrawn. Therefore, a subwindow within a grid which displays instance variables will not work correctly, since all rows of the
grid will share one set of instance variables.

A grid field cannot contain a subwindow which itself contains a grid. If this occurs the nested grid is not set up, and it becomes a
display field showing an error message.

492



Subwindow instance notation

Subwindows have a runtime property $subinst. This is an item reference to the instance contained by the object. You can use its
$methods group to manipulate the methods of the subwindow instance. For example:

Set reference iref2 to $cinst.$objs.Container_1016.$subinst
Set reference iref to iref2.$methods.//$submethod//
Calculate iref.$methodtext as 'Send to trace log {Submethod called}'

Changing the class for a subwindow

You can switch windows in a subwindow field at runtime by assigning a new window class name to the $classname property of
a subwindow control. When you change the window class of a subwindow field, an instance of the new window class is opened
(its $construct is executed) and the previous instance is closed (when $multipleclasses is kFalse).

If the $multipleclasses property of the subwindow field is set to kTrue and you change the window class of the subwindow field,
the previous instance is cached and remains open but is temporarily hidden. Inmost circumstances this will bemore efficient, but
if at runtime you change a window class that is used in a subwindow field you would need to take steps to refresh the subwindow.

There are two messages which are sent to the subwindow instance if $multipleclasses is set to kFalse:

• $swhide()
is sent just before an instance is going to be hidden, because $classname has been set to a different class.

• $swshow()
is sent just after an existing instance, which had previously been hidden, is shown.

If you change $multipleclasses from kTrue to kFalse in an open window instance, any currently invisible instances are destructed.
All instances are destructed when the main window closes.

Subwindow Examples

The following examples use subwindows containing tab strips and pushbuttons. In a window that contains a long list sorted
alphabetically, you might want to allow the user to scroll the list with a single mouse click to show items starting with a given
letter. This can be done using a subwindow containing either a tab strip or a set of Rolodex-type buttons.

There are two Subwindow example apps in the Samples section of the Hub in the Studio Browser, including the one using the
Rolodex-type buttons which is described below.

To create the tab strip subwindow

• Create a window and put a Tab strip field on it

• On the tab strip field, set the tabs property to A,B,C,..,Y,Z

• You may want to change the selectedtabtextcolor property to highlight the tab selected

• Add a $control() method to the window and enter the single command

Do redirect $cwind

Subwindow field events are not passed beyond the subwindow field, but you can use theDo redirect command to redirect events
to the $control() method in the parent window. The subwindow is completely generic and you could use it on any window.

• Create a new window and place a Subwindow field at the top

• Set the subwindow field classname property to the name of your tab strip window

• You may want to set the subwindow field nobackground property to false

• Place a List box field below the subwindowfield and set itsdataname to thenameof your list variable and enter a calculation
if necessary

You need to add the following methods to the parent window. The $construct() method builds and sorts the list using list com-
mands, but you could equally use the $define() and $sort() list methods.

493



# $construct() method in parent window
Set current list cList
Define list {cCol1}
# build your list of data
Clear sort fields
Set sort field cCol1
Sort list

The $control() method in the parent window detects the tab strip event.

# $control() method in parent window
On evTabSelected
Set search as calculation

{upp(mid(cCol1,1,1)) = chr(64 + pTabNumber)}
Search list (From start,Do Not Load Line)
If flag true

Queue scroll (Down,Page) {ListField}
Redraw lists

End If

The search calculation in the $control() method uses the chr() function to derive ‘A’ to ‘Z’ from pTabNumber of 1-26, and compares
it to the value of the first column in the list usingmid(). When amatching line is found, it will appear at the bottom of the list box
and Queue scroll pages down to bring it into view.

To create the Rolodex buttons subwindow

The following example describes a subwindow containing a set of pushbuttons with the letters of the alphabet. Rather than
creating a window with 26 buttons manually, you can do it automatically using the notation. You can paste this code into any
method, but set up the variables first, and run it to create a windowwSubWin.

# Declare variables cWRef and cRef of type Item reference
# Declare variables cLeft and num of type Number
Do $clib.$classes.$add(kWindow,'wSubWin') Returns cWRef
# returns a reference to the new window class
Do cWRef.$height.$assign(60) ## edit this to change the height
Do cWRef.$width.$assign(330) ## edit this to change the width
Calculate cLeft as 5
For num from 1 to 13 step 1
Do cWRef.$objs.$add(kPushbutton,10,cLeft,15,15) Returns cRef
# returns a reference to the new object
Do cRef.$text.$assign(chr(num+64))
Do cWRef.$objs.$add(kPushbutton,35,cLeft,15,15) Returns cRef
Do cRef.$text.$assign(chr(num+64+13))
Calculate cLeft as cLeft+25

End For

Unlike the tab stripwindowdescribed above, theparentwindowneeds to receive thebutton text, which is not supplied as an event
parameter, soDo redirectwill only pass on the evClick. However, you cando this by calling a custommethod, called $alphabutton()
perhaps, in the parent class methods, and pass a parameter.

• Add a $control() method to you subwindow class containing the buttons, with the following code

On evClick
Do method $cwind.$alphabutton($cobj.$text)

• Create a new parent window and place a Subwindow field at the top

• Set the subwindow field classname property towSubWin and nobackground to kTrue

• Place a List box field below and set its dataname, calculation, andmultipleselect properties

For the class methods in the parent window, the $construct() method is the same as the example above. The $alphabutton()
custommethod is similar to the $control() method above, but it has no event handling code and the search calculation is different

494



# declare parameter pChar of type Character
Set search as calculation {mid(cCol,1,1) = pChar}

To create a radio button subwindow

• Create a window with a set of radio buttons and declare a numeric variable, say iNum, for the $dataname property for each
radio button

• Add the window as a subwindow field to your parent window

In the same way as for the previous examples, you can either pass up the event using Do redirect and get the ident of
the button clicked from $cobj, or declare a custom method, say $buttonval, in the parent window, called by Do method
$cwind.$buttonval(iNum).

Switch Control

Group Icon Name (type) Description

Buttons Switch Control (Xcomp) iOS style switch with animated slide

The Switch Control has the appearance of an “iOS style” switch: when the switch is turned on or off (clicked) the round button
slides across and the background changes color. The on/off state is assigned to the $switchon property. The following shows the
OFF (left) and ON state:

Figure 156:

The Switch Control is in the Buttons group in the Component Store (it is an External Component but is pre-loaded): note youmay
need to resize the control to make the background part visible. The Switch Control has the following properties (shown on the
Custom tab in the Property Manager):

• $switchbutton
the color of the round button part of the switch; the default color is white

• $switchcolor
the background color of the switch when switched on; the default color is dark green

• $switchon
true if the switch is on; setting this in design mode sets the default state when opening the window

• $transparencywhenoff
the amount of transparency when the switch is turned off, an alpha value from 0 to 255; the default value is 50

You can test the value of $switchon in the $event method for the control to branch depending on its true/false value.

Tab Pane

Group Icon Name (type) Description

Containers Tab Pane Multiple pages or panes with tabs

The Tab pane control provides separate panes, on each of which you can place any number of fields and background objects. You
can switch panes in design and runtime modes by clicking on the tab belonging to the pane. You can set the position, number

495



and style of the tabs, and whether the tabs have icons in the properties for the tab pane. When you create a tab pane, you can
set $tabcount to specify the number of panes; you can click on each tab and add the fields and background objects as required.
Note that a Tab pane can be used as a Side Panel.

Tab pane fields have the following properties:

• $taborient and tabstyle
the position and style of the tabs; either at the top or bottom (kTopTabs or kBottomTabs), with square, rounded, or trian-
gular shaped panes, either kAnimatedArrow, kDefaultPanes, kIDEPanes, kMacOS8Panes, kRoundedPanes, kSquarePanes,
kTrianglePanes

• $tabcount and $currenttab
number of tabs or panes, and the currently selected one

• $imagenoroom
when insufficient room shows just picture and not text for each tab

• $showimages
shows icons for tabs; specify icons under pane properties

• $showfocus
shows the focus for the selected tab

• $multirow
if true forces the tabs to stack rather than scroll when the field has many tabs

• $forecolor, $backcolor, and $backpattern
sets the color and pattern of the area behind the tabs, not the tab panes

• $selectedtabcolor
the color of the selected tab; defaults to kColor3DFace

• $tabcolor
the color of non-selected tabs; defaults to kColor3Dface

• $colortabselectedhighlightmacos
the color of the active tab on macOS only

An individual pane has the following properties, set under the ‘Pane’ tab in the Property Manager:

• $movetab
allows you to move a tab in design mode, which is useful when adding new tabs and you need to reorder existing tabs

• $tabcaption
text or label for the tab

• $iconid
id of an icon from an icon set (or #ICONS or icon data file); you cannot use icons larger than 48x48 pixels for tabs (enable
$showimages to show icons)

• $tabtooltip
tooltip for the tab; you must enable the Omnis preference $showwindowtips to show object tooltips

Tab panes have the following methods:

• $allpanes
$allpanes(rField[,bAllPanes]) gets/sets the all panes flag for the given field reference

• $enablepane
$enablepane(iPaneNumber,bEnable) sets the enabled state of the pane

• $ispaneenabled
$ispaneenabled(iPaneNumber) returns true if the pane is enabled

• $ispaneshown
$ispaneshown(iPaneNumber) returns true if pane is visible

• $listobjects
$listobjects([iPaneNumber=0]) when iPaneNumber is zero (the default), returns a list of all objects directly contained in the
control. Otherwise it returns a list of all objects on the pane in iPaneNumber; see below

496



• $panenumber
$panenumber(rField[,iPane]) gets/sets the pane number for the given field reference

• $setpaneinfo and $getpaneinfo
sets the pane information using a three column list containing the pane information (tab label, tooltip, icon), or returns a
list; see below

• $settabinfo
$settabinfo(iTabNumber[,cTabCaption,cTabIcon]) sets caption and icon for the tab in iTabNumber

• $showpane
$showpane(iPaneNumber,bShow) shows or hides the pane

When the user clicks on a tab at runtime, the field receives the event evTabSelected,with the parameter pTabNumber containing
the number of the tab clicked. $currenttab changes to the current tab (and pane). Discarding the event will prevent the current
tab from changing.

Tab pane fields can have a $control() method to control events for each of the contained fields.

To access individual tabs or panes using the notation, you must first set $currenttab. For example, to change the text on the
second tab use

Do $cinst.$objs.TabPane.$currenttab.$assign(2)
Do $cinst.$objs.TabPane.$tabcaption.$assign('New tab text')

You can set $disabledfocus to kTrue to completely disable a tab pane field, that is, it will not receive the focus and cannot be
tabbed to.

Styled Text

When the $styledtext property is kTrue, the text for the tabs can use styled text for the $tabcaption and $alltabcaptions properties
to display styled text in the tab captions.

Listing the objects on panes

The $listobjects([iPaneNumber]) method returns a list of objects contained within the specified pane, including all foreground
and background window objects. If iPaneNumber is omitted, the list contains information about the objects on all panes in the
Tab pane field. The list has three columns: object name (empty for background objects), ident of the object, and pane number.

If you mark a field or object as “all panes”, it will be included in the list regardless of the pane number specified.

Getting and Setting the Tab labels

You can get and set the text assigned to the tabs in a tab pane using the $getpaneinfo() and $setpaneinfo() methods.

• $getpaneinfo
Returns a three column list containing the pane (tab) information; columns are the tab label, the tooltip, and the icon ID

• $setpaneinfo
$setpaneinfo(lPaneInfo) sets the pane (tab) information from the specified three column list; columns are the tab label, the
tooltip, and the icon ID; returns kTrue if successful

Tab style on macOS

On macOS, when using tab panes with kDefaultPanes as the tab style, the tab panes have the standard macOS appearance.
However, the multi-row property is ignored for kDefaultPanes on macOS; this limitation on macOS applies to custom tab panes,
as well as built-in windows that use tab panes, such as the Omnis Catalog.

Tab Strip

497



Group Icon Name (type) Description

Navigation Tab Strip Set of tabs only that can be linked to a
paged pane

A Tab strip (or Tabstrip) control contains a set of tabs only (it does not have pages or panes, like the Tab pane control), but is
typically linked to a paged pane control. The tab strip offers similar functionality to a radio button group in that only one tab can
be selected at a time. You could use a tab strip in conjunction with the paged pane field to hide and show a series of fields on
your window.

You enter the text and number of tabs for the field in the $tabs property. Enter a text label for each tab separated by commas. For
example, the text Tim,Sue,Bill will enable three tabs with the specified text.

Tab strip fields have the additional appearance properties:

• $backcolor
sets the color of the area behind the tabs

• $tabcolor and $selectedtabcolor
the color of the tabs, and the selected tab

• $tabtextcolor and $selectedtabtextcolor
the color of the text on the tabs, and the selected tab text color

• $showedge
if true shows the edge of the tab strip

• $overlap
the overlap for the tabs in pixels

• $tableftmargin
the indent for the left tab in pixels

The $selectedtabtextstyle property allows you to assign the font style of the currently selected tab, overriding the font style for all
tabs set in $fontstyle (this property applies to all modes except kTabStripOriginal).

Events

Tab strips receive evTabSelectedwhich you can handle in the same way as tab panes.

Tab Animation

The Tab Strip has a property, $squaremode, which has several different settings to provide alternative appearance and animation
options (the $animateui library property must be enabled to allow the animation). The $squaremode property is set to kTabStri-
pOriginal by default whichmeans it has the same appearance and behavior as in versions prior to Studio 10.0.1. The other options
include:

• kTabStripSquare
the tabs have square corners and fill the entire control area, but there is no animation when the tab changes

• kTabStripAnimSquare
the tabs have square corners and the tab change is animated

• kTabStripAnimLine
the current tab is indicated with a line and the tab change is animated

• kTabStripAnimDot
the current tab is indicated with a dot and the tab change is animated

• kTabStripAnimRndSquare
the tabs have rounded square corners and the tab change is animated

498



The $animateui library propertymust be enabled to use the Tab Strip animations; if the preference is set to false, you can still use
the square, line and dot options but they will not be animated.

The $verticaltabs property is available for all animated tab strip styles, plus when the tab strip has the focus, the Left, Right, Up,
and Down keys can be used to change the current tab.

The animated styles have extra options for an icon and caption: $tabiconid and $tabcaption can be set under the ‘Pane’ tab in the
Property Manager (like Page pane and Tab pane).

There is an example app to demonstrate the Tabstrip animation in the Hub in the Studio Browser, and on the Omnis GitHub repo
at: https://github.com/OmnisStudio. Search for Omnis-TabStrip.

Adding Tabs

The $addtab()method allows you to add a new tab to a Tab Strip. The new tab is added after any existing tabs and its tab number
is returned. The syntax is:

• $addtab(cTabName[,cTabIcon,cTabGroupName])
adds a new tab to the tabstrip with optional tab icon and tab group
cTabName - name of the new tab
cTabIcon - name or ID of the icon for the new tab; you can include the size, e.g. “article+16x16”
cTabGroupName - name of the group into which the tab is added; only applies if your tab strip has groups, see below

• $addtab(cTabName[,cTabIcon,cTabGroupName,bDoNotChangeTab])
adds a new tab to the tabstrip with optional tab icon and tab group
cTabName - name of the new tab
cTabIcon - name or ID of the icon for the new tab; you can include the size, e.g. “article+16x16”
cTabGroupName - name of the group into which the tab is added; only applies if your tab strip has groups, see below
bDoNotChangeTab - if kTrue the current tab is unchanged, otherwise if kFalse or omitted the new tab becomes the current
tab

When a new tab is added, by default the new tab becomes the current tab. However, passing bDoNotChangeTab as kTrue will
suppress the tab change event leaving the current tab unchanged.

For example, the following code adds a new tab called ‘Info’ with the ‘article’ icon from the material icon set:

Do $cinst.$objs.tabs.$addtab("Info"),"article+16x16")

You can assign to the $tabs property to specify or change the tabs. For example, to add a third tab called Bill you can use:

Do $cinst.$objs.TabStrip.$tabs.$assign('Fred,Sarah,Bill')

Tab Strip Groups

You can arrange the tabs vertically into separate groups, but only when the Tab Strip is in vertical mode with one of the ani-
mated styles: kTabStripAnimSquare, kTabStripAnimLine, kTabStripAnimDot, or kTabStripAnimRndSquare. There is an example
app called Tab Groups in the Samples section of the Hub in the Studio Browser.

The individual tabs are specified as a comma-delimited list in the $tabs property, but each tab has the $tabgroupname property,
(under the Pane tab in the Property Manager), which specifies the group the tab belongs to, and $tabgroupcolor specifies the
color used for the background of the tab group header. When you specify a group name in $tabgroupname, the group is added
to the Tab strip and the tab is added to the group automatically.

The properties $tabgrouptextcolor, $tabgroupfont, $tabgroupfontstyle, and $tabgroupfontsize allow you to set the text color, font
type, font style, and font size for the tab group headings.

Expanded Groups

The $expandedgroups property allows you to show all the groups and tabs in one view. When $expandedgroups is set to kTrue
(default is kFalse), a Tab Strip will expand the groups displaying all groups and tabs. In this state the groups cannot be selected,
they are just shown as headings. Note $expandedgroups is only supported in vertical mode. The following screenshot shows a
Tab Strip in a non-expanded state (left) and expanded state (right):

499

https://github.com/OmnisStudio


Figure 157:

Figure 158:

500



Scroll Bars

A scroll box will be added to a Tab Strip in vertical mode when required, for example, when its groups are fully expanded and tabs
at the bottom are hidden (applies when $verticaltabs and $expandedgroups are kTrue). In design mode, you need to click the
scroll button to scroll the Tab Strip. In runtime, moving the mouse into the scroll area scrolls the control without needing to click.

Events

The evTabGroupChanged event is sent with the pTabGroup parameter when the control is about to change groups, which can
be discarded if required.

Keyboard Navigation

When groupedmode is enabled and the Tab Strip has the focus, you can use the keyboard to navigate the tabs or groups: the Up
and Down keys navigate between the tabs within the group order (the groups will open automatically as you navigate to a tab),
while the Shift Up and Down keys will jump up and down between groups, opening the group as it gets the focus.

Close Boxes on Tabs

You can add a close box to all tabs by setting the $showtabclosebox property to kTrue. This property only applies to horizontal tab
strip controls using any of the animated display options, e.g. when $squaremode is set to kTabStripAnimRndSquare. The close
box option allows the tab strip to behave in a similar way to tabs in a web browser.

Pressing a close box generates an evTabClosing event, which can be trapped in the $event method for the control, or optionally
it can be discarded.

Animated Line and Dot Modes

The $tabcolor property specifies the color to be used for the line path or placeholder dots for non-selected tabs when $square-
mode in a Tab Strip is set to kTabStripAnimLine or kTabStripAnimDot. In the following example, tab 4 is selected and the non-
selected lines and dots are shown under tabs 1 to 3 since $tabcolor is set to kColor3DShadow.

kTabStripAnimLine

kTabStripAnimDot

By default the color in $tabcolor is kColorDefault which means the line path or placeholder dots are not shown (as in previous
versions), so you need to select a color in $tabcolor to show the non-selected lines and dots.

Token Entry Field

Group Icon Name (type) Description

Entry Fields Token Entry Field Field which tokenizes entered text

A Token Entry Field allows the end user to enter text which then becomes tokenized; a token is a single block of text that can be
easily selected, moved, copied or deleted as a single item. The behavior of the Token Entry Field is very similar to the Recipients
(To:) field in an email program, such as Applemail or Google gmail, where you enter each email address as a block or token. When
you start to type a name, a popup list will appear containing all entries that match what you typed and you can select one of the
emails in the popup list, or you can complete the email address manually. You can then press Tab or Return to complete your
selection and the text becomes a single block or token.

A token in the token entry field is defined to be a character string that either conforms to the syntax specified by a regular ex-
pression associated with the field ($tokenregexp), or matches one of a set of possible values in a list associated with the field
($tokenlist). As the token entry field operates on text, its $dataname needs to be set to a Character variable.

501



The token entry field allows the end user to enter and display a delimited list of tokens, separated from each other by a delimiter
character (such as a comma, the default delimiter). Tokens also have an additional syntax (defined by RFC822), where they can be
expressed in the formdisplayText<tokenValue>. In this case tokenValue is the actual token that conforms to the regular expression
or a value from the token list, and displayText is the text displayed in the field when the item is tokenized (and not being edited).
For example, consider the comma-delimited text string containing four tokens (email addresses):

BobMitchell<bob.mitchell@omnis.net>,JasonGissing<jason.gissing@omnis.net>,BobWhiting<bob.whiting@omnis.net>,colin.richardson@omnis.net

When displayed in the token entry field, it will look like the following, when the third token is currently being edited:

Figure 159:

Using a Token Entry Field

As you start typing text into a Token Entry Field, the text will become a token value: if the field uses the additional display text
syntax, then this needs to be part of the text you are entering. As soon as you press Return or a delimiter character, this terminates
entry of the new token, the token is then displayed as either a valid token or an invalid token, and the caret is positioned after the
token, ready for you to enter the next token.

Figure 160:

There is a down arrow button for valid tokens, which you can press to open a menu for the token, while there is an x button for
invalid tokens that you can press to delete the token.

The token entry field does not allow empty tokens by removing consecutive delimiter characters. In addition, the token entry field
does not support overtype mode, and does not allow leading or trailing whitespace for tokens and will strip these automatically.

Once you have entered some tokens, you can use the arrow keys to navigate around the tokens, and then insert a new token by
typing some text if required. While you are entering a new token value, mouse selection of text, and left arrow, right arrow and
other relevant key combinations are restricted to the new token being entered, to prevent premature termination of edit mode
for the new token. However, up or down arrow will terminate entry of the new token.

When the caret is positioned between tokens, pressing forward delete will delete the next token, and pressing backspace will
select the previous token (this latter behaviour is how themacOS standard token entry field behaves). In addition, when the caret
is positioned before a token, pressing return starts editing the token.

The token entry field also supports popup assistance, providing a list of tokens that match the text entered so far, allowing you to
select one of the values in the popup list to populate the new token. The popup only displays after a pause in typing, the length
of which can be configured in config.json (“defaults”, “tokenEntryPopupDelay”, default value 500milliseconds). If there is a single
valid token selected, or if the caret is positioned before a valid token, pressing Alt/Option+Return opens the menu for the token if
present.

You can select a token or contiguous range of tokens using the arrow and other keys, like any other objects, so that you can delete
them or copy them to the clipboard for example. Double-clicking on a token (when the Shift key is not pressed) starts editing the
token. The Undo option works as you would expect for an Entry field.

You can use drag and drop to re-order tokens, or to move or copy tokens from one token entry field to another. In order to do this,
a couple of lines of Omnis code are required (described below).

Properties

The token entry field supports many of the standard properties supported by other entry fields. The $objtype property for the
token entry field has the value kTokenEntry. The $dropmode property has a new constant kAcceptTokenEntry to accept drop
data.

502



$tokenlist

The $tokenlist property is the name of the list variable containing all possible token values which is used for popup assistance and
token validation. If omitted or empty, the list for popup assistance is obtained by sending the evGetTokenList event.

When specified, the $tokenlist can have just one Character column containing all the valid token values, possibly including some
displayText. The $tokenlist can contain more than one column, in this case it must have a column with the name ‘name’ that
contains all of the valid token values, possibly including somedisplayText. The list canoptionally have additional character columns
named ‘desc’ and ‘iconid’, that contain a short description of the token, and an icon to represent the token.

Youmayneed to consider performancewhendecidingwhether or not to use $tokenlist. Performance is affectedby a combination
of the number of possible token values, and the likely number of tokens entered.

The entry field popupwill always display either the token text or displayText. In addition, the popupwill display the desc value and
the 32x32 icon with the specified icon id if either or both of these columns are present. The popup draws the desc column using
the same font as the token entry field, with a point size 2 smaller (unless the token entry field font point size is less than 7, in which
case it uses the same font). For example:

Figure 161:

$tokenregexp

The $tokenregexp property is a regular expression used to validate the syntax of a token. If $tokenlist has a list of all possible
tokens, you can still use $tokenregexp for a pre-validation step that reduces searches of $tokenlist.

The regular expression in $tokenregexp uses the new PCRE2 implementation. If you omit both $tokenlist and $tokenregexp, all
token values are valid.

$tokencase

If true, tokens are case sensitive. This affects both searches of the token list and execution of the regular expression.

$tokenmenu

The $tokenmenu property contains the contents of the token menu. If specified, all valid tokens have a dropdown button that
can be used to open this menu (as a context menu). The selected token is available as the pToken event parameter of evOpen-
ContextMenu.

You can distinguish between the user using the context menu and the user using the tokenmenu, because pToken has the value
#NULL when using the context menu.

Note also that pToken includes the displayText as well as the token value if the token has a displayText component.

$showtokendeletebutton

If $showtokendeletebutton is true, all tokens have a delete button when the control is enabled.

The $tokendelimiters property contains one or more delimiter characters which are used to separate tokens (default is a comma).
Each character specified can be used to separate tokens from each other in the data stored in $dataname. The first delimiter
character is the default that the control uses when it needs a delimiter.

Note that this means that token values and displayText cannot include any of the delimiter characters, nor can they include < or >.

Token Colors

The token entry field has 4 token-specific color properties: $validtokenbackcolor, $validtokentextcolor, $invalidtokenbackcolor,
$invalidtokentextcolor.

Each of these can be set to kColorDefault, whichmeans use the corresponding entry in the token section of appearance.json (this
is a new section for this control).

503



Events

The token entry field supports the same standard events as the Multi Line Entry Field, with a few exceptions noted here. It does
not generate evClick, and will only generate evDoubleClick when the control is read-only. In the latter case, if $allowcopy is kTrue,
it will only generate evDoubleClick when double-clicking on a token.

As the control does not scroll horizontally, it does not generate evHScrolled.

evGetTokenList

The evGetTokenList event is sent to the token entry field when $tokenlist is not specified, to get the list of possible token values
for the popup. This event has two event parameters:

• pNewText: The text entered by the user, for which the list of possible token values is required.

• pTokenList: The list of possible token values to be displayed by the token entry popup. Assign this parameter when process-
ing evGetTokenList.

The list to return via pTokenList has the same characteristics as $tokenlist. Note that whereas the token field sorts the list of values
to display in the popup when using $tokenlist, the token entry field does not sort the list returned via pTokenList.

A simple example:

On evGetTokenList
Do pTokenList.$define(cTokens)
For #1 from 1 to 10

Do pTokenList.$add(con(pNewText,"Test",#1))
End For

evTokensAdded and evTokensDeleted

When the $sendtokenevents property is set to kTrue (default is kFalse), the control sends the events evTokensAdded and evTo-
kensDeleted.

• evTokensAdded
sent to the token entry field when one or more tokens have been added (if $sendtokenevents is true)

• evTokensDeleted
sent to the token entry field when one or more tokens have been deleted (if $sendtokenevents is true)

Both of these events have an event parameter, pTokenChanges which is a list of tokens that have been added or deleted, com-
prising two or three columns: name (token), display (display text) and optionally the tag.

Methods

$gettokens

$gettokens([bSelOnly=kFalse, bIncludeInvalid=kFalse, bIncludeDisplayString=kFalse, bSort=kFalse, bRemoveDuplicates=kFalse,
bSplit=kFalse])

Returns a single column list of the tokens stored in the control.

• bSelOnly. Only return selected tokens.

• bIncludeInvalid. If true, return all tokens, otherwise just return valid tokens.

• bIncludeDisplayString. If true, the values added to the list include the displayText component.

• bSort. If true, sort the returned list in ascending order. Sorting uses $tokencase to determine if case-sensitive sorting is
required.

• bRemoveDuplicates. If true, remove duplicate entries. Note that if bRemoveDuplicates is kTrue bSort must also be kTrue.

• bSplit. If kTrue, the returned list has two or three columns: name, display and optionally the tag. The bIncludeDisplayString
parameter is ignored if bSplit is true.

504



$droptokens

$droptokens([bRemove=kFalse, bSetFocus=kTrue])

Call this during evDrop for the token entry field, to insert dragged tokens into the current drop location, optionally remove them
from the drag source, and optionally set focus to the drop destination. Returns true for success.

• bRemove. If true, remove the dragged tokens from the drag source, if it is a token entry field.

• bSetFocus. If true, set the focus to the destination token entry field where the drop is occurring, after moving or copying
the tokens.

You can set up the token entry field to accept data dragged from other controls, and if that data is text it can be used with
$droptokens(); in this case, bRemove is not applicable. For example, in $event for a token entry field:

On evDrop
Do $cobj.$droptokens(kTrue)

In this case, you need to set $dropmode to either accept all, or include kAcceptTokenEntry.

Token Tags

Tokens can have a tag, which is a character string that the application can use to identify the source of the token, or some other
information about the token. Although the tag is part of the data, it is not visible to the user.

To use tags, set the $tokentagseparator property, which is a single character that separates the token tag from the rest of the
data for a token. The property defaults to empty, meaning tags will not be used. You can enter \t and \f to use chr(9) and chr(12)
respectively. Using ~ as the tag separator, each token can be one of the following, depending on whether tags are being used:

• tokenValue

• displayText<tokenValue>

• tokenValue~tag

• displayText<tokenValue>~tag

You should ensure that the tag separator and < > characters used when including display text are not part of the displayText or
tokenValue.

The characters \t and \f can be entered in the $tokendelimiters to use chr(9) and chr(12) respectively. Using \t or \f allows the
unambiguous use of JSON syntax characters in tags.

When $canedittokens is kFalse (default is kTrue), the end user cannot edit a token as text (by double clicking on it, or pressing
return when it is selected); however, you can type some text to cause the token popup menu to display. When using a tag in the
token, data you would typically set $canedittokens to kFalse, because otherwise the tag could become meaningless if the user
edits the token data.

Trans Button Control

Group Icon Name (type) Description

Buttons Trans Button (Xcomp) A ‘rollover’ type button

The Trans Button control implements a ‘rollover’ type button. As the mouse enters the control a different icon is displayed. The
control supports a transparent background.

The ‘on’ and ‘off’ icons are specified using the $insideicon (on or over state) and $outsideicon (off state) properties. The text or label
for the button can be specified in $text. The text can be boldened when the mouse enters the button by enabling the $boldover
property.

When set to kTrue, the $nodrawhotrect property prevents the rectangle drawing during hot tracking: the property is set false by
default for compatibility, which means the rectangle is displayed. Note that the hot rectangle is not displayed on macOS, so this
property has no affect when running on macOS.

505



Transform Control

Group Icon Name (type) Description

Other Transform Control (Xcomp) Adds animation or effects to window
objects

The Transform external component allows basic non-blocking animation and transformation effects to be added to window
classes and window objects. (Note this is not for JavaScript objects on remote forms).

Transformation can be applied to any numeric window or object property accessible via standard Omnis notation, including
background, foreground and external components. Transformation cannot be applied to attributes that require character values
(e.g. text and date fields) and cannot sensibly be applied to attributes that use constant values (e.g. colors and Boolean values).

Note: there is a tech note on the Omnis website that provides more information and example libraries for the Transform compo-
nent:

https://www.omnis.net/developers/resources/technotes/tnxm0004.jsp

How does it work?

During standardOmnismethod execution, assignment of property values is normally actioned immediately. The transformobject
works by making these assignments incrementally using a specified number of steps. The delay between each step can be
specified and it is also possible to specify a ‘convergence effect’ to be used. Convergence allows a number of additional animation
steps to be added that slow or graduate the animation to give the desired visual effect.

There can bemultiple transformobjects on a singlewindow, eachwith its own set of ‘state’methods and animation settings. Each
object uses its own internal timer values, allowing multiple transform objects to execute independently of one another.

Adding a Transform Object

The Transform component is in the Other group in the Component Store. If you double-click on the component, you will note
that aside from $construct, $destruct and $event, no default methods are shown. The transform component’s primary method
$transform() is private and should not be overridden.

Aside from being placed on the window, the transform component has no visual display capability so it may be desirable to set
the component’s $visible property to kFalse or position it beyond the window’s edge.

Creating Transform States

The transform object uses methods to encapsulate each ‘target state’, that is, after the transform object is placed on the window,
one or more methods are created inside the object that represent each state. Eachmethod line takes the form of an assignment
statement, e.g.

Do $cwind.$objs.object.$attribute.$assign(value)

Calculate…as statements may also be used although the transform component will attempt to convert these to Do…$assign()
statements. Non-assignment statements, including but not limited to computational, control and conditional statements will be
ignored by the transform object and should be avoided.

Assignment statements can include full notation, e.g. $root.$iwindows.myWindow… as well as contextual notation using $cinst
and $cwind. Square bracket notation and other context-sensitive addressingmay not be used on the left-hand-side of the assign-
ment as the underlying timer object will not have access to context-specific information during execution.

Assignment values can include literal values and instance variables including those derived from list and row variables as well as
context-specific notation, such as $cwind. This is possible since acquisition of the current and target values (as well as expansion
of $cinst/$cwind) is performed during initialization of the transformation.

506

https://www.omnis.net/developers/resources/technotes/tnxm0004.jsp


Wait Statements

When parsing a state method, the transform component additionally recognizes ‘wait’ statements. These are written in to the
method as comments and take the form:

# wait n

where n specifies a number of animation frames to wait before proceeding. Wait statements create the effect of staggering the
commencement of animation for any statements that follow.

Invoking Transformation

To invoke transformation to agiven state, youhave to call the object’s $transform()method, passing thenameof the targetmethod
as a parameter, for example:

Do $cwind.$objs.myTransform.$transform('$state1') Returns #F

Note that it is not sufficient to simply invoke the object’s state method directly.

Aside from their use by the $transform()method, there is nothing to prevent transformobjectmethods frombeing called explicitly
by other window objects or via the transform event methods. If you add non-assignment statements to such methods and call
them explicitly, these methods will execute as normal. This also allows various transform states to be tested if required.

If $transform is called on an object that is already executing, the current transform terminates and the new transform is calculated
basedon the current values of thewindowproperties. It is also possible to invoke $transform() fromeither of the evTransformBegin
or evTransformComplete event messages although this should be carried out judiciously in order to avoid unwanted recursion.

Transform Object Methods

The transform object supports a single method that analyzes the specified target ‘state’ method, builds a list of applicable as-
signment statements and compiles them into blocks of statements to be executed during each animation frame. The compiled
statement list is then passed to an internal timer object which processes the list until transformation is complete.

Method Description

$transform() $transform(cState) invokes transformation from the
window’s current state to the specified state. cState is the
name of a private or public ($) method inside the
transform object. $transform() returns kTrue on success,
kFalse otherwise.

$event() The transform object supports two custom event
messages:evTransformBegin and
evTransformComplete.evTransformBegin is called
immediately when $transform() is called.
evTransformComplete is called when the transform
execution list is exhausted.In either event, the method
name representing the target state is passed via event
parameter 2.If $transform() is called on an object that is
already executing, evTransformComplete is not called for
the current transform and evTransformBegin will be called
for the new target state instead.

Transform Object Properties

Property Description

$animdelay The delay in milliseconds between each frame of the
transform animation. The default value is 20ms.

507



Property Description

$numsteps The number of steps required to complete the transform
(default 20). Note that when non-linear convergence is
specified, this is an approximation only since additional
steps are automatically added to facilitate the decreasingly
smaller step sizes which occur during convergence.

$convergence Specifies the type of convergence to be used as animation
completes. The default value; kConvergeSine causes the
step size to decay gradually/sinusoidally. kConvergeLinear
turns-off convergence and the step size will be constant.
kConvergeOvershoot employs decaying sinusoidal
convergence to create an overshoot/bounce effect.

Tree List

Group Icon Name (type) Description

Lists Tree List Displays list data in an expandable
hierarchy

There is a standard built-in component called ‘Tree list’, and an External component called ‘Tree List’ (in the Deprecated group:
see Deprecated Components). They havemany properties and events in common. The standard built-in component is described
here.

A Tree List provides a graphical way of displaying a hierarchy of items, defined as follows:

• Each item in the hierarchy is a node.

• The node at the top of the hierarchy is a root node.

• A node can contain one or more child nodes, and each of these child nodes can contain its own child nodes.

• If a node does not have any child nodes, it is a leaf node.

• The node that contains a child node is referred to as the parent node of the child.

• Each node in the tree can have at most one parent node. If a node does not have a parent node, then it is a root node.

An example of such a hierarchy is the set of disk volumes on a computer, and the folders and files they contain:

• The root nodes are the disk volumes.

• There is a child node for each folder and file.

• The files are leaf nodes

• The parent node of each file or folder is the folder or disk volume containing the file or folder.

Each node in the tree has a node name, which is drawn as text representing the node. In the above example, the node name
would be the volume, file or folder name.

Each node has an expand/collapse box which has two states, expanded and collapsed. When the box is collapsed, the children of
the node are not visible; the user clicks on the box to expand the node, and show the children. When the box is expanded, the
children of the node are visible; the user clicks on the box to collapse the node, and hide the children.

A tree list can also have additional columns. In this case, the node names of the tree are in column 1, while the additional columns
of data are columns 2 and greater. A tree with additional columns of data inherits some of the appearance and behavior of a
headed list box. Each node of the tree has an associated row variable containing the data for columns 2 and greater.

The appearance of tree lists is governed by a number of properties for the tree and for individual nodes, which you can set up
either in design mode or using the notation. You can select a specific icon for each node, and for the expand/collapse box, and
specify the color for the node name. You can also show lines connecting the nodes and change the horizontal and vertical spacing
to accommodate large icons. The position and state of the node icons can also be set.

The tree Appearance properties are

508



• $treelinehtextra
sets the distance in pixels between lines in the tree; useful when nodes have large icons

• $treeleftmargin
the distance in pixels from the left before the tree starts drawing

• $treeindentlevel
the distance in pixels between levels of nodes in the tree; useful when nodes have large icons

• $defaultnodeicon
node icon id used by all nodes with a zero iconid.

• $expandcollapseicon
the icon id used for the expand/collapse box; defaults to the +- icon

• $showhorzlines and showvertlines
if true show connecting horizontal and vertical lines

• $shownodeicons
if true shows node icons

• $nodeiconpos
controls position of the expand/collapse box if a node has children: kIconOnNode next to node icon or node name; kIconOn-
Left on the left of the tree; kIconSystemSet according to the operating system (underMacOS left side of tree, underWindows
and Unix next to the node icon or node name)

• $treenodeiconmode
controls whether the normal or checked state of a multi-state node icon is drawn; kNodeIconFixed to use the $checked
property of the node, kNodeIconLinkExpand to draw the checked state if the node is expanded, kNodeIconLinkLine to
draw the checked state if the node is the current line.

• $designcols
The number of columns. For a tree list with additional columns, set this to a value greater than one

• $columnnames
A comma separated list of column headings for the tree list header

• $hideheader
A Boolean. When false, the tree list displays a header for its column(s).

• $showcolumnlines
When true, the tree list draws lines between its columns

• $boldheader
When true, the tree list draws the text in the header using a bold font

• $defaultwidth
The default column width in pixels

• $headerfillcolor
The color used to fill the header

• $hilitecolumns
When true, additional columns are highlighted when their node is the currently selected node. This defaults to true.

• $showheaderlines
If true (the default), header separator lines are drawn in the header

You can use 32x32 or 48x48 size icons for tree list nodes. You need to turn on the $useiconsize appearance property of the tree
object to assign larger icon sizes to tree lists. You may also need to adjust the $treelinehtextra and $treeindentlevel properties to
accommodate the larger icons.

Tree List Node Icons

Nodes in a Tree list have an expand/collapse box, drawn using an icon from an iconset (or #ICONS or icon datafile in legacy apps).
Each node in the tree can also have a node icon. This icon can be a multi-state icon, and properties of the tree list and the node
determine if the normal or checked icon is drawn.

The $iconcolor property for a tree node sets the icon color when using a themed SVG icon. The $defaulticoncolor property for
a tree list control sets the icon color when using themed SVG icons and the $iconcolor property of the item is kColorDefault. If
$defaulticoncolor is also kColorDefault, then themed icons use the text color.

509



Tree List Hot Tracking

Hot-tracking behavior for a tree list can be enabled using the $hot property. Hot-trackingmeans that nodes are underlined when
the mouse moves over the text for the node, plus the color of the node text changes to the system colour kColorHotlight. When
you click on the highlighted text, the node expands and any previously expanded node will collapse, provided it has the same
parent as the expanding node. The $hot property can have three values: kHOTplatformDefault, the field has the default hot-
tracking behavior for the current operating system (hot-tracking for XP with themes only); kHOTnotHot, the field does not have
hot-tracking behavior; kHOThot, the field has hot-tracking behavior.

Populating a Tree List

You can enter default entries for the tree list using the $treedefaultlines property. You can also populate the tree list at runtime
using various methods described later in this section.

To enter default lines in a Tree list, click on the button displayed for the $treedefaultlines property in the Property Manager; this
displays the default lines dialog which lets you build a tree by adding root nodes and child nodes. You can edit the node names,
change the icons, and add child levels. Right-click on a node to modify it, using the following options:

• Always Show Expand Box
shows an expand/collapse box even when there are no child nodes: this toggles the node property showexpandalways

• Enterable
lets the user edit the node name

• Node Color
presents a palette to choose node color; restored by Default Color

• Node Icon
displays the available icons; restored by Clear Icon

• Node Ident
lets you enter an ident number, cleared by Clear Ident

Tree Node Properties

In addition to the Tree List object itself, you can use the notation at runtime to manipulate the properties of a node. A node has
the properties

• $showexpandalways
if true the node will always draw an expand/collapse box; useful for populating a node on the evTreeExpand event

• $iconid
id for the node icon: if 0, the node displays the defaultnodeicon for the tree list, or no icon if defaultnodeicon is 0.

• $ident
a long integer you can use to identify the node. The ident value can be any value you like, and it enables you to program
the behavior of the tree list via events and methods.

• $textcolor
the color in which the tree list draws the node name: if kColorDefault, the tree control’s textcolor is used

• $drawinactive

When true, the tree list draws the node name using the gray text color. This overrides the textcolor property. The default value of
this property is false.

• $name
node name: the text drawn in the tree list for the node

• $enterable
if kTrue, the node name can be edited by the user at runtime. To edit the node, the user clicks on the text for the current
line.

• $seedid
a unique number assigned to the node when Omnis creates it. The seedid is only unique within the context of a single tree
list object.

510



• $nodeparent
returns an item reference to the node’s parent node

• $isexpanded
true for nodes which are in the expanded state

• $checked
if true, the node is “checked”. Depending on the treenodeiconmode property of the tree list, this controls how the node
icon (if any) is drawn.

• $level
returns a number indicating the indent level of the node: level 1 indicates root nodes

• $tag
A user value stored with the node. You can use this to store additional information with the node. Omnis does not use this
information. It is there to help you program the tree.

• $rowdata
Used for a tree list with additional columns, this is a row variable value containing the data for columns 2 and greater.

Tree List Animation

The Tree List has the $animateui property, whichmeans that when enabled the contents of the list will display by dropping down
gradually as you open the control. If $animateui is disabled the tree list content drops down instantly, as in previous versions.

Tree List Methods

Tree list methods include

• $clearallnodes()
clears the tree of all nodes

• $count()
returns the number of root nodes in the tree

• $add(name[,ident,rowForColumns])
adds a new root node to the tree: ident is optional and defaults to 0; rowForColumns is optional, and is a row variable
containing the data for additional columns. $add returns an item reference to the new node

• $remove(itemref)
deletes the child node identified by tree node item reference itemref

• $getvisiblenode(iVisLine)
returns an item reference to the node for the visible line number iVisLine

• $findnodename(itemref, name, recursive, ignoreCase)
searches either the tree (pass itemref = 0) or the node itemref for a node which has the specified name. recursive is a
Boolean which controls whether the search only includes immediate children, or searches the children of children and so
on; pass a true value for a recursive search. ignoreCase is a Boolean: pass a true value to ignore casewhen comparing names.
$findnodename returns an item reference to the first matching node found, or NULL if no matching node exists.

• $movenode(rItem,rItemMoveAfter[,bMoveNode]) moves rItem to after rItemMoveAfter, and returns kTrue if successful.
bMoveNode lets you specify where the node is moved to and can have the following values (a constant):

Constant Description

kMoveNodeAfterDst moves rItem, after rItemMoveAfter - nodes all operate on the same level
kMoveNodeToDstFirstChild moves rItem into rItemMoveAfter and sets rItem as the first child node
kMoveNodeToDstLastChild moves rItem into rItemMoveAfter and sets rItem as the last child node

511



Node Methods

Nodes also have methods, which include

• $clearallnodes()
clears all nodes beneath the node

• $count()
returns the number of nodes immediately below the node

• $add(name[,ident,rowForColumns])
adds a newchild nodebeneath the node: ident is optional anddefaults to 0; rowForColumns is optional, and is a row variable
containing the data for additional columns. $add returns an item reference to the new node

• $expand() and $collapse()
expands or collapses the node

• $first()
returns an item reference to the first child node of the node

Moving tree list nodes

You can move a tree list node using the $movenode() method. $movenode(rItem,rItemMoveAfter[,bAddAsChild=kFalse]) moves
rItem to after rItemMoveAfter, and returns kTrue if successful. The optional bAddAsChild Boolean parameter can be used to insert
the node rItem as a child of rItemMoveAfter (if set to kTrue) or inserted at the same level (kFalse, the default). For example:

Set reference node1 to $cinst.$objs.tree.$findnodename($cinst.$objs.tree.$first(),"Node2",kTrue)
Set reference node2 to $cinst.$objs.tree.$findnodename($cinst.$objs.tree.$first(),"Node5",kTrue)
Do $cinst.$objs.tree.$movenode(node1,node2)

Interchanging Data with Lists

Using the methods $setnodelist() and $getnodelist() you can either populate the whole tree or a node from a list variable, which
must contain a sorted list, or retrieve data from the tree to a list variable.

• $setnodelist(listmode, noderef, listname)
lets you populate the tree or a tree node from a list: listmode is one of kRelationalList, kFlatList and kTreeColList; noderef is
either zero to populate the entire tree, or a node reference; listname is a list variable e.g. tList

• $getnodelist(listmode, noderef, listname)
lets you retrieve information from the tree, or from a node and its children into a list: listmode is one of kRelationalList,
kFlatList and kTreeColList; noderef is zero to retrieve the entire tree, or a node item reference; listname is a list variable
e.g. tList

For a relational list (kRelationalList), you supply list data such as:

Node

RootNode Child 1
RootNode Child 2 Child 1
RootNode Child 2 Child 2
RootNode Child 2 Child 3
RootNode Child 3
RootNode 2 Child 1
RootNode 2 Child 2

To populate the whole tree from a relational list, you would use the line

Do $cwind.$objs.TreeList.$setnodelist(kRelationalList,0,tList)

512



In this case the tree contains all the information but the nodes are all in the default state.

The flat list option (kFlatList) lets you specify the node property settings $iconid, $ident, $enterable, $isexpanded, and $textcolor
as the final 5 columns of the list. For example:

Name Name $iconid $ident $enterable $isexpanded $textcolor

RootNode 0 100 0 0 0
RootNode Child 1 0 101 0 0 0
RootNode Child 2 0 102 0 0 0
New Root 0 200 0 0 0
New Root Child 1 0 201 0 0 0
New Root Child 2 0 202 0 0 0
Last Root

The $isexpanded value can be the sum of the constants kTREEnodeExpCollapseAlways and kTREEnodeExpanded; setting it to
value 0 or 1 will display the node collapsed, value 2 will show the node expanded:

• kTREEnodeExpCollapseAlways
indicates that the node always has an expand-collapse box.

• kTREEnodeExpanded
indicates that the node is currently expanded.

The command

Do $cwind.$objs.TreeList.$setnodelist(kFlatList,0,tList)

sets the contents of the tree list using the list. This example assigns the list to an existing node:

Set Reference CurrentNode to TreeRef.$currentnode
Do CurrentNode.$setnodelist(kFlatList, CurrentNode,tList)

To retrieve data from the tree, $getnodelist() does the opposite to $setnodelist() and copies data from the tree to a list. There is no
need to define the list first. This line retrieves the whole tree and its node properties to a list:

Do TreeRef.$getnodelist(kFlatList,0,tList)

This code retrieves the current node data but no node properties to a list:

Set Reference currentNode to TreeRef.$currentnode
Do TreeRef.$getnodelist(kRelationalList,currentNode,tList)

Finally, the kTreeColList option allows you to use the same information as kFlatList, together with the data for additional columns.
There is one extra column required by the kTreeColList option. The column is itself a row, and it contains the data for columns 2
and greater of the tree. For example:

Name Name Row $iconid $ident $enterable $isexpanded $textcolor

RootNode 0 100 0 0 0
RootNode Child 1 0 101 0 0 0
RootNode Child 2 0 102 0 0 0
New Root 0 200 0 0 0
New Root Child 1 0 201 0 0 0
New Root Child 2 0 202 0 0 0
Last Root

Each row of the list has a row variable value in the column Row.

Node Tooltips

The $getnodetooltip(rNoderef) method is called (if $tooltip is empty) to get the tooltip to display when the mouse is over the
specified node rNoderef. It returns either a styled text tooltip string, or an empty string (meaning use the default tooltip text). To
implement this method, right click on the method name in the method tree, and override it.

513



Tree List Events

The $event() method for tree lists receives event messages in response to user actions in the tree.

The evTreeExpand event indicates that a node is about to be expanded and provides a reference to the node in pNodeItem. You
can use this to populate a node using $add(), for example:

On evTreeExpand
Set Reference NewNode to pNodeItem.$add(‘NewNode’, 100)
Calculate NewNode.$textcolor as kRed

If you have set up your nodes as default lines as described above and given them idents, such as:
Windows 100
Reports 200

you can expand the node from the appropriate list ($setnodelist is described later).

On evTreeExpand
Set Reference TreeRef to $cwind.$objs.TreeList
Switch pNodeItem.$ident

Case 100
Do TreeRef.$setnodelist(kRelationalList,pNodeItem,tWinList)

The evTreeCollapse event indicates a node is about to be collapsed and provides the reference in pNodeItem. You can use this to
clear child nodes, for example:

On evTreeCollapse
Do pNodeItem.$clearallnodes()

The evTreeExpandCollapseFinished event is sent to confirm that the evTreeExpand or evTreeCollapse message is finished. You
can use this event to update other controls or states.

Changing a Node Name

The evTreeNodeNameFinishing event is sent to a tree list before the node name is updated with some new value entered by the
user. It provides the parameters pNodeItem for the node, and a character variable pNewText containing the new text entered.
pNodeItem.$name still holds the original text. This message is normally used to validate the new node name.

For example, you can use $findnodename to make sure the new name is unique:

On evTreeNodeNameFinishing
If pNewText = ''

OK Message {Name must contain a value}
Quit event handler ( Discard Event )

Else
Do $cobj.$findnodename(pNodeItem,pNewText,kTrue,kTrue) Returns Found
If not(isnull(Found)) & Found.$seedid<>pNodeItem.$seedid
OK Message (‘Name must be unique’)
Quit event handler ( Discard Event )

End If
End If

The evTreeNodeNameFinished event is sent to a tree list after the node name has been changed. It provides the parameters
pNodeItem for the node and a character variable pNewText containing the new text entered.

Formatting Text in Tree Lists

You can use the style() function and the Text formatting constants (listed in the Catalog under Text escapes) to format text in
several areas of Omnis including the node text in a tree list.

To use the style() function in a tree list, set the $styledtext property of the tree list to kTrue and add the style() function directly to
the definition of the tree list. For example:

514



# Method '$makeTreeList'
# create local vars lLevel0, lLevel1, lLevel2 (Chars)
# lExpand, lIcon, lIdent, lTextcolor (Long Integers)
# lEnterable (Boolean)
# and instance var iList (List)
Do iList.$define(lLevel0,lLevel1,lLevel2,lIcon,lIdent,lEnterable,lExpand,lTextcolor)
Do iList.$add(con(style(kEscStyle,kBold),'Germany'),'','',0,100,0,2,0)
Do iList.$add('Germany',con(style(kEscStyle,kItalic),'Manufacturer'),'',0,101,0,2,0)
Do iList.$add('Germany','Manufacturer',con(style(kEscStyle,kUnderline),'Porsche'),0,102,0,2,0)
Do iList.$add('Germany','Manufacturer',con(style(kEscLTab,100),'Mercedes'),0,103,0,2,0)
Do iList.$add('Germany','Manufacturer',con(style (kEscColor,kBlue),'BMW'),0,103,0,2,0)

The following code can be added to the $construct() method of the window to initialise the list and set the tree list contents to
the list data using the $setnodelist() method.

# $construct() method of window
Do method $makeTreeList
Do $cinst.$objs.treelist.$setnodelist(kFlatList,0,iList)

Video Player

Group Icon Name (type) Description

Media Video Player (Xcomp) Plays video file from disk or remote server

The Video Player (AVPlayer) lets you load and play a video file from disk or on a remote server. It has the following properties:

Property Description

$allowfullscreen kTrue if the full screen option is
available (macOS only at the
moment)

$controlstyle The type of controller shown on the
player, a constant:
kAVControlsFloating,
kAVControlsInline,
kAVControlsMinimal,
kAVControlsNone

$controltime The current play time of the player in
seconds

$controlvolume The current volume of the player - 0
to 10

$videoresize The video resize mode during
playback, a constant:
kAVVideoResizeAspect,
kAVVideoResizeAspectFill,
kAVVideoResizeFill

The Video Player has the following methods:

Method Description

$load $load(cUrlOrLocalPath) will load the movie
$pause $pause() will pause the movie
$play $play() will play the movie

515



WAV Player

Group Icon Name (type) Description

Media WAV Player (Xcomp) Plays a WAV sound file

TheWAV Player (or WavPlay) lets you load and play WAV sound files from disk. The component is available as a window compo-
nent as well as a non-visual component. The samemethods are available in the different types of component.

The WAV Player has the following methods:

Method Description

$playwavfile $playwavfile(cPathName)
plays the wav file with
pathname cPath

$stopwav $stopwav() stops all wav
files currently being
played

Background Objects

Any graphic objects you place on the window background are considered to be Background Objects. They do not hold data,
rather they are graphical devices for enhancing the appearance of the desktop UI.

Component Group Component name

Labels Label
String Label (Xcomp)
Text

Shapes 3D Rectangle
Line
Oval
Rectangle
Rounded Rectangle
See also Shape Field

Background Images

You can paste an image into a window as a background object using the Edit>>Paste (Ctrl/Cmnd-P) or Edit>>Paste from File
menu items. The former choice pastes a picture you have cut or copied to the clipboard; the latter pastes an image file directly
onto the window background.

Under the Appearance tab, the $tile property lets you tile an image across the whole area of the object, otherwise the image is
stretched when and if you resize the object. In addition, under the Action tab, you can enable the $cachepicture property to force
Omnis to cache the image on the client machine which allows the window to be drawn quicker.

Background Object Names

Windows class Background objects, such as Label and Text objects, have the $name property which defaults to the ident of the
object, that is, a number which is generated automatically. You can assign your own name which will help you identify the object
more easily: you cannot set $name to a number, but the name can include a numeric character. Setting the name to empty resets
it to its default number ident.

Using Non-TrueType fonts

The item ‘backgroundObjectsMustUseTrueTypeFont’ in the ‘windows’ section of config.json controlswhether or not TrueType fonts
are used for background objects. If true (the default), TrueType fonts must be used. When false, you can use non-TrueType fonts
for background objects, but note that in some situations, e.g. in drag bitmaps, the text may not draw.

516



Corner Radius

The Rounded Rectangle background object (and Shape Field) have the $cornerradius property, which is the pixel radius of the
corners of the object (assign a value <= 0 to set this property to its default value). The maximum value of $cornerradius is 255.

In versions prior to Studio 11, rounded rectangles were not drawn with the same amount of rounding on Windows and macOS:
when the value of $cornerradius is 0, this difference is maintained, for compatibility, and after converting a library to Studio 11,
$cornerradius defaults to zero. When you set the value of $cornerradius to a positive integer (1-255), both platforms use the same
amount of rounding.

Label and Text Objects

The Label object lets you place text labels on a window, typically to label other data-bound fields or objects. The text for the label
is contained in the $text property. The style of the text in the label object is controlled by the $fieldstyle property. You can set the
style to None and assign your own font and style properties. You can set the color of the text in $textcolor.

The Text object is very similar to the label object. They have the same text properties under the Property Manager, but different
usage: label objects do not support several features that are available for text objects. The main differences between label and
text objects are as follows:

• Label objects do notwrap, and are therefore suitable for field labels or short single line text objects. Text objects do support
multiple lines

• Label objects do not support the use of square bracket notation, whereas Text objects evaluate variables or calculations
contained in [ ] placed in the text

• Label objects do not support rich text features within the text, whereas Text objects let you assign different character for-
matting (italic, bold, underline, and so on) to individual characters or words within a single text object

You can specify the $effect, $bordercolor and $linestyle properties to apply border style effects to both Label and Text objects.

Aligning Text

The $vertcentertext property allows you to control the vertical alignment of text for single- and multi-line Text objects. If set to
kTrue, single-line text (or any text in a kText background object) is vertically centered in the height of the field.

When $vertcentertext is set to kFalse, and if you give the label the same height and $top property as the field, the text will draw on
the same base-line on all platforms, provided the field and label have the same font, point size and style (when $vertcentertextis
false, matches the behavior prior to Studio 10).

There is an entry on theAlignmenu, to align labels vertically. To align anumber of labels andfields, select the objects and select the
Center Text Vertically option. The new align option attempts to find labels for fields (objects that have the $vertcentertext property
within the selection), and sets $vertcentertext to kTrue. The $top and $height of the label is also set to match the corresponding
field. You can use Undo to reverse the alignment.

If you have used aMulti Line Entry Fieldwith a label, the abovewill notwork satisfactorily. To achieve the correct base-line drawing,
use a label with $vertcentertext set to kFalse, and set its $top coordinate to the $top coordinate of the multi-line field plus the
height of the top border of the multi-line field.

String Labels

The String Label object is specifically designed to allow you to create different language versions of your applications. The String
Label gets its text content from a String Table depending on the setting of the client Locale, so can display the correct language
for the current client automatically.

If you intend to provide localized versions of your application, you should use the String Label to create all the text labels in your
windows, rather than using the Labels and Text objects that do not provide localization support. See the Localization chapter for
more information about using the String Label and localizing your application.

517

14localization.html#chapter-14localization


Deprecated Components

Some external components have been deprecated and have been moved to the Deprecated Components group in the Compo-
nent Store. They can be displayed using the Exclude Group option, available by right-clicking on the Component Store. They
should not be used for new applications and are only included for backwards compatibility.

The following External components (Xcomps) are available in the ‘Deprecated’ group in the Component Store; they are all external
components and may need to be loaded to appear in the Component Store. See Loading External Components.

External Component

Color DropList Control
Fade Picture Control
File DropList Control
File List Control
Filter List Control
Formroll Control
Hot Picture Control
Html Object
Icon Array
Icon DropList Control
Line DropList Control
Pattern DropList Control
Picture List Control
Rtf Viewer
Slider Pal
Tab Bar Control
Tile
Timer Control (Milliseconds and Seconds)
Tool Pal
Tooltip
Tray Icon
Tree List
Wash
Zoom Control

Color DropList Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Color DropList control is contained in the ‘Cool DropList’ package; so too are the Icon droplist, Line droplist, and Pattern
droplist. They all behave and are setup in a similar manner using a two-column Omnis list variable to populate the droplist con-
tents: the first column of the list should contain a color, icon_id, line, or pattern value, and the second column can contain a text
description. For color values you can use the Omnis color constants; the icon_id is the ID from one of the Omnis icon data files
or the #ICONS system table; the line or pattern is specified by a number in the range 1 to 16. For example the following method
builds a list for a Color Droplist:

Do iColorlist.$define(ivColor,ivColortext)
Do iColorlist.$add(kRed,'Red')
Do iColorlist.$add(kBlue,'Blue')
Do iColorlist.$add(kGreen,'Green')
Do iColorlist.$add(rgb(178,178,0),'Olive')
Do iColorlist.$line.$assign(1)

When the user selects a line in such a droplist, an evClick event occurs. You can trap this event in the $event() method for the
object and return the value of column 1 for the selected line in the list.

Fade Picture Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Fade Picture (Fadepict) component displays image data and lets you apply a fade effect to an image as it is loaded, using
one of over 30 different styles including slide up, slide down, wash left, wash right, spiral in, spiral out, and so on. For example, you

518



could apply a fade effect from one image to the next, as you step through an image database, to produce a similar effect as a
slideshow presentation.

The Fadepict component can display picture data retrieved from either a server database or Omnis data file; the latter supports
the new true color shared picture mode. The component requires an instance variable (or row variable column) of Picture type
specified in the $dataname property. The style of fade is stored in the $fadestyle property which you can set in design mode,
under the Custom tab in the Property Manager, or at runtime using the notation. If set to kTrue, the $fadeondatachange property
ensures a fade is triggered when the image data changes in the object. The $disolvesize property affects the size of the blocks in
the fade when the fade style is one of the dissolve styles. Images are displayed same size unless $stretch is set to kTrue and in this
case they are stretched to fit the field size; $borderh and $borderv let you add a border inside the field when $stretch is kTrue.

As well as the evBefore and evAfter field events, the Fadepict component reports the evFadeFinished event which you can detect
in the $event() method for the object.

For example, you could use the Fadepict component to display images in a simple picture database, rather than using the regular
picture field; when the image changes the new image is ‘faded in’ using one of the fade styles.

The $construct() method in the window opens the picture database and loads the first record; the image is stored in the carPict
field in the fCars file class. Note that the images are stored in the library, which is loaded using sys(10). The method then assigns
the data to the iPicture variable and the variable data is sent to the client.

# $construct() method of the window
Open data file (Do not close other dat) {[sys(10)],cardata}
Set main file {fCars}
Find first
Calculate iPicture as fCars.carPict
Do $cinst.$senddata(iPicture)

Thewindowcontains aNext andPrevious so you can cycle through thedatabase; if you reach thebeginning or endof thedatabase
the last or first image is loaded to give the appearance of a continuous stream of images.

# $event() method for the Next button
On evClick
Next ## or Previous
If flag false

Find first ## or Find Last for Previous button
End If
Calculate iPicture as fCars.carPict
Do $cinst.$senddata(iPicture)
Do $cinst.$objs.formfade.$redraw()

As an extra refinement you could add two lines of code to the Next and Previous methods to fade the image using one of the 35
fade styles picked at randomusing the randintrng() function. Note that you can set the $fadestyle using one of the style constants,
such as kFadeBounce, or using their numeric equivalent; the group of fade style constant are numbered 1 to 35 in the order they
are listed in the Property Manager. The method for the Previous button would be:

# $event() for the Previous button
# window contains iFadeStyle of Number type
On evClick
Previous
If flag false

Find last
End If
Calculate iFadeStyle as randintrng(1,35)
Do $cinst.$objs.formfade.$fadestyle.$assign(iFadeStyle)
Calculate iPicture as fCars.carPict
Do $cinst.$senddata(iPicture)
Do $cinst.$objs.formfade.$redraw()

519



File DropList and File List Controls

These are Deprecated components; they should not be used for new applications and are only included for backwards compati-
bility.

The File DropList and File List controls are part of the FileList package and behave in the sameway. Both controls can display the
contents of a folder, either in a standard list format or as a droplist.

The Filelist control displays files, directories, or volumes in a standard list or droplist, based on the contents of anOmnis list variable
which is assigned in the $dataname property of the component.

• $showdirectories, $showfiles, $showvolumes
setting one of these properties to kTrue specifieswhatwill be displayed in the list, either directories (folders), files, or volumes

• $treeview
if set to kTrue the list is displayed as a tree list

• $filefilters
specifies the file extensions whichwill be included in the list, e.g. ‘*.dll’, while ‘*.*’ will include all file types; multiple extensions
are specified as a semicolon separated list; the Mac creator and type can be specified in the format ‘<Creator>|’,‘<Type>|’)

• $hidebundlecontent
If true, then bundles are treated as files instead of folders under macOS

• $path
is the path of the directory which will be displayed and loaded in the list; this defaults to the C:\ drive or Macintosh hard disk

The $refresh() method is used to populate or update the list. When the user selects a list line, you can return the path to the
selected file.

• $fullpath()
$fullpath(iLineno) returns the full path of the specified line number

• $refresh()
$refresh([bClearlist]) builds or refreshes the list by re-reading the folder/volume; the $redraw() method will redraw the list
field

Filter List Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Filter List (Filterlist) control is similar to a standard list field except that you are able to change the color and height of the
lines in the list and the color of the selected line. The Filter list has the following methods.

• $::hiliteline
$hiliteline(iLinenum,bHilite,cTextline) highlights or un-hilites the specified line iLinenumaccordingBoolean bHilite; plus the
text in the hilited line can be replaced with the text in cTextline parameter

• $scrolllist
$scrolllist(bVert,iType) scrolls the list vertically or horizontally depending on bVert; the iType can be value 0-8 and determines
how the list is scrolled

Formroll Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The FormRoll component is a graphical pushbutton that highlights when the user passes their mouse over the button. The
component has a number of properties to control the look and behavior of the object when the mouse is placed over it. You can
specify the image ($outsideimage and $insideimage) and text ($outsidetext and $insidetext) to be displayed when the mouse is
either inside (over) or outside (not over) the button. You can also specify the text offset using the $textx and $texty properties, and
set the spacing of multi-line text using $betweenlines.

The FormRoll components reports the evIsInside and evClick events, which have to be enabled in the $events property for the
object.

520



Hot Picture Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Hot Picture (Hotpict) control lets you create a ‘hot’ or clickable area in a window, usually over a photo, map, or a graphic. For
example, you could display a map of the US with the various states defined as different hot areas.

The Hotpict component appears on your window as a single rectangle placed over your whole image with separate hot areas
defined within the rectangle. In design mode, you can use various mouse/key combinations to add new hot areas, add nodes to
the current area, or move existing areas, as follows. Note that right click on a Mac means Ctrl-click.

Action Mouse/key press

Add a hot area Shift-Right click in the Hotpict field; new hot area is added to the top-left of
the Hotpict component, you can move the new area, add nodes and reshape
area as below.

Move area within Hotpict Right click inside the area and drag
Select an area Right click inside the area; the Property Manager displays the properties for

the selected area.
Delete hot area Ctrl/Cmnd-Right click on the area
Add node to an area Shift-Right click on a node; new node is added next to existing node
Move node to reshape area Right click on node and drag
Delete node Ctrl/Cmnd-Right click on node

When you Right-click inside a hot area within the Hotpict field rectangle, the Property Manager shows the properties for the
selected area. The $currentid property specifies the id for the current hot area. As you add hot areas to the field in design mode,
consecutive numbers are assigned to each hot area and in most cases you can use these numbers to identify an area; you can
however change the ids or add your own default value for each area. Alternatively, you can assign a name to each hot area in the
$currentname property. At runtime, the $arealist property contains a list of areas in the Hotpict field.

You can assign a cursor to each area in the $currentcursor property; the cursor is displayedwhen the user’smouse enters the area.
You can also highlight an area in several ways: $invertonenter inverts the area when the mouse enters the area; $frameonenter
hilights the area by displaying a frame; and $flashonclick inverts when the user clicks the area.

TheHotpict component reports the evAreaClicked eventwhich you can detect in the $event()method for the Hotpict component.
The event passes the pAreaid and pAreaname parameters containing the id and name of the selected hot area. In the above
example, pAreaname could be used to pass the name of the state selected, assuming ‘Texas’ has been added to $currentname
for that area.

Html Object

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Html Object control lets you display HTML files or documents in a window class; it is used in the Omnis environment in the
Help system. (Note you can use the OBrowser control to display a full web page, with support for JavaScript and other browser
functionality.)

The HTML Object does not have a $dataname property, rather you specify the path to an HTML text file in the $filename property.
You can set the filename in design mode or set it dynamically at runtime.

The HTML component has the following properties and methods:

• $filename
pathname to the HTML to be displayed by the component

• $fontsizeadj (runtime only)
increases or decreases the size of the text in the current HTML file, in a range from -3 to 3 with the default being 0 (zero)

• $eventhwnd (runtime only)
returns the hwnd reference of the HTML component when an event is triggered

• $searchwords (runtime only)
contains a list of words that will be highlighted in the current HTML file; the words should be separated by spaces; the
specified words and the background page surrounding the words are shown in their inverse

521



• $startanimatescroll()
$startanimatescroll(horzscrollunits,vertscrollunits,interval) scrolls the HTML component using the settings in horzscrollu-
nits, vertscrollunits, interval

• $stopanimatescroll()
stops scrolling the current HTML component

• $pathtoapi(path)
converts an Html file name and path to a disk name and path; uses the correct separators for the correct operating system;
performs the reverse of $pathtohtml()

• $pathtohtml(path)
converts a standard disk name and path to a full Html file name and path; performs the reverse of $pathtoapi()

• $getselectedtext(text)
returns any text currently selected in the HTML component

The Html Object reports the following events:

• evAnimateScrollEnd
sent when the HTML component is finished scrolling; returns the parameters pEventCode, pCtrlIdent

• evEventTag
sent when an embedded custom Html tag is read; returns the parameters pEventCode, pCtrlIdent, pName, pValue

• evExecTag
sent when an embedded custom Html tag is executed; returns the parameters pEventCode, pCtrlIdent, pTagName, pTag-
Values

• evHyperlink
sent when a hyperlink is clicked; returns the parameters pEventCode, pCtrlIdent, pHRef, pName, pTarget, pTitle

• evImagePluginCreate
sent when an embedded image plugin is invoked, such as an embedded Jpeg object; returns the parameters pEventCode,
pCtrlIdent, pType, pProperties, pWindowRef, pWidthRef, pHeightRef

• evPluginDestroy
sent when an embedded plugin is destroyed; returns the parameters pEventCode, pCtrlIdent

• evSetTitle
sent when the Html document is read; returns the parameters pEventCode, pCtrlIdent, pTitle

• evXCompPluginCreate
sent when an embedded external component is invoked; returns the parameters pEventCode, pCtrlIdent, pComponentLib,
pComponentCtrl, pProperties, pWindowRef, pWidthRef, pHeightRef

On evSetTitle
Do $cwind.$title.$assign(pTitle)

On evHyperlink
Do $cobj.$filename.$assign(pHRef)

On evHyperlink
If pos(".lbs",pHRef)

Calculate lOmnisLibPath as pHRef
Do $cobj.$pathtoapi(lOmnisLibPath)
Open library (Do not close others) {[lOmnisLibPath]}

Else
Do $cobj.$filename.$assign(pHRef)

End If

Supported HTML tags

The following HTML tags and their attributes are supported in the Omnis Document Viewer. Tags and attributes not listed here
are not supported and ignored by the Document Viewer.

522



<!-- Comment -->
<a href name target title>…</a> clicks generate evHyperlink event. All attributes are passed to Omnis method
<address>…</address>
<b>…</b>
<base href>
<basefont size>
<bgsound … > tag and all attributes are sent to evExecTag event
<big>…</big>
<blockquote>…</blockquote>
<body bgcolor text link vlink alink leftmargin topmargin>…</body>
<br>
<center>…</center>
<cite>…</cite>
<code>…</code>
<comment>…</comment>
<dd>…</dd>
<dir compact>…</dir>
<div align>…</div>
<dl compact>…</dl>
<dt>…</dt>
<em>…</em>
<font face size color>…</font>
<h1>…</h1> to <h6>…</h6>
<head>…</head>
<hr align noshade size width>
<html>…</html>
<i>…</i>
<img src height width align alt border hspace vspace> generates an evImagePluginCreate which is sent to the $event of the doc viewer
<kbd>…</kbd>
<li type start>…</li>
<listing>…</listing>
<marquee align bgcolor height hspace scrollamount scrolldelay vspace width>…</marquee>
<menu compact>…</menu>
<nobr>…</nobr>
<ol compact start type>…</ol>
<p align>…</p>
<pre align>…</pre>
<s>…</s>
<samp>…</samp>
<small>…</small>
<strike>…</strike>
<strong>…</strong>
<sub>…</sub>
<sup>…</sup>
<table align bgcolor border bordercolor bordercolordark bordercolorlight cellpadding cellspacing hspace valign vspace width>…</table>
<td align bgcolor border bordercolor bordercolordark bordercolorlight colspan nowrap rowspan valign width>…</td>
<th align bgcolor border bordercolor bordercolordark bordercolorlight colspan nowrap rowspan valign width >…</th>
<title>…</title> generates an evSetTitle event
<tr align bgcolor border bordercolor bordercolordark bordercolorlight valign>…</tr>
<tt>…</tt>
<u>…</u>
<ul compact type>…</ul>
<xmp>…</xmp>

Custom HTML tags

This section describes all the extended or custom tags supported in the Document Viewer. These tags are not standard HTML
and are ignored by other browsers.

EVENT tag

The EVENT tag sends an evEventTag message to the $event() method of the Document Viewer object. Two parameters pName
and pValue are sent. The values of these two parameters can be specified in HTML. For example:

<event name=”your event name” value=”your event value”>

523



Both name and value can be preceeded by the keywords apipath or htmlpath. This tells the parser to convert the value
to a full qualified api or html path based on the current document’s location. For example, if the document path is
“file:///c/docs/thedoc.htm”, the following html:

<event name=”openlib” apipath value=”samplelib.lbs”>

sends the following to your event method on the Windows platform:

pName = “openlib”
pValue = “c:\docs\samplelib.lbs”

XCOMP tag

The XCOMP tag allows you to embed Omnis built-in and external components within your HTML document. For example, you
can embed a standard Omnis pushbutton or any external component like the Marquee control. When the parser encounters the
XCOMP tag, an evXCompPluginCreate event is send to the $event() method of the Document Viewer object. When you create an
HTML viewer control from the Component Store, it contains code to handle this event.

To embed external components you need to specify the library name for componentlib and the control name for componentctrl.

To embed built-in controls you must specify “internal” for the componentlib and the control constant, e.g. kPushbutton, for com-
ponentctrl.

Youmust also specify a width and height. Following this you can specify Omnis property names (exclude the $ symbol) with their
values to setup the various properties of the control. For example, the following code references theMarquee external component:

<xcomp componentlib=”Marquee Library” componentctrl=”Marquee Control” width=”300” height=”20” align=”middle” steps=”1” speed=”25” message=”Omnis is the best”></xcomp>

The following example, shows a built-in component with event method:

<xcomp componentlib=”internal” componentctrl=”kPushbutton” width=”180” height=”30” text=”Click Me” name=”TestButton”>
<script language=”xcomp” target=””>

ref.$methods.$add(“$event”)
ref.$methods.//$event//.$methodtext.$assign(“On evClick<br>OK message Button (Icon,Sound bell) {You clicked me}”)

</script>
</xcomp>

Any of the property names, if appropriate, can be preceded by the keywords apipath or htmlpath. This tells the parser to convert
the value of the property to a full qualified api or html path based on the current document’s location. See EVENT tag for an
example.

In addition, you can specify horizontal and vertical spacing using the html attributes hspace and vspace.

When the current document is closed, the viewer generates an evPluginDestroymessage to destroy the components. When you
create a html viewer control from the component store, it already contains code to deal with this event.

Standard tags

The following standard HTML tags are interpreted by the Document Viewer parser in a special way.

BGSOUND tag

The bgsound tag is a standard html tag, but the viewer cannot play sounds. When the parser encounters this tag, an evExecTag
is sent to the $event() method of the Document Viewer object. The pTagName parameter is “BGSOUND” and the pTagValues
parameter is a two column list specifying the tag’s parameter names in the first column and their values in the second column.

TITLE tag

The title tag is a standard html tag, andwhen the parser encounters this tag an evSetTitle event is generated. The pTitle parameter
contains the title text which, for example, allows you to assign the document’s title text to the current Omnis window title.

524



IMG tag

The img tag is a standard html tag, but the viewer itself can’t draw images. It generates the evImagePluginCreatemessage asking
you to create the appropriate image control. The pType parameter is one of the following “JPEG” or “GIF”. When you create a html
viewer control from the Component Store, it contains code to handle this event.

When the current document is closed, the viewer generates an evPluginDestroy message to destroy the component. When you
create a Document Viewer control from the Component Store, it contains code to handle this event.

Icon DropList Control

See Color DropList Control.

Line DropList Control

See Color DropList Control.

Pattern DropList Control

See Color DropList Control.

Picture List Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Picture List (Piclist) control can display a list of icons from anOmnis icon data file (Omnispic or Userpic) or the #ICONS system
table in the current library. The icon IDs are specified in a list variable and assigned to the $dataname property of the piclist. You
can specify the column in the list which contains the icon IDs using the $piccolumn property, which is set to first column (value=1)
by default. The second column could contain another value associated with the icon which can be loaded when the user clicks
on the list.

Rtf Viewer

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The RTF Viewer lets you display an RTF word processing file in a window. The RTF file is specified in the $filename as a pathname.
The component has the following methods:

• $getselectedtext()
$getselectedtext(&cText) returns the currently selected text in cText

• $pathtoapi()
$pathtoapi(&cPath) converts cPath from theHTML syntax to the syntax for the current platform, and sets cPath to the result

• $pathtohtml()
$pathtohtml(&cPath) converts cPath from the syntax for the current platform to the HTML syntax, and sets cPath to the
result

• $printdocument()
prints the document (no parameters)

• $startanimatescroll()
$startanimatescroll(iHorzscrollunits,iVertscrollunits,iInterval) starts scrolling the document once every iInterval (millisec-
onds) by the specified units

• $stopanimatescroll()
stops automatic scrolling of the document (no parameters)

525



Tab Bar Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Tab Bar control (TabBar) displays a number of thumb tabs on which the user can click; in this respect, it is similar to the tab
strip field. The tab bar is typically used with the Paged pane component to present a number of layers or pages in a window. For
example, a preferences or options window could have separate pages for different options accessed by clicking the tabs in a tab
bar.

The tab bar reports the evClick event and passes the pLineNumber parameter containing the number of the tab clicked on. The
followingmethod is the $event() method for a tab bar on a window containing a paged pane. Themethod detects the evClick on
the tab bar and sets the currentpage of the paged pane.

On evClick
Do $cinst.$objs.pagepane.$currentpage.$assign(pLineNumber)

# pLineNumber contains the number of the tab clicked

The $position property specifies the orientation of the tabs, either the top, bottom, left, or right. The left and right settings rotate
the tabs and text labels and allow you to position the tab bar down the side of your window or paged pane area. The text on the
tabs must use a True Type font if you wish to rotate the tab bar. Other significant properties include:

• $nosoftab
The number of tabs.

• $::currenttab
The number of the current tab.

• $::selectedtabcolor
The color of the current tab, when enabled.

• $::style
The style of the tabbar, either kDefaultWebTab, kSquareWebTab, or kTriangleWebTab

• $tabenabled
If true, the tab with the current tab number is enabled; this can be set during $construct of the window to enable or disable
specific tabs.

• $tabtext
The text of the current tab.

• $tabtip
The tooltip text of the current tab.

For example, a window could use a tab bar and paged pane to organize the different options available to customers, such as
Accounts, Transactions, etc. The $event() method for the tab bar would detect the click and pass the number of the tab in the
pLineNumber parameter. The following method first tests whether or not the user is logged on and if not switches to the logon
page. Next, the method uses a Switch statement to branch according to the tab number passed in the pLineNumber parameter.

On evClick
Do $cinst.$senddata(#NULL)
If not(iLoggedOn)

Do $cinst.$showmessage("Sorry, you must logon first","Error")
Do $cinst.$objs.tab.$::currenttab.$assign(1)
Quit method

End If
Switch pLineNumber
Case 1

Calculate iLoggedOn as kFalse
Calculate iUserName as ""
Calculate iPassword as ""
Do $cinst.$objs.page.$currentpage.$assign(2)
Do $cinst.$senddata(iUserName,iPassword)
Do $cinst.$redraw()

Case 2
Do $cinst.$objs.page.$currentpage.$assign(3)

526



Case 3
Do method $showoneaccount

Case 4
Do $cinst.$objs.page.$currentpage.$assign(5)

Case 5
Do $cinst.$objs.page.$currentpage.$assign(6)

Case 6
Do $cinst.$objs.page.$currentpage.$assign(7)

Case 7
Do $cinst.$objs.page.$currentpage.$assign(8)

Timer Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Timer Control provides a Second (S) or Millisecond (MS) timer. This is useful if you want to trigger a method or some other
action after a specified period. When the time expires an evTimer event is sent to the component so its $event method can
determine the action taken. The Second based timer control supports an optional visual countdown using $showcountdown
plus extra font and style properties.

The Timer control has the following properties:

Property Description

$autoreset The timer will reset its
parameters after returning
from a evTimer

$reentrant If true, the timer event can
be generated while the
previous timer event is
being processed

$timeleft The amount of time left
until the timer will expire (if
the timer is a millisecond
timer then the value is an
integer, otherwise it is a
date value containing the
time left)

$timervalue The duration of the timer
$useseconds If true, $timervalue is a

value in seconds; otherwise
it is a value in milliseconds

The Timer control has the following methods:

Method Description

$resettimer Stops and then restarts the
timer using the current
value of $timervalue

$starttimer Starts the timer using the
current value of
$timervalue

$stoptimer Stops the timer

Timer Object

The Timer control is also available as an External Object andWorker object allowing you to create an object variable that receives
timer events. The Timer Object has the following properties:

527



Property Description

$autoreset The timer will reset its
parameters after returning
from a evTimer

$queueevent If true, the event will be
queued plus the timer will
need to be reset manually
regardless of $autoreset
setting

$reentrant If true,the timer event can
be generated while the
previous timer event is
being processed

$timeleft The amount of time left
until the timer will expire (if
the timer is a millisecond
timer then the value is an
integer, otherwise it is a
date value containing the
time left)

$timervalue The duration of the timer
$useseconds If true, $timervalue is a

value in seconds; otherwise
it is a value in milliseconds

The Timer Object has the following methods:

Method Description

$resettimer Stops, and then restarts the
timer, using the current
value of $timervalue

$starttimer Starts the timer, using the
current value of
$timervalue

$stoptimer Stops the timer
$timer Method called when the

timer has expired

Tray Icon

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Tray Icon control is a non-visual external object which lets you add an icon to the Windows icon tray at the bottom of the
screen (the control is not available for other platforms).

The mouse coordinates passed to the menu event are relative to the main Omnis Window, and these work with the PopupMenu
command, for example. When Omnis is minimized, these coordinates will be larger than expected (due to how Windows 10
handles them), but they can still be used with PopupMenu to open the menu in the correct position.

Zoom Control

This is a Deprecated component; it should not be used for new applications and is only included for backwards compatibility.

The Zoom control lets you enlarge areas of the screen. The control supports dynamic updating via its own timers and various
levels of enlargement.

528



Chapter 12—Window Programming

Window programming, Window classes and Window components are required for developing desktop or thick client applica-
tions only, and are therefore hidden in some editions of Omnis Studio, including the Community Edition. To create web ormobile
apps, you need to create Remote forms using JavaScript component.

This chapter describes some of themore advanced properties of window classes, and the different programming techniques you
can use in window classes, including Window methods, Field styles, Format strings, Input masks, Drag and drop, and creating
your own HTML components for window classes.

Window Design Task

When testing a window class (using Ctrl/Cmnd+T, or the Test button in the Studio Browser, or via the context menu for a window
class) Omnis switches to an instance of the design task, or the startup task if there is none.

There is an item in the config.json, tryDesignTaskWhenTestingWindow in the “ide” section, to control this behavior. When true
(the default), Omnis looks at the design task name, and if it is the same as the startup task name, switches to the startup task, as
in previous versions. If however, the design task name is different, Omnis switches to the first instance it can find of that task, but
if there is none, it switches to the startup task as in previous versions.

When tryDesignTaskWhenTestingWindow is false, the behavior is the same as for previous versions: when testing a window,
Omnis switches to the startup task of the library containing the window.

Window Methods

The following methods can be called within a window instance (open window) either via $cwind, $cinst or $iwindows.window-
instance-name, in addition to the standard methods $canclose, $close, and $redraw.

Method Description

$bringtofront() $bringtofront([bRestoreIfMaximized=kFalse]) brings the window instance to the front. If bRestoreIfMaximized is kTrue, also restores
the window to its previous size and position if it is currently maximized e.g. Do $iwindows.wTest.$bringtofront(kTrue)

$beginanimations() $beginanimations(iDuration [,iCurve=kAnimationCurveEaseInOut]) after calling this, assignments to some properties are animated
for iDuration milliseconds by $commitanimations() See Object Animation

$commitanimations() $commitanimations() animates the relevant property changes that have occurred after the matching call to $beginanimations()
$maximize() $maximize() maximizes the window instance
$minimize() $minimize() minimizes the window instance
$sendevent() $sendevent(iEvent [,eventParameters…]) sends event iEvent (an ev… constant value) to the object with eventParameters passed as

name,value pairs, for example $sendevent(evClick,‘pLineNumber’,2). Returns kFalse if the event is discarded See Event & Control
Methods

$showmessage() $showmessage(cMessage [,cTitle, iOptions=kMsgOK]) displays a message using the specified cMessage,cTitle and iOptions (a sum
of kMsg… constants).Returns true for OK or Yes,false for No or cancel.Usemsgcancelled() to check for cancel SeeWindowMessages

$showtoast() $showtoast(cMessage,[cTitle, iStyle=kToastSuccess, iStack=kToastStackTopRight, iTimer=4000, bClearStack=kFalse]) displays a toast
notification using the title and message using the style See Toast Messages

Window Animations

Certain properties of window instances can be animated using the $beginanimations() and $commitanimations() methods, in-
cluding $alpha, $left, $top, $width, and $height. So for example, when closing a window you could fade it out by setting $alpha
under animation before closing it, or similarly you could enlarge a window under animation as you open it to create more impact
(window animations work in a similar way to objects animations, which are described here: Object Animation).

Field Styles

If you are going to deploy your application on more than one platform, the objects in your application should use suitable text
and font properties for each platform. You can achieve this using Field Styles. A field style is a style definition, similar to an HTML
or document style, that you can apply to a window, remote form or report object. You can specify different appearance properties
for all the supported platforms in Omnis, including Windows and macOS. Each field style contains:

• A set of Boolean flags, each of which identifies whether or not a particular standard property belongs to the style. The stan-
dard properties supported are: $align, $backcolor, $backgroundtheme, $backpattern, $bordercolor, $effect, $fontname,
$fontsize, $fontstyle, $forecolor, and $textcolor.

529

/developers/resources/onlinedocs/WebDev/02jsremoteforms.html#chapter-2javascript-remote-forms
/developers/resources/onlinedocs/WebDev/03jscomps.html#chapter-3javascript-components
/developers/resources/onlinedocs/Programming/11wincomps.html#object-animation
/developers/resources/onlinedocs/Programming/11wincomps.html#event-control-methods
/developers/resources/onlinedocs/Programming/11wincomps.html#event-control-methods
/developers/resources/onlinedocs/Programming/11wincomps.html#object-animation


• Custom properties. These are properties that are not in the set of possible standard properties. If the style contains custom
properties, it can only be applied to a single type of object.

• For each platform, a set of property values. Each set contains a value for each standard property belonging to the style, and
a value for each custom property.

Field Style Properties

The field style for an object is stored in its $fieldstyle appearance property; note that not all objects support the $fieldstyle property.
Window objects also have the $fieldstylefocused property to allow you to style an object when it gets the focus, allowing you to
override certain properties when a field has the focus such as the font style or color.

Creating Field Styles

You can create as many field styles as you like. They are stored in the #STYLES system table in the System Tables folder in a library.
Having set up the styles in the style system table, you can copy the table to any library and use its styles throughout your whole
application. When you copy an object from one library to another, its field style is also copied automatically, but only if there is not
already one with the same name in the destination library.

To view the field styles system table

• Use the Class Filter (press F7/Cmnd-7 while the Studio Browser is on top) to make sure the system tables are visible in the
Studio Browser

• Double-click on the System Tables folder

• Double-click on #STYLES

The #STYLES system table contains a number of styles that are applied to standard fields in Omnis by default. The icon in the
left-hand column of the Styles grid indicates the control to which the custom properties in the style belong.

Printing styles

You can print a list of styles in the #STYLES system class by right-clicking on the class and selecting the Print Class option. The
report shows a complete list of properties for each style in the #STYLES table.

Defining Field Styles

The Styles dialog lists all the styles in the current library. To define a style, you first select the standard properties that belong to
the style. Then you set the values of these properties, for each platform.

To define a new style

• Click in the first empty line in the table and enter a name and description for the style

• With “All platforms” selected in the right-hand list, open the Property Manager, or bring it to the top (press F6/Cmnd-6)

• Set the $has…properties to kTrue, for each standard property to be included in the style. Note that the $hascustomproperty
is only relevant when you are using custom styles, and it cannot be modified; custom styles are discussed below.

For example, if you want a style to set the font name and size only, enable only the $hasfontname and $hasfontsize properties.

• Go back to the Styles dialog and select a platform from the list on the right

• Bring the Property Manager to the top and enter a value for each property belonging to the style, e.g. set $fontname, $font-
size, and so on; the properties are located under the Text and Appearance tabs in the Property Manager

• Repeat this process for each platform

• When you have finished, click on OK in the Styles dialog

You can change an existing style by clicking on its name in the Styles dialog, selecting a platform, and editing its properties in the
Property Manager.

530



Custom Styles

You can customize a style by dropping additional properties into the style.

To add a property to a style

• Open the Styles dialog, by double clicking on #STYLES in the Studio Browser

• Select a control on a design window

• Drag a property from the Property Manager, and drop it on to a style name in the Styles dialog

Alternatively, from the Property Manager:

• You can right-click on a property name and select the “Add To Style As Custom Property…” option and select the style name
from the popup, after which the #STYLE system table can be opened

Note that multi-value properties, such as the column properties in a data grid, cannot be assigned to custom styles. In this case,
the “Add To Style As Custom Property…” option will be disabled, and attempting to drag to the #STYLES window will fail.

When you add a property to a style, as above, this will set the $hascustom property of the style to kTrue. You can use the Prop-
erty Manager to assign a value to the property, for each platform, in the same way that you assign values to the standard style
properties.

Once you have added a property to a style, the style is linked to that type of control. You can no longer assign this style to controls
of a different type.

You can remove the custom properties from a style by Right-clicking on the style in the Styles dialog, and selecting “Remove
Custom Properties”.

Listing custom styles

The $customlist() method returns a single column list containing the names of the custom properties of the style for any given
platform. For example, the following method returns a list of custom properties for the style called Custom under Windows:

Do $clib.$fieldstyles.Custom.$platforms.kMSWindows.$customlist() Returns myList

Applying a Style to an object

The field style for an object is stored as a property. You can set this under the Appearance tab in the Property Manager.

• Open your window, remote form or report class

• Click on an object and view its properties in the Property Manager

• On the Appearance tab set the $fieldstyle property to the required style; the current style (if any) is selected in the dialog by
default

The properties that you have enabled using the has… properties, and the custom properties if present, will override the properties
in the object. For example, if you have set $hasfontname and $hasfontsize in your style definition, these properties will apply to
an object with that $fieldstyle, whereas the other text properties will remain unaffected. Once you apply a field style to an object
you can no longer set the properties belonging to the style; these become disabled in the Property Manager.

The library preference $styleplatform controls which set of platform characteristics defined in the style is used on the current
machine. This defaults to the current platform.

Field Styles Notation

The Omnis notation allows you to manipulate field styles. The notation allows you to:

• Assign custom style properties

• Query custom style properties

• Add custom style properties

• Remove custom style properties

• Assign all properties of a style

• Assign all properties for a platform

531



Assigning custom style properties

To assign custom style properties you use the notation:

omnis Do $clib.$fieldstyles.StyleName.$platforms.kMSWindows.$thepropertyname.$assign(TheValue)

Querying custom style properties

To query custom style properties you use the notation:

Calculate TheValue as $clib.$fieldstyles.StyleName.$thepropertyname

Adding custom style properties

To add customproperties to a style you use the $add()method passing in a reference to the property of awindowobject or remote
form object.

Set reference objectProperty to $clib.$windows.WindowName.$objs.ObjectName.$thepropertyname.$ref
Do $clib.$fieldstyles.StyleName.$add(objectProperty)

Note: The style will be linked to the object type, and additional custom properties can only be added if they belong to the same
object type.

Removing custom style properties

You cannot remove individual custom properties from a style. You have to remove all custom properties at one time. To remove
custom properties from a style you calculate the $hascustom notation to kFalse.

Do $clib.$fieldstyles.StyleName.$hascustom.$assign(kFalse)

Assigning all properties of a style

You can assign all properties of a style from another style in a single statement. You do this by setting up two item references to
the two styles, and calculating one style from another.

Set reference srcStyle to $clib.$fieldstyles.TheSrcStyleName
Set reference dstStyle to $clib.$fieldstyles.TheDstStyleName
Calculate dstStyle as srcStyle

Assigning all properties for a platform

You can assign the properties of a style for a single platform from another style, or from a different platform from the same style.
To do this you set up two item references referencing the platforms of the styles, and calculate one from the other.

Set reference srcStyle to $clib.$fieldstyles.StyleName.$platforms.kMacintosh
Set reference dstStyle to $clib.$fieldstyles.StyleName.$platforms.kMacOSX
Calculate dstStyle as srcStyle

Copying styles

The $copystyle() method enables you to copy styles between libraries (or the same library). $copystyle(rItem[,cNewName]) copies
the style to rItem, which is an item reference to the library, and renames the style if cNewName is supplied. The method returns
kTrue if successful. For example:

omnis Do $clib.$fieldstyles.TestStyle.$copystyle($libs.TargetLib,"myNewStyle")

copies the TestStyle from the current library to TargetLib and renames it to myNewStyle. If the new name is not supplied, the
original name is maintained. If the style already existed under that name, it will be overwritten.

532



Using the style() function

In addition to using field styles for styling fields or text in your windows, you can use the style() function which can insert one or
more style characters or “text escape” characters (represented by an Omnis constant) into a text calculation. Note you can also
use text escapes and the style() function in text and fields in reports. You can use the style() function in the calculation of the
following window fields or objects:

• Text object and Text type of Shape field (in the text itself, must be enclosed in square brackets)

• Headed List Box

• Combo box (list portion only)

Plus the following window components when their $styledtext property is enabled:

• List Box

• Dropdown List

• Tree List (style() can be used in the list definition)

The syntax of the function is:

style(style-character[,value]) `

Valid constants for the style-character are listed under ‘Text escapes’ in the Constants pane of the Catalog (press F9, click on
Constants, then ‘Text escapes’). The following constants are available:

style-charactertext escape Description and possible value

kEscAdjustPos Changes the position of the text using x.y value
kEscAngle Rotates the text using the value kAngle0, kAngle90, or kAngle270
kEscBmp Inserts an image specified by icon ID in value (you can include icon size constant, e.g. 1756+k16x16)
kEscColor Changes color of text specified by rgb() value or a color constant under the Colors group in the Catalog
kEscCTab Inserts a Center tab at the specified pixel position in value
kEscLTab Inserts a Left tab at the specified pixel position in value
kEscRTab Inserts a Right tab at the specified pixel position in value
kEscStyle Changes the style of the text using a font style constant or sum of constants

Depending on the style character, you may also need to specify a value, which can be a numeric value or a constant, such a color
constant. In its simplest form you can add the style() function to the text property of a text label, for example, the following text
added to a text label will display an ‘info’ icon in front of the text (note the use of square brackets to evaluate the function):

[style(kEscBmp,1010)] Note:

You can use this function to format the columns in a headed list box field (added to the list definition for the headed list), for
example, you could insert an icon by specifying its Icon ID, change the text color, or italicize the text in a particular column. The
following example formats the columns in a headed list box by giving lCol1 a blue spot icon, lCol2 is red and lCol3 is italic:

Do con(lCol1,style(kEscBmp,1756),kTab,lCol2,style(kEscColor,kRed),kTab,lCol3,style(kEscStyle,kItalic))

Note that the alignment escapes (kEscCTab, kEscLTab, and kEscRTab) are not designed to work with the headed list box. The
headed list box method $setcolumnalign() can be used to set the alignment of a column. The constants kEscAngle, and kEscAd-
justPos cannot be used in lists or grids.

Format Strings and Input Masks

A format string is a set of characters or symbols that formats the data in a field for display, regardless of how the data is stored.
The string is stored in the $formatstring property for the field. An inputmask formats data as you enter it into a field, and is stored
in the $inputmask property. On a window, only the Masked Entry Field allows a formatting string or input mask. When a user
enters data into a field controlled by an input mask, Omnis rejects any text that does not conform to the format you’ve specified
in the mask. Report data fields also support format strings.

To enter a format string for a field, you need to specify the type of data represented in the field, that is, its $formatmode: this
property can be Character, Number, Date, or Boolean. You can enter a format string manually or use one from the dropdown list
in the format string dialog: the default formats in this dropdown are stored in the appropriate system table.

533



Character Format Strings

To format a text field, you have to set its $formatmode property to Character. Character format strings have one or two sections.
The first section contains the value display format; the second section contains the format to display for NULL or empty values.
When you click on the $formatstring property, a dialog appears that lets you select a format. The dialog is the same for all the
different formats.

You can enter a format directly into the Text Display Format field, either from the keyboard or using the buttons in the dialog.
Alternatively, you can click on the down arrow in the Text Display Format field and select a format from the #TFORMS system
table. The character formatting strings for the current library are stored in #TFORMS. You can edit #TFORMS by double-clicking
on it in the Browser.

You can use the following symbols in character formats:

Symbol Description

@ represents a single character or space
& represents a single character but not a space
U forces all characters in the field to upper case
L forces all characters in the field to lower case
< fills placeholders from left to right for left adjustment of the field; must be leading characters in field
X truncates the value if it exceeds the format length. It truncates the front of the string; use the sequence <X to truncate the end of the string
P character fill; Px fills the front of the string with the character x to make the string the required length
; section separator

Example character format strings

Format string ANT adder Antelope NULL or Empty

@ ANT adder Antelope
U ANT ADDER ANTELOPE
L’Text: ‘& | Text: ant | Text: adder
| Text: antelope | | | Px&&&&&&&&
| xxxxxANT | xxxadder |
Antelope | | | <Px&&&&&&&& |
ANTxxxxx | adderxxx | Antelope |
| | X&&&& | ANT | dder | lope | | |
<X&&&& | ANT | adde | Ante | | |
&;’Null text value’

ANT adder Antelope Null text value

Number Format Strings

To format a numeric field you have to set its $formatmode property to Number. Number formats can use the following symbols
in a format string.

Symbol Description

0 zero; displays a digit; displays leading or trailing zeros for the format length; rounds to number of decimal places
# a digit as for 0 but does not display leading or trailing zeros
? a digit as for 0 but displays a space for leading or trailing spaces for the format length
. decimal placeholder

percentage placeholder
E-, E+, e-, e+ displays the number in scientific notation
$, -, +, (, ) display exactly as you type them in
P character fill; Px fills the front of the string with the character x to make the string the required length
; section separator
D D (or d) can be used in place of . forcing Omnis to add at most the decimal places specified in the format, with no trailing zeroes and no

trailing decimal point

The Numeric format string contains up to four sections: which format positive values, negative values, zero or empty values, and
NULL values respectively. An empty format section consisting of two contiguous semicolonswill cause the positive format section
to be used. Additionally, if the format string contains less than four sections, the positive section will be used for the unspecified
sections. Null values will only be formatted using the NULL section.

534



Example numeric format strings

Format string 1234.47 -1234.47 0 or Empty NULL

0 1234 -1234 0
0.0 1234.5 -1234.5 0.0
#,##0.00 1,234.47 -1,234.47 0.00
#,##0;(#,##0)[red] 1,234 (1,234) 0
0;(0);‘Zero’;‘Nil’ 1234 (1234) Zero Nil
0.00E+00 1.23E+03 -1.23E+03 0.00E+00
+Px#,###,###;-Px#,###,### +xxxx1,234 -xxxx1,234 +xxxxxxxxx

The number formatting strings for the current library are stored in #NFORMS. You can edit #NFORMS by double-clicking on it in
the Browser.

Date Format Strings

To format adate field youhave to set its $formatmodeproperty toDate. Thedisplay formats of all date and timefields are controlled
by date format strings. #FD is the date format string which is used to display short dates, #FT is the date format string which is
used to display short times, and #FDT is the default date format string which is used to display long dates.

Date format strings contain twenty special characters that denote the positions where the string displays the year, month, day,
hour,minute, secondor hundredths of second. All other characters in thedate format stringdisplay unchanged (note, for example,
the colons in the sample strings below). The Date codes item on the Constants tab in the Catalog contains a list of all the special
date format characters. There are options to display the hour in 24 or 12 hour format with an AM/PM position.

N is the character for displaying minutes; M and m indicate the month.

Using the date and time of 20 minutes past 1 p.m. on the 12th of January 1994, a date time value displays as:

• 12 JAN 98 13:20 if #FDT is ’D m Y H:N’

• 12 JAN 98 1:20 PM if #FDT is ’D m Y h:N A’

• 12th 01 1998 13:20:00.00 if #FDT is ’d M y H:N:S.s’

The date formatting strings for the current library are stored in #DFORMS. You can edit #DFORMS by double-clicking on it in the
Browser.

Boolean Format Strings

To format a boolean field you have to set its $formatmode property to Boolean. Format strings for boolean fields contain up to
three sections: the first formats True values, the second formats False values, and the third formats NULL or Empty values. You
can use the following formatting symbols:

Symbol Description

t displays “T” or “F” for true or false values
T displays “True” or “False” for true or false values
y displays “Y” or “N” for true or false values
Y displays “Yes” or “No” for true or false values
1 displays “1” or “0” for true or false values
O the letter “O”; displays “On” or “Off” for true or false values

Example Boolean format strings

Format string 1 0 NULL or Empty

T True False
‘True’;‘False’ True False
T;Y;‘Null Boolean’ True NO Null Boolean

The boolean formatting strings for the current library are stored in #BFORMS. You can edit #BFORMS by double-clicking on it in
the Browser.

535



Input Masks

Input masks control the format of data entered by the user. The input field for a field is stored in its $inputmask property. When
you click on the $inputmask property, a dialog appears that lets you select a mask.

You can enter a mask directly into the Input Mask field, either from the keyboard or using the buttons in the dialog. Alternatively,
you can click on the down arrow in the Input Mask field and select a mask from the #MASKS system table. The input masks for
the current library are stored in #MASKS, which you can edit by double-clicking on it in the Browser.

An input mask can contain a number of characters together with literal display characters. The literal characters are presented to
the user when the mask is used for data entry in order to provide context to the surrounding mask placeholder characters. The
mask characters can either consist of placeholders or mask control characters. Placeholders are replaced by user characters of
the appropriate type during data entry.

You can use the following mask placeholders:

Placeholder Meaning

# any digit
@ any character
a any letter
A any uppercase letter
n alphanumeric
N alphanumeric, upper-cased
“ABC” any character from list, i.e. either A, B or C
“A-D” any character from A to D inclusive

Mask control characters control how themask is presented to the user and how the data is saved to the underlying field. You can
use the following control characters:

Symbol Meaning

^ stores literal characters in underlying field
\C displays next character literally
>C uses following character to prompt user
>> displays default prompt characters

By default, the underscore character is used at data entry to represent placeholder characters yet to be entered. You can configure
this character on a per placeholder basis using the ‘>’ symbol. When the character sequence ‘>>’ occurs at the start of the input
mask, the default numeric prompt will be a hash sign; other placeholders are displayed as an ampersand.

The following table contains some example input masks, together with the string that is initially displayed to the user and an
example value that can be entered to satisfy the mask.

Input mask Initial display Example value

(###) ###-#### (___) ___-____ (717) 321-8745
>>(###) ###-#### (###) ###-#### (717) 321-8745
aa ## ## ## a __ __ __ __ _ xy 12 34 56 z
>>aa ## ## ## a @@ ## ## ## @ xy 12 34 56 z
>?AA >*## ## ## >?A ?? ** ** ** ? XY 12 34 56 Z
E\nter digit # Enter digit _ Enter digit 1
>>aaaaaaaa @@@@@@@@ Antelope
>>aaaaaaaa @@@@@@@@ Baboon
>¿‘0-5” ? 4

Note in the above example “E\nter digit #” you need to add a \ before the “n” character to force it to appear rather than it being
interpreted as an alphanumeric placeholder.

By default, literal characters occurring in the input mask are simply used to aid data entry. They are not saved to the underlying
variable or field. Therefore, when performing queries on the saved data the user must remember not to search for the literal
characters. In the first example above, the string ‘7173218745’ would be saved. To show this data correctly, you must add a display
format to the entry field.

To enable the user to save literal characters to the underlying variable field, you can put a circumflex character ‘^’ in the inputmask.
In the first example above, an input mask of ‘^(###) ###-####’ would cause the string ‘(717) 321-8745’ to be saved. In this case it
would be inappropriate to place a display format on the associated entry field.

536



Format String Notation

The text, number, Boolean, and Date format groups are represented in the Omnis notation in their own notation groups, and
stored as part of the library preferences, lib.$prefs:

• $textformats
group of text formats

• $numberformats
group of number formats

• $booleanformats
group of Boolean formats

• $dateformats
group of data formats

The standard group notation applies to these groups including $makelist(). Each line in these groups has the $text property
containing the corresponding the format.

The following examples load a format from each respective group and format a string using the format() function:

Calculate mask as $clib.$prefs.$textformats.4.$text
# text format is '('@@@@')' @@@@@@ 'Ext.'@@@'
Calculate strvar as '01728652200221'
Calculate fmtStr as format(mask,strvar)
# fmtStr contains ‘(01728) 652200 Ext.221’
Calculate mask as $clib.$prefs.$numberformats.4.$text
# number format #,##0.00
Calculate numvar as 1589663
Calculate fmtStr as format(mask,numvar)
# fmtStr contains ‘1,589,663.00’
Calculate mask as $clib.$prefs.$booleanformats.4.$text
# Boolean format is y
Calculate boolvar as kTrue
Calculate fmtStr as format(mask,boolvar)
# fmtStr contains Y
Calculate mask as $clib.$prefs.$dateformats.4.$text
# date format is H:N:S
Calculate dat as #D
Calculate fmtStr as format(mask,dat)
# fmtStr contains 15:51:31

Remote masked entry fields

The different values for $formatstring and $inputmask are stored in a range system tables (#TFORMS, #NFORMS, #DFORMS,
#BFORMS for Character, Number, Date, Boolean formatting strings, and #MASKS for input masks). Omnis stores the property
value as an index into the appropriate system table. This means that changing the entry in the system table changes the for-
mat/mask stored and used by the object. For remote form masked edit fields, this does not apply, rather the mask or format is
stored with the object, and a change to the system table on the Server at runtime will not affect the remote masked entry field.

Drag and Drop

Drag and drop is a powerful feature that lets the user copy data and objects from one field to another, or from one window to
another. For example, in a human resources application you could build a list of employees and allow the user to select certain
employees and drag them onto a print button to print those employee details; in a stock control system, the user could add items
to a dispatch note by dragging the items from a stock list into the dispatch window; and so on.

The drag and drop capabilities of a field are properties of the field itself. Windows also have some drop properties. You can set
these properties under the Action tab in the Property Manager, or you can use the notation. The field properties are

• $dragmode
sets whether or not the data or whole object is dragged and/or duplicated: includes kNoDragging (the default), kDragData
(drags the data only), kDragDuplicate (drags a copy of the object), kDragObject (moves the object without copying)

537



• $dragrange
limits the scope of where a field can be dragged to: includes kRangeAll (can be dragged anywhere in the application),
kRangeTask (within the current task), kRangeSubwindow (within a subwindow if the field is in a subwindow), kRangeWin-
dow (within the current window only)

• $dragiconid
sets the icon for the object while it is being dragged

• $dropmode
determines what types of object or objects the field will receive: includes kAcceptAll (all types of Omnis control, but not
system files), kAcceptButton, kAcceptComboBox, kAcceptDroplists, kAcceptEdit, kAcceptGrid, kAcceptList, kAcceptNone,
kAcceptPicture, kAcceptPopMenu, kAcceptOperatingSystem

For a field which is not in a subwindow, kRangeSubwindow is equivalent to kRangeWindow. The drag range is ignored when the
drag mode is kDragObject since a field can be moved only within its own window or subwindow.

Drag and Drop Events

Having set the drag and drop properties of fields and/or windows, you need to write event handling methods for these objects to
handle events when dragging and dropping occurs. Drag and drop actions generate four events, in the order

• evDrag
the mouse is held down in a field and a drag operation is about to start, the event parameters are: pEventCode, pDragType,
pDragValue. It is sent to the field being dragged.

• evCanDrop
a drag operation has started to test whether the field or window containing themouse can accept a drop, the event param-
eters are: pEventCode, pDragType, pDragValue, pDragField. It is sent to the field might receive the drop.

• evWillDrop
themouse is released at the end of a drag operation, the event parameters are: pEventCode, pDragType, pDragValue, pDrop-
Field. It is sent to the field being dragged.

• evDrop
themouse is released over the destination field or window at the end of a drag operation, the event parameters are: pEvent-
Code, pDragType, pDragValue, pDragField. It is sent to the field being dropped on.

• evDragFinished
sent to the dragged field after a drag and drop operation has been completed or cancelled. Its only event parameter is the
event code

If a field can accept the object or data that you are currently dragging onto it, it will becomehighlighted and the appropriate event
messages are sent to the field. Depending on the drag and dropmode, evDrag and evWillDrop are both sent to the dragged field,
and evDrop is sent to the drop field. For the kDragObject and kDragDuplicate modes, the move or duplicate is not performed if
you discard the evDrop message.

The event parameters are

• pDragType
the drag mode of the field being dragged

• pDragField
a reference to the field being dragged

• pDragValue
the object or data being dragged: text, numbers, list data, and so on

• pDropField
a reference to the destination field

All the drag and drop events supply pDragType and pDragValue event parameters. Initially pDragType contains the dragmode of
the field being dragged, but you can change it in any of your event handlers. If pDragType is changed by evDrag, the subsequent
evCanDrop, evWillDrop and evDropwill see the changed value, but changing it does not affect the dragmode. To avoid confusion
with built-in drag operations it is recommended that your drag types are all greater than 1000.

538



Using Drag and Drop

Consider a window in which the user selects a substring of text in one field fDrag and drags it onto another text field fDrop, which
will then highlight the inserted string. First you must set the drag and drop mode of the fields, either in the Property Manager or
using the notation

Do Win1.$objs.fDrag.$dragmode.$assign(kDragData)
Do Win1.$objs.fDrop.$dropmode.$assign(kAcceptEdit)

You must also set up a variable name in the $dataname property for each field, perhaps String1 and String2.

You can trap the events in the fieldmethods, but it may bemore convenient to handle them all in the window $control() method,
in the case when all the fields in the window have consistent drag and drop handling. The code line

Quit event handler (Pass to next handler)

at the start of each field method will pass all events to the window $control() method. In the window $control() method, you can
add event handlers to detect the drag and drop event messages evDrag, evDrop, evCanDrop, and evWillDrop, with the following
structure.

# $control() method in window
On evDrag
# do this

On evDrop
# do this

On evCanDrop
# do that

On evWillDrop
# do the other

The evCanDrop event is sent frequently during a drag operation, so this handler must be short and efficient: it should not do
anything to change the appearance of the user interface, such as displaying a message or opening or closing a window.

You could choose to handle evDrop only, which provides the value of the dragged substring in the parameter pDragValue, and
ignore the other events. When themouse is released over the fDrop field, triggering evDrop, you can use themouseover() function
to return the position of the mouse pointer in the text string. The $mouseevents library preference must be turned on for your
library to send and receive mouse events. You can also use the string functions con() andmid() to insert the dragged string into
the fDrop field at the right place. You can highlight the inserted substring using the properties $firstsel and $lastsel.

# $construct() method for the window
# declare variable Pos of type Number
On evDrop
Calculate Pos as mouseover(kMCharpos)
Calculate String2 as con(mid(String2,1,Pos),pDragValue,mid(String2,Pos+1,len(String2)-Pos))
Do $cobj.$firstsel.$assign(Pos)
Do $cobj.$lastsel.$assign(Pos+len(pDragValue))
Redraw (Refresh now) {fDrop}

Another frequent use of drag and drop is moving selected lines between lists. Consider two fields lDrag and lDrop that use the
list variables List1 and List2. lDrag should have its $multipleselect property set and a drag mode of kDragData, and lDrop should
have its $dropmode property set to kAcceptList.

When the drop occurs, pDragValue has a copy of List1 and not just the selected lines: these can bemergedwith List2 and removed
from List1.

# $control() method for the window
# declare variable iList of type List
On evDrop
Set search as calculation #LSEL
Set current list List2

539



Calculate iList as pDragValue
Merge list iList (Use search)
Set current list List1
For each line in list (Selected lines only) from 1 to #LN step 1

Delete line in list ## remove dragged lines
End For
Redraw lists (All list)

Having merged the dragged lines into List2, you can sort the list.

Alternatively, you might wish to insert the line or lines at a specific place in List2. In this case, you need to use the Insert line in list
command to insert each required line at the mouse pointer position in List2 using themouseover(kMLine) function

Set current list List1
Calculate InsertPoint as mouseover(kMLine)
For each line in list (Selected lines only,Descending) from 1 to #LN step 1 \

## descending order, so as to insert in ascending order
Load from list
Delete line in list
Set current list List2
Insert line in list {InsertPoint}
Set current list List1

End For
Redraw lists (All list)

A drag mode of kDragObject can be useful to give users the chance to rearrange fields on a window.

Operating System Files

You can drop external system files onto window class fields. For example, you can drop a file into a node in a tree list. Note that
any folders are included in the list of dropped objects, with a size of zero.

There is an example app to demonstrate systemfile drag and drop on theOmnis GitHub repo at: https://github.com/OmnisStudio.
Search for Omnis-SystemDrop. The same app is available in the Samples section in the Hub in the Studio Browser.

Notes for existing users

Support for dragging and dropping operating system files and file data (in the thick client) was simplified and improved in Studio
10.2. The old-style Windows file drag and drop is no longer supported, but can be enabled using the “classicwindowssystemdrag-
drop” item in the “windows” section of config.json.

Drop mode

To accept dropped files or file data from outside Omnis, $dropmode for a field must be set to kAcceptOperatingSystem. Note
that kAcceptAll does not include system files (kAcceptOperatingSystem); kAcceptAll means accept drops from all types of Omnis
control.

Drop mode flags

Window controls that have the $dropmode property (as well as the thick client window itself) have a $osdropflags property to
control what is dropped (data or files). This is the combination of a number of constants that can be used to specify what is
dropped:

• kOSDROPincludeData
If set in $osdropflags, pDragValuewill include the data for objects dropped from the operating system if the data is available
and kOSDROPwithoutDataIfOsDropLimitExceeded allows.

• kOSDROPfilesOnly
If set in $osdropflags, objects dropped from the operating system must all be files. Note that on macOS, data provided by
file promises may not be accepted, because the file containing the data may only become available when dropping the
object(s).

• kOSDROPwithoutDataIfOsDropLimitExceeded
If set in $osdropflags, $clib.$prefs.$osdroplimit can be exceeded (in which case data is not included in pDragValue for ev-
Drop)

On conversion, objects that were set to kAcceptFileData are now set to kOSDROPincludeData.

540

https://github.com/OmnisStudio


Drop data limit

The library preference $osdroplimit ($clib.$prefs) sets the maximum number of bytes of dropped data that can be included in
pDragValue for evDropwhen $osdropflags contains the flag kOSDROPincludeData; it defaults to 100000000 (100MB). The setting
kOSDROPwithoutDataIfOsDropLimitExceeded specifies if evDrop still occurs when the limit is exceeded.

Note that combining kOSDROPincludeData and kOSDROPwithoutDataIfOsDropLimitExceeded with a suitable drop limit pro-
vides a good way of accepting files of arbitrary size (where the data is too large to be read into the drag value) and also accepting
other non-file objects.

Note that if you change $osdroplimit, any windows relying on its value need to be closed and re-opened.

Event Parameters

There have been some changes with the parameters for the evDrop event: pDragType was previously set to kDragFiles but is now
set to kDragOperatingSystem. While kDragFileData is renamed to kDragOperatingSystemData_OBSOLETE, and resolves to the
same value as kDragOperatingSystem.

The pDragValue list uses the same column names as previous versions (for compatibility), and has an additional column called
isfile, a Boolean, which is true if the dropped object is a file.

Notes that filedata is always a binary value containing the contents of the object, and filesize is a 64 bit integer.

When dropping email frommacOS Mail, pDragValue has the same content (with these additional columns) as previous versions.

File extension (macOS)

Formac OS, when a file is dragged a fourth column pFileextmac has been added to the pDragValue parameter which returns the
macOS file extension, or is empty if the data is from an unknown application.

Toast Messages

Toast messages are small notification typemessages that that can be “popped up” in your application to alert the end user about
something. You can open toast messages in your desktop apps, via a window instance ($cinst) using the $showtoast method.

There is an example app called Toast Messages in the Samples section in theHub in the Studio Browser. The same app is available
on the Omnis GitHub repo at: https://github.com/OmnisStudio; search for Omnis-Toasts.

Toast Properties and UI

Toast messages have a title, message and an icon, and can be positioned in the top-left, top-right, bottom-left, or bottom-right
relative to the Omnis application window (not the desktop) under Windows, or the whole screen on macOS. They will close auto-
matically after 4000 ms or a specified time.

Toast messages are non-modal, and therefore they are outside the scope of other Omnis window stacks and do not interfere with
evToTop message processing, nor do they change the end users current window or current focused object.

They have the following UI layout:

Figure 162:

The following are some example toast messages:

Toast messages have close boxes so they can be dismissed before the default time expires. They have a set of predefined colors
and default width with the option to override these colors by setting some new appearance theme settings. The message box
has a progress timer bar to show how long remains before the message box is dismissed.

Toast messages can be stacked up to 6 levels deep. When a message is manually closed or expires, it is removed from the stack
and other on-screen messages adjust keeping a stacked appearance.

541

https://github.com/OmnisStudio


Figure 163:

Figure 164:

542



Showing Toast Messages

Toast messages are opened in the context of the current instance (window or object instance) using the $showtoast()method,
which has the following parameters.

• $cinst.$showtoast( cMessage [, cTitle, iStyle=kToastSuccess, iStack=kToastStackTopRight, iTimer=4000, bClearStack=kFalse,
cContext=”] ) adds a new toast to a stack.

Parameter Description

cMessage the message text; must be supplied
cTitle Title text, or leave empty ‘’ for no title | | iStyle | kToastSuccess (the default), kToastError, kToastWarning,

kToastInformation | | iStack | the position of the message stack relative to the application window or
screen on macOS, a constant: kToastStackTopRight (the default), kToastStackTopLeft,
kToastStackBottomRight, kToastStackBottomLeft, kToastStackCenter | | iTimer | number of milliseconds
the toast will be displayed (default is 4000, as set in the ‘toast’ section of the appearance.json theme file)

bClearStack if kFalse (the default) new toast messages are stacked with previous messages, otherwise if passed as
kTrue, all previoustoasts in the stack will be cleared

cContext text passed into $toastnotificationclicked when the content of the toast is clicked (blank by default): see
below.

For example:

$cinst.$showtoast('Success','Congratulations your order is complete', kToastSuccess )
$cinst.$showtoast('Error','Problems with your connection.', kToastError, kToastTopLeft )

Note: Attempting to add a toast to the same stack with an identical title and message will reset the existing toast timer and not
add a new toast.

Notification Clicks

The startup taskmethod $toastnotificationclicked() method allows you to determine when a toast notificationmessage has been
clicked. The $showtoast() method has an optional parameter pContext, which can be passed into $toastnotificationclicked when
the content of the toast is clicked, and after querying pContext your code could take some specific action, such as opening a
window.

If you return kTrue from $toastnotificationclicked, the toast is closed immediately. $toastnotificationclicked is not called if clicking
the toast close box.

Toast Message Colors

You can override the default colors of the four toast styles, the onscreen delay, and the default width in the ‘toast’ section of the
appearance.json file.

toast
{
toastsuccessbackgroundcolor : color,
toastsuccesstextcolor : color,
toastsuccessicon : number,
toasterrorbackgroundcolor : color,
toasterrortextcolor : color,
toasterroricon : number,
toastwarningbackgroundcolor : color,
toastwarningtextcolor : color,
toastwarningicon : number,
toastinformationbackgroundcolor : color,
toastinformationtextcolor : color,
toastinformationicon : number,
toastdefaultdelay: 4000,
toastdefaultwidth: 400

}

543



Example

The following example code opens different toast messages:

If (toastType>kToastInformation)
Calculate toastType as kToastSuccess

End If
Calculate type as toastType
Switch type
Case kToastSuccess

Calculate title as "Success"
Calculate message as "Congratulations. Logon complete."

Case kToastError
Calculate title as "Error"
Calculate message as "Sorry your details are incorrect. Please check your deails and try agin."

Case kToastWarning
Calculate title as "Warning"
Calculate message as "Please check your settings"

Case kToastInformation
Calculate title as "Information"
Calculate message as con('Great news. All formst have been submitted, saved and has passed ', style(kEscBmp,1613),' You can now move on to the next level. ')

End Switch
Calculate toastType as toastType+1

Window Messages

The $showmessage()method opens a message in a window instance, which you can use as an alternative to the OK message
command (this is similar to the $showmessage() method which is available in remote form and remote task instances). The
$showmessage() method is also available for menu, toolbar, report, object, and table instances. The method has the following
definition:

• $showmessage(cMessage[,cTitle,iOptions=kMsgOK])
displays a message using the specified cMessage, cTitle and iOptions (a sum of kMsg… constants). Returns true for OK or
Yes, false for No or cancel. You can use msgcancelled() to check for cancel.

The supported constant values are:

Constant Description

kMsgOK Display an OKmessage (the default)
kMsgYesNo Display a Yes/No message
kMsgNoYes Display a No/Yes message
kMsgCancelButton Add a cancel button to the message
kMsgIcon Display an operating system specific icon with the message
kMsgSoundBell Sound the bell when the message is displayed

If you mix kMsgYesNo, kMsgNoYes and kMsgOK, kMsgYesNo has precedence over kMsgNoYes. kMsgNoYes has precedence over
kMsgOK.

HWND Notation

All window instances and their objects, except background objects, have the $hwnd and $framehwnd properties. In addition,
window instances have the $toplevelhwnd property. These three properties all identify child windows or parts of a window. Each
window object has a $framehwnd, which is the outermost enclosing child window of the object. Each window object also has
an $hwnd, which is the child window which typically contains the main information displayed by the object. $hwnd is always
contained in $framehwnd, and in many cases $hwnd and $framehwnd are the same child window.

For example, in the following field $hwnd is not the same as $framehwnd: $hwnd refers to the client window excluding the title
window, and $framehwnd refers to the frame window.

544



For a window instance, $toplevelhwnd is the outermost enclosing child window of the window instance, that is, it corresponds to
the complete window, including title bar and sizing border, if present. $framehwnd of an open window instance is the window
contained in the $toplevelhwnd; it excludes the window title bar and sizing borders. $hwnd of an open window instance is con-
tained in $framehwnd, together with the window menu bar, toolbar and status bar, if present. For example, when you use the
notation

Do $cwind.$hwnd Returns lvNumber

$hwnd, $framehwnd, and $toplevelhwnd return a number. The number is a unique identifier that represents the child window.

$hwnd, $framehwnd, and $toplevelhwnd can also return an item reference to the child window, for example

Set reference myRef to $cinst.$hwnd.$ref

For $hwnd and $framehwnd, the item reference supports the following properties: $left, $top, $width, $height, $clientleft, $client-
top, $clientwidth, and $clientheight. $toplevelhwnd supports the following properties: $left, $top, $width and $height.

A child window can have a client area and a non-client area. The non-client area of the window can contain features such as the
window border and scroll bars. Sometimes the non-client area is empty, such as in a borderless entry field with no scroll bars.
Consider an entry field with a 2 pixel inset border. Its client area sits inside the non-client area, as follows.

Figure 165:

The entry field with a 2 pixel inset border may be 100 pixels wide and 50 pixels high. The client area would be 96 pixels wide and
46 pixels high. Therefore

$width = 100 $clientwidth = 96
$height = 50 $clientheight = 46

$top and $left are the coordinates of the childwindow, relative to the childwindowwhich contains it (in the case of $toplevelhwnd,
these coordinates are relative to the area in which Omnis displays window instances).

$clientleft and $clienttop are the coordinates of the client area of the child window. These always return the value zero.

The properties of $hwnd and $framehwnd are not assignable. For $toplevelhwnd, $left, $top, $width and $height are assignable.

Screen Size

There is a property of $toplevelhwnd, called $screen, that allows you to track the location and dimensions of the screen, as the
window changes position. This could be useful if, for example, a window in Omnis is located on a second monitor and you want
to determine its width and height in order to resize or reposition the window.

The value of $left, $top, $width and $height of the screen can be obtained by creating an item reference to this property, e.g.

Set reference toplevelitemref to $cwind.$toplevelhwnd.$ref

Set reference screenref to toplevelitemref.$screen.$ref

This is only implemented for macOS andWindows. Other platforms (Linux) will return (0,0,1,1) for (left, top, width, height).

macOS

The screen dimensions on macOS will take account of the menubar and position of the dock and only return the visible screen
area. This canbe controlled using the excludeDockFrom$screen item in the ‘macos’ section of config.json, which is true bydefault,
which means the $screen property excludes a visible macOS dock from its coordinates.

Windows

Under the Windows OS all Omnis windows are contained within the main Omnis window. Therefore, on Windows the identifier
for a window’s screen will be the screen containing the main Omnis window.

If themain Omnis window is displayed acrossmultiple screens then the identifier for the screen is that screen which contains the
largest area of the main Omnis window. The screen properties will provide the area of the main Omnis window which intersects
the visible area of the screen.

545



Using HWND

Sometimes it is important to know the exact size of the client area. For example, if a window has a toolbar on the left and you
want to create controls right-justified down the right edge f the window, $cwind.$width would not be good enough, as it includes
the width of the toolbar. This would cause you to add controls (using $add ) too far to the right.

Figure 166:

In the first example you call $add() to add objects and the $left for the objects would be the width of the window less the $width
of the objects you are adding. As $width included the toolbar space, the objects would be added too far to the right.

In the second example, using the $hwnd of thewindow, you get the exact width excluding the toolbar width, allowing you to right
justify the controls correctly.

Enter Data Mode

You can place window instances in enter data mode on a case-by-case basis. A window instance has the $enterable attribute; if
true, the window is in enterable mode. Enterable means the window is in ‘enter data mode’ so data can be typed into the entry
fields and any OK and Cancel buttons are enabled. Normally windows with modeless enter data are always enterable and other
windows are enterable when there is an executing Enter data command on themethod stack. When you set $enterable to kTrue
for a window instance it is never changed automatically by Omnis at an Enter data command, therefore

Do $cinst.$enterable.$assign(kTrue)

in the $construct() method of the window is equivalent to putting the window in modeless enter data mode.

It is possible to go into enter data mode without the top window (or any window) being enterable. Sometimes this might be
desirable, but beware Omnis provides no protection against this situation.

If a window is not enterable for Enter data it is also not enterable for Prompted find.

Floating Edges for Windows and Fields

Window classes and all field types have the $edgefloat property which affects how the object is resized and/or moved when its
container window/field is resized. The default value of $edgefloat is kEFnone. For a window class, the $edgefloat property affects
how the edge or edges of the window are resized or repositioned when the main Omnis application window is resized, or when
the monitor resolution is changed. For fields and other objects, the $edgefloat property affects how a field is resized or moved
when its container window is resized. You can apply $edgefloat properties to fields within other container fields, such as a tab
pane or shape field, in which case their floating edge or positioning properties are relative to the area within the container field.

The $edgefloat property for a window class or field can have one of the following settings (an Omnis kEF… constant):

546



Constant Description

kEFall All the edges of the window/field can float; this means the window or field will move as the main Omnis window or container window/field is resized; in
effect, the window or field will remain fixed relative to the bottom-right corner of its parent window or field

kEFbottom The bottom edge of the window/field will move with the main Omnis window or container window
kEFleftRight The left and right edges of the window/field will move with the main Omnis window or container window; the width of the window/field will be

unchanged
kEFleftRightBottom The left, right, and bottom edges of the window/field will move with the main Omnis window or container window
kEFnone No floating edges; the window/field is unaffected when you resize the main Omnis window or container window
kEFright The right edge of the window/field will move with the main Omnis window or container window
kEFrightBottom The right and bottom edges of the window/field will move with the main Omnis window or container window
kEFrightTopBottom The right, top and bottom edges of the window/field will move with the main Omnis window or container window
kEFtopBottom The top and bottom edges of the window/field will move with the main Omnis window or container window; the height of the window/field will be

unchanged

In addition, you can set a field’s $edgefloat property to one of the kEFposn… or positioning constants which affect how a field is
positioned (and resized) relative to the edge of its container window class or container field, such as a tab pane.

Constant Description

kEFposnBottomToolBar Places field at the bottom of the window or container field
kEFposnClient Field resizes to fit the area that is available around the field
kEFposnHorzHeader Places field in the horizontal header or top of the container field or window
kEFposnJoinHeaders Field is located where the horizontal and vertical headers meet
kEFposnLeftToolBar Places field at the left-hand edge of the window or container field
kEFposnMainHeader Places the field in the main header of the container field or window
kEFposnMenuBar Places the field at the top of the window or container field; such a field will be placed above fields with kEFposnTopToolBar

and kEFposnHorzHeader
kEFposnRightToolBar Places field at the right-hand edge of the window or container field
kEFposnStatusBar Places field in status bar position at the bottom of the window
kEFposnTopToolBar Places field at the top of the window or container field
kEFposnVertHeader Places field in the vertical header or left side of the container field or window

Note that someof thesepositioning constants takeprecedenceover others. For example, a fieldwith kEFposnMenuBarwill always
be positioned at the top of a window or container field. If you add a field with kEFposnTopToolBar positioning it will appear under
a field with kEFposnMenuBar positioning, if there is one, otherwise it will appear at the top of the window.

The following window shows the different kEFposn… settings for fields within a window class. Fields within a container field, such
as a tab pane, behave in the sameway. Note the kEFposnClient setting will make the object expand to fit the available area in the
window or container field.

Figure 167:

Window Minimum Size

The $minwidth and $minheight properties allow you to set a minimum width and height for a window. This can be useful if you
want to stop the end user making a window containing many floating fields too small, to preserve its layout, for example.

547



$minwidth and $minheight are the minimum values to which the $width or $height properties of a window can be set, either
programmatically or by the user resizing the window. A value of zero (the default) means that no minimum is specified.

Creating a right floating window

The following example shows how you can use $edgefloat, in conjunctionwith some code in the $construct()method of awindow,
to create a window that will attach itself to the right-hand side of themain Omnis window (or desktop under Mac OS), even when
the Omnis window is resized. Set $edgefloat to kEFleftRightBottom, and use the following code in the $construct() methods of
the window.

Set reference item to $cinst.$toplevelhwnd.$ref
Calculate item.$left as $root.$modes.$width – item.$width
Calculate item.$top as 0
Calculate item.$height as $root.$modes.$height

If you resize the Omnis window (under Windows), or change the monitor resolution (Mac OS), the window remains attached to
the right-hand side.

Window Fonts

If you are developing an application for a cross platform environment, youmay want to set up the system font tables to allow the
fonts used in your application tomap correctly across the different platforms. There is a system font table for window classes and
report classes for each platform supported in Omnis.

The fonts in thewindow font tablewill appear in the$fontproperty forwindowobjects. So even if youaredevelopinganapplication
for a single platform, you may still want to edit the window font table to add fonts to those already available for window objects.

Font table Description

#WIWFONTS Window font table for Windows OS
#UXWFONTS Window font table for Unix
#MXWFONTS Window font table for macOS

To view the window fonts system table

• Use the Browser Options dialog (press F7/Cmnd-7 while the Browser is on top) tomake sure the system tables are visible in
the Studio Browser

• Double-click on the System Tables folder

• Double-click on #WIWFONTS or the window font table for your platform

The #WIWFONTS system table contains a list of fonts that are available in Omnis by default. Each row in the font list displays
the corresponding font for each platform supported in Omnis. To change the font mapping, replace the name of a font either by
typing its name or selecting it from the list of fonts. To add a font, click in the next available line in the font list and add the name
of the font. Add a font name for each platform.

The font table editor loads or creates a font table for each platform (corresponding to each column in the editor) and allows you
to edit them all simultaneously. Therefore when you edit the window font table for the first time, and click OK to finish editing it,
a new system table is added to your library for each platform supported in Omnis, other than your current platform.

Window and Font Scaling

Computermonitors are increasingly available in a variety of screen resolutions, therefore your applicationsmust be capable of scal-
ing to fit different display devices. There are some library preferences to control the scaling of windows and fonts for applications
displayed on monitors that have a different resolution from the standard 96 DPI for PCs or 72 DPI for Macs.

• $designdpi
TheDPI of themonitor which the librarywas designed on. This will default to 96 for PCs or 72 forMacs, if it is currently not set.
This value is used to scale the application accordingly when $designdpimode is on. For example, if you have an application
that was designed on a 120 DPI machine, you should set $designdpi to 120. When such an application is opened on a 96 or
72 DPI monitor, and $designdpimode is on, the windows and fonts will scale down.

548



• $designdpimode
Turns designdpi mode on or off, one of three values: kDPIoff (the default) no scaling occurs, which equates to the behavior
of previous versions of Omnis Studio; kDPIframeOnly means that window and control frames will be resized, but not fonts;
kDPIall specifies that all window and object frames, as well as fonts, are scaled.

When you assign these preferences you must close and reopen your library for them to take effect.

Note that the $left, $top, $width and $height of windows and objects are also affected as appropriate when $designdpimode is
on and an application is scaled.

Menu and Toolbar Fonts (Windows)

You can scale menu and toolbar fonts when using design DPI scaling. Specifically, window menus and window toolbars, under
Windows, scale using the design DPI preferences and settings for the library.

There are some entries in the config.json file that can be used to control scaling of menus and toolbars for cases where Omnis
cannot easily determine a library to be used as the source of the scaling settings. These entries are:

• defaultMenuDesignDPIMode and defaultMenuDesignDPI
in the “windows” section (these only apply on the Windows platform: note that menu items are never scaled on macOS)

• windowToolbarDesignDPIMode and windowToolbarDesignDPI
in the “ide” section

• dockingAreaDesignDPIMode and dockingAreaDesignDPI
in the “ide” section

The syntax for these entries is

• the mode entries: “kDPIall”, “kDPIoff” or “kDPIframeOnly”

• the DPI values: 3 comma separated DPI values

This corresponds to the syntax of the library preference (even in the case of menus where only the Windows platform value is
used). Typically, you would set these to the same value as those in the library preferences.

Background Themes

Background themes allow you to specify the Aqua theme for the background of an object. $backgroundtheme is a new property
of a window object, window background object, a window, and some remote form objects and allows you to set the background
theme. It can have the following values:

Constant Description

kBGThemeNone No background theme; you can use the other background properties of the object ($forecolor and so on)
kBGThemeParent parent object theme; if this results in kBGThemeNone, the object uses the parent’s appearance properties
kBGThemeWindow window background theme
kBGThemeContainer container background theme (usually kBGThemeWindow)
kBGThemeTabPane tab pane background theme
kBGThemeTabStrip tab strip background theme
kBGThemeControl control background theme
kBGThemeMenubar menu bar background theme
kBGThemeMenu menu background theme

Note that if you use this property on platforms other than macOS, the background will be filled with the following system colors:

Constant Description

kBGThemeWindow
kBGThemeContainer
kBGThemeTabPane
kBGThemeTabStrip

kColor3DFace

kBGThemeControl kColorWindow

549



Constant Description

kBGThemeMenubarkBGThemeMenukColorMenu

Since $backgroundtheme uses sensible values for platforms other than macOS, you can use the theme to obtain good cross-
platform results. The following are some additional recommendations:

• Always set the window’s theme to kBGThemeWindow.

• When designing windows using container objects such as scroll boxes, in order to create sizeable panes, set the container’s
theme to kBGThemeParent, unless there is a good reason for the container to use a different background.

• For label background objects set the background pattern to transparent (pattern 15).

• When using edit fields as labels, set $backgroundtheme to kBGThemeParent and set $effect to kBorderNone.

Theme Fonts

Theme fonts allow you to specify a font from the current Aqua theme. They are only available on macOS. You can use Theme
Fonts in the $fontname property of a Field Style. The following Theme Fonts are available:

ThemeLabel ThemeMenuItem
ThemePushButton ThemeMenuItemMark
ThemeApplication ThemeMenuItemCmdKey
ThemeSystem ThemeWindowTitle
ThemeEmphasizedSystem ThemeUtilityWindowTitle
ThemeSmallSystem ThemeAlertHeader
ThemeSmallEmphasizedSystem ThemeViews
ThemeMenuTitle

Note that not all theme fonts on macOS support text underline.

Window Style

You can set the style or type of a window using the $style property. The window $style can be one of the following: kDialog,
kNoframe, kPalette, kSimple, or kTitle (the default).

Window Title Colors (macOS)

On macOS, you can use the coloractivecaption and colorinactivecaption items in the ‘system’ section of appearance.json to set
the colors for window title bars. If either of these is set to kColorDefault, the system default colors are used.

In addition, themacoscaptiontextappearance item in the ‘system’ section of appearance.json specifies the text color for captions
(the window title); this is an integer: 0 system default, 1 dark text, 2 light text.

Drawer Windows (macOS)

Drawer and Sheet windows are available under macOS only. In general, their behavior is ignored under the other platforms and
they behave like standard windows. For example, you can specify that OK message boxes are opened as sheet windows: under
macOS they will open by overlaying the parent window, but under all the other platforms they will open as normal by popping
up over the top of the current window.

A drawer is a window that slides out from a parent window and while open remains attached to the parent window. For example,
in an appointment calendar application a drawer window could pop out from the main window to display details about each
appointment. In Omnis, drawer windows behave in the standard way as defined by the macOS operating system.

When you open a window from inside the current window, the parent window, you can specify that the child window is opened
as a drawer either at the top, bottom, left, or right of the parent. The drawer position is selected as one of the window position
constants when using the $open() method.

550



# button method inside a parent window
On evClick
Do $clib.$windows.wDrawer.$open('*',kWindowDrawerDefault)
# other positions include kWindowDrawerBottom, kWindowDrawerLeft, kWindowDrawerRight, kWindowDrawerTop

Window instances have the property $isdrawer which tells you whether the instance is a drawer window or not.

Sheet Windows (macOS)

Window classes have the property $usesheets which enables sheet windows under macOS; on other platforms, windows are
opened as normal. If this property is kTrue, and the Window is the top most window (excluding palette windows), any message
boxes, such as standard OK and Yes/Nomessages, and file selection dialogs will be opened as a sheet window in the top window.
In this case, message and file selection sheet windows are application modal, that is, the use cannot click on any other Omnis
windows while the sheet window is open.

It is also possible to open user windows as sheet windows, by using the constant kWindowSheet with the $open() method, for
example:

Do $clib.$windows.wMyWindow.$open('*',kWindowSheet,$iwindows.wMyParentWindow.$ref)

The sheet windowwill be attached to the specified parent window. If no parent window is specified, the sheet window is attached
to the top user window.

If $clickbehind is kTrue, itwill bepossible to click onotherOmniswindowswith the exceptionof theparentwindow. If $clickbehind
is kFalse, the sheetwindowbecomesapplicationmodal (openuserwindowsonly) and itwill not bepossible to click onotherOmnis
user windows.

Window instances have the property $issheet which tells you whether the instance is a sheet window or not.

Simple Style Windows

The $growbox property is assignable for simple style windows ($style = kSimple), as this controls whether the window has a sizing
border. This will allow you to make simple style windows look more alike on macOS and wWindows.

For a window with $style set to kSimple, irrespective of the setting of $growbox, you can always resize the design window. On
Windows, there is awider sizing border in designmode, even if $growbox is kFalse. When you open thewindow, the openwindow
is only resizeable if $growbox is true, and onWindows it only has a wider sizing border in this case.

The net effect is that for kSimple style windows with $growbox kFalse, there is no wide sizing border on either platform for the
open window, making them appear more alike.

Palette Windows

It is recommended that you do not use Palette type windows under macOS due to various constraints with window ordering and
their conflict with the window “bringtofront” mechanism in Omnis. You can use one of the other window types, by setting the
$style property of the window, such as the kSimple type.

Window Transparency

Window classes now have the $alpha property which sets the transparency of the window and all its controls (an integer from 0
to 255, with 0 being completely transparent and 255 opaque). In addition, themajority of theWindow class components have the
$alpha property which means you can set the transparency of individual window components.

Note $alpha was available for window classes in versions prior to Studio 8.1 but for macOS only.

Disabling the Focus on Fields

Most window fields have the $disablefocus property which specifies whether or not a field gets the focus when the user tabs
through the fields in a window. This is useful, for example, with fields that do not show the focus, such as the trans button: setting
$disablefocus to kTrue still allows the user to click on the button, but prevents tabs appearing to go nowhere.

551



Lookup Windows

In the situation where there may be limited space on your window for a large list field, therefore you might want to place the list
on a separate lookup window. You can force such a window to open when the user needs to look up the data, and close it as
soon as a line is chosen. As a further refinement you can allow the user to enter some data directly into a field and not popup the
window, or if the field is left empty popup your lookup window containing a list of possible choices.

An entry window wBookings for the BOOKINGS file, for example, might have the foreign key BkCuId to the primary key CuId in
the CUSTOMERS file. The BkCuId fieldmethodwill check if the code entered by the user is valid and allow the user to choose from
a list of customer names if it is not. The important point here is that method execution must be held up until the user has made
a choice. These are the methods to implement this: they will be described together since they interact.

# $event() method for wBookings field BkCuId
On evAfter
Do CheckCustCode Returns Valid ## check on code entered
If not(Valid) ## if invalid or no code

Open window instance {wCustList} ## open lookup window
Enter data ## until item is selected
Close window instance wCustList
Calculate BkCuId as CuId ## set foreign key ..
Redraw { BkCuId } ## and show value
Queue set current field {BkCuId} ## reposition cursor ..
Queue tab ## to next field

End If
Quit event handler (Discard event)

The Customers List window wCustList is a Simple or NoFrame style window filled by a list box. The list is defined and built as the
window opens. There’s no need to show CuId in the list box but it must be in the list.

# $construct() method for wCustList
Set current list cCustList
Define list {CuId, CuLname, CuCountry}
... build list from Omnis or SQL data

# $event() method for list box field
On evDoubleClick ## Event Parameters - pRow ( Itemreference )
Load from list ## transfer list line values to CRB
Queue cancel ## terminate enter data mode
Quit event handler (Discard event)

When wCustList opens, the list is built. At this point Enter data is necessary to halt execution of the method until the user has
chosen from the list. When the list box receives a double-click, Load from list transfers the list line data to the CRB.Queue cancel
now terminates the enter data state so that execution resumes and closes the window. BkCuId is set from CuId entered from the
list and the field is redrawn. The cursor will still be in BkCuId soQueue set current field andQueue tab can be added to place the
cursor at the next field in the tabbing order.

This enter data state is needed whether or not the parent window has $modelessdata set.

Timer Methods and Splash Screens

A splash screen makes a more friendly introduction to an application than presenting the user with a blank screen and a menu
bar. It involves opening an introductory window, usually called wAbout, from the $construct() method in the startup task of your
library. You can keep the About window on screen either for a predetermined time or until the user clicks on it. The wAbout
window contains a button area field to detect clicks and the following methods

# $construct() method for wAbout
Set timer method (8 sec) {Timer Control}

# $event() method for the button area field
On evClick
Do method Close Window

# Close Window method

552



Clear timer method
Close window {wAbout}

# Timer Control method
Do method Close Window

When the $construct() is called, the Set timer method command sets a time delay in seconds and nominates a method, called
Timer Control, which is run at the end of the delay. The Timer control method then calls Close Window which clears the timer
and closes the window. If the window has been clicked on before the end of the delay, the button area method calls the Close
Windowmethod which closes the window immediately.

The button area should have its $noflash property set to kTrue to avoid flashing when the user clicks on it.

Pictures

You can place button area fields over a graphic, which you can paste onto your window or load into a Picture field. If the li-
brary preference $sharedpictures is set to kSharedPicMode256Color or kSharedPicModeTrueColor, pictures are converted to a
format accepted under Windows or macOS. The recommended shared picture mode is kSharedPicModeTrueColor. kSharedPic-
Mode256Color is provided for backwards compatibility with earlier versions of Omnis Studio.

Window Status Bars

A window status bar is an area at the bottom of a window in which you can display data, text, help messages, progress or ther-
mometer bars, and so on; for example, there is a status bar at the bottom of the Studio Browser. A status bar is a property of the
window itself which you enable in the Property Manager. You can set how many panes should appear in the status bar, and the
size and style of each pane.

To enable a window status bar

• Open your window in design mode

• Click on the background of the window to show its properties, or press F6/Cmnd-6 to bring the Property Manager to the
top

• Set the hasstatusbar property to kTrue

• Click on the Appearance tab in the Property Manager and set the statusedge property: it can be flat (the default), plain,
inset, or chisel border style

To set the number of panes in the status bar and their style you need to edit the properties of the status bar in the Property
Manager.

To set the number of panes in the status bar

• Click on the status bar and bring the Property Manager to the top

The panecount property specifies the number of panes in the status bar. The helppane property specifies the pane in which any
help messages should appear, held in helptext for menu lines, for example. On the Text tab you can set the font and fontsize
properties for the whole status bar.

To change the properties of individual panes you should click on the pane and edit its properties in the Property Manager.

To change the properties of a pane

• Click on a pane in the window status bar and click on the Pane tab in the Property Manager

You can change the pane’s border, alignment, and width in pixels. The sizing property sets the pane to fixed or elastic when the
window is sized at runtime. Theminimum size of an elastic pane is the size of the pane in designmode: it cannot bemade smaller
in runtime.

The height of the status bar changes to accommodate the status bar font size with a two-pixel buffer above and below. In design
mode you can change the width of a pane by dragging the handle that appears in the selected pane.

Everywindow instance contains the$statusbar property containing thewindowstatusbar in runtime. The$hasstatusbar property
lets you hide and show the status bar at runtime. The $statusbar property also contains a group $panes containing the panes in
the status bar numbered consecutively from the left. For example, pane 2 is $iwindows.WindowName.$statusbar.$panes.2. Each
pane has width, text and appearance properties which you can set at runtime. For example

553



# declare item references to the panes
Set reference Pane1 to $cinst.$statusbar.$panes.1
Set reference Pane2 to $cinst.$statusbar.$panes.2
Set reference Pane3 to $cinst.$statusbar.$panes.3
Do $cwind.$statusbar.$panes.$remove(Pane3) ## removes the third pane
Do Pane2.$text.$assign('Click Save button to save your work')
Do Pane3.$sizing.$assign(kElastic)
Do Pane1.$hasborder.$assign(kFalse)

The $align property for a pane specifies whether to position the pane either after the previous left-hand pane or before the right-
hand pane.

Progress Bars

In runtime, you canmake a pane into a progress bar by enabling its isprogress property. If you want to view the properties of the
status bar in runtime you can view it in the Notation Inspector under $iwindows. The properties of the status bar on a window
instance are

• min andmax
sets the minimum andmaximum value for the progress bar

• isprogress
enables the pane as a progress bar

• value
sets the current value on the progress bar

When $isprogress is set, $min and $max default to 0 and 100 respectively, but if you set them after setting $isprogress, your values
will override the default settings. For example, to set $max for the second pane:

Do Pane2.$isprogress.$assign(kTrue)
Do Pane2.$max.$assign(200) ## default for $min is zero

The defaults for $min and $max are useful for percentages, for showing the percentage completed for an operation. The following
method sets up a progress bar in the second pane and uses the default values for $min and $max:

Set reference Pane1 to $cinst.$statusbar.$panes.1
Set reference Pane2 to $cinst.$statusbar.$panes.2
Do Pane1.$hasborder.$assign(kFalse)
Do Pane1.$text.$assign("Doing Loop")
Do Pane2.$isprogress.$assign(kTrue)
# now set max if required e.g. Do Pane2.$max.$assign(maxvalue)
Do Pane2.$backcolor.$assign(kRed)
Calculate Pane2.$value as Pane2.$min ## resets value of pane2
Repeat

Calculate Pane2.$value as Pane2.$value+1
Until Pane2.$value>=Pane2.$max
Do Pane1.$text.$assign("Ready")
Do Pane2.$isprogress.$assign(kFalse)

You can add an icon or picture from the USERPIC.DF1 data file or #ICONS to the progress bar, either from the Property Manager
or with a command. For example, to have a show of hands as your bar add the line:

Do Pane2.$iconid.$assign(1072)

As a further refinement, you can add a ‘% Done’ message to the progress bar using the current $value of the pane inside the loop.

Repeat
Calculate Pane2.$value as Pane2.$value + 1
Calculate Pane2.$text as con(rnd(((Pane2.$value/Pane2.$max)*100),0),"% Done")

Until Pane2.$value = Pane2.$max
Calculate Pane2.$text as "Finished!"

554



True Color Shared Pictures

Omnis Studio supports true color (24 bit) shared pictures. These are implemented using the free source for PNG and ZLIB.

PNG or “Portable Network Graphics”, is a standard picture format, with a portable free source code implementation. ZLIB is a com-
pression library, which also has a portable free source code implementation. You can find out more about PNG at: www.w3.org.

The $sharedpictures library preference has three values, which can be set using the following constants:

• kSharedPicModeNone
do not use shared pictures.

• kSharedPicMode256Color
use the 256 color shared pictures from earlier releases.

• kSharedPicModeTrueColor
use true color shared pictures.

If you use shared pictures, you should use true color since this will probably result in smaller stored images, and more realistic
colors.

The data file browser has a hierarchical menu fromwhich you can choose no shared pictures, the old 256 color shared pictures, or
true color shared pictures; this affects how pictures are converted when reorganizing.

Window picture fields and background pictures have the $cachepicture property, which defaults to kTrue. When kTrue, and a
shared picture is displayed, Omnis keeps both the shared picture data, and a copy of the decompressed native OS picture - this
uses more memory but results in faster drawing.

The reorganize data command has a new checkbox which only applies when the convert to shared option is checked. It indicates
convert to true color shared pictures.

The Edit>>Paste From File dialog allows direct pasting of PNG files.

Note that conversion of images to true color loses color depth, unless you convert on a machine running in true color mode.

• pictconvto(Character SrcFormat,Binary Src,Character DstFormat)
Converts the supplied binary data (with or without our internal header) from the supplied source format to the supplied
destination format (onmacOS, all bitmap data formats are supported, including PNG, TIFF, BMP, JPEG, and GIF). For exam-
ple:

Do pictconvto("PNG",myPngData,"JPEG") Returns myJpegData
# This converts the PNG data in myPngData to JPEG

• pictconvfrom(Character SrcFormat,Binary Src)
Converts from the raw data and the specified format to a picture value, which can be used in various Omnis fields. For
example, the following code lets you read a JPEG file from disk and display it:

ReadFile (“C:\MYFILE.JPG”) returns myJpegData
Do pictconvfrom("JPEG",myJpegData) Returns myJpegData
Redraw {JPEG_CONTROL}

• pictformat(Binary Src)
Returns a character string which contains the format of the picture data supplied. For example:

Do pictformat(myJpegData) ## will return “JPEG”

• pictconvtypes()
Returns a single column list, which contains all the picture conversion types registered with Omnis. The values are: CS24,
PNG, BMP, JPEG

The picture formats are as follows:

• CS24
Omnis colour shared picture format (16 million colours) , including the internal Omnis header.

555



• PNG
PNG format (Raw, as written on disk)

• JPEG
JPEG format (Raw, as written on disk)

In the following example, the 24 bit colour shared images in the background picture objects of a remote form class are converted
to PNG.

Set reference fref to $root.$libs.THIN.$remoteforms.rfBooks.$bobjs
Set reference curBOBJ to fref.$first
While curBOBJ
If curBOBJ.$objtype=kBackpicture

If pictformat(curBOBJ.$picture)="CS24"
# 24 Bit picture
Calculate picture as curBOBJ.$picture
Calculate pictPNG as pictconvto("CS24",picture,"PNG")
Calculate curBOBJ.$picture as pictPNG

End If
End If
Set reference curBOBJ to fref.$next(curBOBJ)

End While
Save class {THIN.rfBooks}

Chapter 13—Unicode

Omnis Studio fully supports Unicode, which means you can expand the market for your Omnis applications by supporting the
majority of world languages and the display of special characters, including scientific and mathematical symbols.

In previous versions of Omnis Studio, we provided a Unicode and non-Unicode version of the development kit, but from Omnis
Studio 5 onwards only the Unicode compatible version was provided. The Unicode version of Omnis Studio is available for Win-
dows, macOS, and Linux, and will allow you to localize your applications and deploy them to virtually anymarket, anywhere in the
world.

You should also refer to the Localization chapter for information about localizing and deploying your desktop applications for
non-English speaking markets.

What is Unicode?

Unicode provides a mechanism for representing characters or symbols used in many of the languages in the world, as well as
scientific and technical environments. The Unicode standard is maintained by the Unicode Consortium (www.unicode.org) who
set the standards for Unicode and promote its worldwide use. They define Unicode as: “a character coding system designed to
support theworldwide interchange, processing, anddisplay of thewritten texts of thediverse languagesand technical disciplines
of the modern world.” In the context of client-server and Internet-based computing, Unicode allows the seamless exchange and
processing of character data across different platforms, software products and programming environments.

The Unicode consortium provides information and resources concerning Unicode, including the standard definition andmainte-
nance, character code tables, a locale identifier repository, and lists of Unicode enabled products. The last major version update
of Unicode was version 9 which is capable of representing over 100,000 different characters, used in many different languages
throughout the world. Many operating systems and software products have adopted Unicode, which is now universally accepted
as the standard for character representation. For example, the latest versions of Windows and macOS, as well as all varieties of
Linux, support Unicode. All web standards, such as the latest versions of HTML, XML, and JSON support Unicode, as well as the
latest versions of Internet Explorer and all Mozilla-based browsers. In addition, SQL databases such as themost recent versions of
Sybase, Oracle, and DB2 support Unicode.

Together with the display of multiple languages in Omnis, the use of Unicode encoding affects the sort order of dynamic data, for
example, in list variables, as well as the querying and retrieval of data from Unicode compatible Server databases.

556

14localization.html


DAMs

The DAMs provided with Omnis Studio (from version 5.0 onwards) are able to function in Unicode or 8-bit compatibility mode.
This means that after converting your existing libraries, it is possible to continue interacting with non-Unicode databases.

In 8-bit compatibility mode, all DAMs:

• Return non-Unicode character data types via the $createnames() and $coltext attributes

• Bind outgoing character variables using the database’s non-Unicode data types

• Convert all data inside outgoing character bind variables to single-byte characters

• Define incoming character columns using the database’s non-Unicode data types

• Convert all data inside incoming character bind variables from bytes into characters

Switching to 8-bit compatibility mode

To switch to 8-bit compatibility mode, there is a session property $unicode which should be set to kFalse from its default value of
kTrue. This implementation allows multiple Unicode and 8-bit session objects to exist side by side if required.

Character Mapping

This section is applicable to session objects operating in 8-bit compatibility mode only.

When reading data from a server database, Omnis expects the character set to be the same as that used in an Omnis data file.
The Omnis character set is based on the macOS extended character set, but is standard ASCII up to character code 127. Beyond
this value, the data could be in any number of different formats depending on the client software that was used to enter the data.

When assigned, the $maptable session property identifies files containing translation tables for 8-bit character codes read into
and sent out of Omnis. For example, suppose you are working with a database that stores EBCDIC characters. In order to accom-
modate this database, you should create an ‘.IN’ map file that translates EBCDIC characters to ASCII characters when Omnis in
reading server data and amatching ‘.OUT’ file that reverses the process by converting ASCII to EBCDIC characters when Omnis is
sending data to the server.

Under Windows and Linux, Omnis uses the same character set as under macOS, so in the general case, mixed platform Omnis
applications should have no need for character mapping. However, if the data in a server table was created by another software
package, running underWindows for example, the characters past ASCII code 127would appear incorrect when read usingOmnis.
In this situation the $maptable property should be used to map the character set.

There are two kinds of character maps: IN and OUT files. IN files are used to translate characters coming from a server database
into Omnis. OUT files are used to translate characters that travel from Omnis back to a server database.

The Character Map Editor

The Character map editor is accessed via the Add-On tools menu item and enables you to create character-mapping files. You
can change a given character to another character by entering a numeric code for a new character. The column for the Server
Character for both .IN and .OUT files may not actually represent what the character is on the server. This column is only provided
as a guide. The Numeric value is the true representation in all cases.

To change a character, select a line in the list box and change the numeric code in the Server Code edit box. Once the change has
been recorded, press the Update button to update the character map. You can increase/decrease the value in the Server Code
edit box by pressing the buttonwith the left and right arrows. Pressing the left arrow decreases the value, pressing the right arrow
increases the value.

The File menu lets you create new character map files, save, save as, and so on. The Make Inverse Map option creates the inverse
of the current map, that is, it creates an “.IN” file if the current file is an “.OUT” character map, and vice versa.

Using the Map Files

Establish the charactermapping tables by setting the session property $maptable to the path of the twomap files. Both filesmust
have the same name but with the extensions .IN and .OUT and be located in the same folder. The $maptable property establishes
both .IN and .OUT files at the same time. For example:

Do SessObj.$maptable.$assign('C:\Program Files\Omnis Software\ Charmaps\pubs') Returns #F

557



In this example, the two map files are called “pubs.in” and “pubs.out”.

The session property $charmap controls the mode of character mapping that is to be applied to the data. Set the character
mapping mode using a command of the form:

Do SessObj.$charmap.$assign(pCharMap) Returns #F

The potential values for the character mapping mode parameter pCharMap are:

• kSessionCharMapOmnis
Use the internal Omnis character set.

• kSessionCharMapNative
This is the default and specifies that the client machine character set is to be used.

• kSessionCharMapTable
Use the character mapping table specified in the $maptable property. If the $maptable property is not set and the applica-
tion attempts to assign kSessionCharMapTable this fails.

If you wish to use the character mapping tables defined using the $maptable property, you must set $charmap to kSession-
CharMapTable.

Interpreting 8-bit Data

This section is applicable to the MySQL, PostgreSQL and Openbase DAMs which interface with their respective client libraries
using the UTF-8 encoding.

When operating in Unicode mode, it is possible to receive mixed 8-bit and Unicode data, since UTF-8 character codes 0x00 to
0x7F are identical to ASCII character codes.

Where this data was created using the non-Unicode version of Omnis however, it is possible that the data may contain ASCII
extended characters. In this case, the Unicode DAM will encounter decoding errors, mistaking the extended characters as UTF-8
encoded bytes.

This issuewas not a concern for the non-Unicode version of Omnis Studio since extended characters were always read andwritten
as bytes, irrespective of the database encoding.

In order to avoid problems when upgrading to the Unicode version of Omnis Studio, it is advisable to convert tables containing
ASCII extended characters to UTF-8. This process is simplified where the database character set is already set to UTF-8 (as is often
the case with MySQL). All that is required is to read and update each row in the table and repeat this for all tables used by the
application. In so doing, Omnis will convert the 8-bit data to Unicode and then write the converted Unicode data back to the
database.

In order to facilitate this within the DAM, the session property $validateutf8 is provided. When set to kTrue (the default), any
fetched character data is validated using the rules for UTF-8 encoding. Where a given text buffer fails validation, it is assumed to
be non-Unicode data and is interpreted accordingly. When written back to the database, all character data will be converted to
UTF-8. Such updates will result in frequently accessed records having their contents refreshed automatically.

By setting $validateutf8 to kFalse, validation is skipped and the DAM reverts to the previous behavior, in which case extended
ASCII characters should be avoided.

Aside from the issue of UTF-8 encoded data, the DAMs provided with Studio 5.0 are able to retrieve non-Unicode data from non-
Unicode database columns in either Unicode or 8-bit compatibility mode. The DAM knows the text capabilities of each character
data type and assigns encoding values to each result column accordingly.

The difference in behavior when using 8-bit compatibility is that in compatibility mode, it is also possible to write data back to
non-Unicode columns.

In Unicode mode, the DAM assumes that it will be writing to Unicode compatible data types and this will cause data inser-
tion/encoding mismatch errors if the clientware tries to insert into non-Unicode database columns.

Character Mapping in Unicode Mode

Character mapping to and from the Omnis character set is also possible where session objects are operating in Unicode mode.
This was previously removed from the Unicode DAMs since it provided compatibility between the various 8-bit character sets.
Where Unicode DAMs encounter 8-bit data however, it is necessary to indicate the character set used by the data. For this reason
the session $charmap property can be used to indicate that fetched 8-bit data uses either:

558



• kSessionCharMapRoman
Use the Mac Roman character set to interpret the characters

• kSessionCharMapLatin1
Use the Windows/Linux character set to interpret the characters

Fetching Data to a File

The $fetchtofile() method has the iEncoding parameter, as follows:

Do StatementObj.$fetchtofile(cFilename [,iRowCount=1] [,bAppend=kTrue] [,bColumnNames=kTrue] [,iEncoding=kUniTypeUTF8/kUniTypeLatin1])

where iEncoding is an optional parameter specifying the type of encoding to be used. It should be one of the Unicode type
constants and defaults to kUniTypeUTF8. The corresponding Unicode Byte Order Marker (BOM) is written to the beginning of the
file when the file is empty or when bAppend is set to kFalse.

Server Specific Programming

Certain DAMs, namely DAMORA8 and DAMODBC, also provide session properties which allow mixing of Unicode and 8-bit data
when the DAM is operating in Unicode mode.

Oracle DAM

This section summarizes recent changes made to the Unicode Oracle Object DAM designed to enable insertion and retrieval of
mixed ANSI and Unicode character types.

In the case of Oracle 8i and later, these data types are:

Type Description

CHAR Fixed single-byte character data, limited to 2000 bytes.
NCHAR Fixed multi-byte character data, limited to 2000 bytes.(1000 UCS-2 encoded characters)
VARCHAR2 Varying length, single-byte character data, limited to 4000 bytes.
NVARCHAR2 Varying length, multi-byte character data, limited to 4000 bytes.(2000 UCS-2 encoded characters)
CLOB Character Large Object- single-byte character data.
NCLOB National Character Large Object- multi-byte character data.
LONG Varying length, single-byte character data, limited to 2GB.Supported for backward compatibility only.

By default, the Unicode Oracle DAMmaps all Omnis character data to the NVARCHAR2 and NCLOB data types, dependent on the
field length of the Omnis bind variable. However, the Oracle DAM provides session properties which affect the Omnis to Oracle
data type mappings:

• $nationaltonvarchar
If set to kTrue, Character and National data types are treated differently when being inserted to VARCHAR2 / NVARCHAR2
columns. The National character subtype will be used with Unicode data, whilst the Character subtype will be reserved for
non-Unicode data.

• $nationaltonclob
If set to kTrue, largeCharacter andNational data types are treateddifferentlywhenbeing inserted toCLOB /NCLOBcolumns.
The onus is upon the developer not to put Unicode characters into Character subtypes when using these properties; other-
wise data insertion/encoding mismatch errors will occur.

• $maxvarchar2
Sets thebyte limit abovewhichOmnis character fieldswill bemapped toCLOB/NCLOBdata types as opposed toVARCHAR2
/ NVARCHAR2 columns. The maximum value is 4000 bytes.

• $longchartoclob
If set to kTrue (the default), Omnis large character fields > $maxvarchar2 in byte length will bemapped to the CLOB/NCLOB
data type. If set to kFalse, the LONG data type is used.

Reading Unicode and Non-Unicode Data

The Oracle DAM automatically detects the data type of retrieved character columns and converts the data accordingly. There is
no need to modify any properties in order to retrieve mixed ANSI and/or Unicode Data.

559



ODBC DAM

The ODBC DAM provides the $nationaltowchar session property.

By default, Omnis Character and National fields are mapped to the SQL_WCHAR, SQL_WVARCHAR and SQL_WLONGVARCHAR
data types. By setting $nationaltowchar to kTrue only National fields will be mapped to these types (to the equivalent server data
types) and Character fields will bemapped to SQL_CHAR, SQL_VARCHAR and SQL_LONGVARCHAR as determined by the Omnis
field length. Character fieldsmapped in this way are subject to data loss/truncation where such fields contain Unicode characters.
When setting this property, please note that Unicode data types usually have precision limits half that of their corresponding ANSI
data types. For example, this is 8000 for the SQL Server VARCHAR() data type but 4000 for NVARCHAR(). $nationaltowchar affects
both the text returned by the $createnames() method and the binding of input parameters.

Character Normalization

Originally, Unicodewas a 16-bit character set. It has subsequently been extended to include code point values up to and including
U+10FFFF. It is not expected that it will be extended any further. Windows and macOS still represent Unicode character strings
using arrays of Short (16-bit) integers. This is not a problem, because the UTF-16 standard allows code points U+10000 and greater
to be represented by pairs of 16-bit values (each member of the pair occupies space in the 16-bit range that is not used for code
points). This representation is referred to as a surrogate pair.

Internally Omnis uses UTF-32 to represent code points, that is, each code point occupies 32 bits, and the value of each code point is
between 0 andU+10FFFF inclusive. This allows for straightforward processing of character strings, since every code point occupies
the same space in memory.

Unicode allows a significant number of characters to be represented by more than one sequence of code points. For example,
consider the letter E with circumflex and dot below, a character that occurs in Vietnamese (Ệ). This character has five possible
representations in Unicode:

• U+0045 Latin capital letter E U+0302 combining circumflex accent U+0323 combining dot below

• U+0045 Latin capital letter E U+0323 combining dot below U+0302 combining circumflex accent

• U+00CA Latin capital letter E with circumflex U+0323 combining dot below

• U+1EB8 Latin capital letter E with dot below U+0302 combining circumflex accent

• U+1EC6 Latin capital letter E with circumflex and dot below

A character represented bymore than one code point is referred to as a composite character. A character represented by a single
code point is referred to as a pre-composed character.

As far as the end-user is concerned each of these representations usually needs to be treated identically. This leads to some
interesting consequences for Omnis. These are discussed in the following sections. Note the term end-user charactermeans the
character that the end-user is working with – in the example above, the end-user character is Ệ.

Normalization of a Unicode character string converts the string into a standard, defined format. Once normalized, a Unicode
character string has only one possible representation, thereby making it possible to compare it with other character strings, and
produce results useful to the end-user. The Unicode standard recommends two forms of normalization. These are:

• Canonical decomposition, referred to as NFD:
Pre-composed characters are replaced by their equivalent composite characters; Composite characters are replaced with a
single fixed composite representation.

• Canonical decomposition followed by canonical composition, referred to as NFC:
After carrying out NFD, all composite characters are replaced with their pre-composed equivalent, where one exists.

Omnis provides two functions to normalize character strings:

• nfd(string) carries out canonical decomposition on the string and returns the normalized string.

• nfc(string) carries out canonical decomposition followedby canonical composition on the string and returns thenormalized
string.

These functions are not available in client-side web client methods.

560



Comparing Text

Omnis uses two types of comparison for character strings:

• Comparison of the UTF-8 values of the strings. This is called Character comparison.

• Comparison according to the rules for the locale specified via the localization data file; prior to comparison, the input data
is normalized. This is called National comparison. National comparison is more likely to produce results that the end-
user would expect. Note that upper casing used in conjunction with national comparison may not have an effect, since
sometimes the rules for the locale ignore the case of the characters.

The natcmp() function uses national comparison. Note that natcmp() is not available in client-side web client methods.

Omnis compares text for many different reasons, and in many different places. Key areas are:

• Sorting lists

• Searching lists

• Manipulating data file indexes

• Expressions, for example the test on an if statement

Omnis supports two types of character variable – character and national.

Sorting Lists

When using the character type, Omnis uses character comparison.

When using the national type, Omnis uses national comparison.

Searching Lists

When using the character type, Omnis uses character comparison.

Searches that directly use a character column of national type use national comparison.

Other searches, for example searches using a calculation, will behave as if they are operating on normal character data. However,
you can use natcmp() as part of the calculation, in order to use national comparison.

Manipulating Data File Indexes

Indexes for national fields use national comparison.

Expressions

To ensure the correct behavior of expressions that test the value of character variables, you must either normalize their value first
using nfc() or nfd(), or you must use the natcmp() function.

Drawing Text

Depending on the font and operating system you use, different representations of the same end-user character may not always
be drawn in the same way. The same applies if you try to use strings that require surrogate pairs. Generally speaking, you will get
the best results if you normalize the text using nfc(), as the issues generally occur with composite characters.

Entering Text

Wherever possible, you should use the nfc() normalization form for data that is to be edited. If composite characters are present
in the data, multiple left or right arrow key presses are required to skip a composite character, and also clicking and selecting in
the text will highlight an area which when copied to the clipboard might not exactly contain what appeared to be highlighted.

Omnis performs NFC normalization on character data pasted from the clipboard when running in the thick client (runtime); no
normalization occurs when pasting characters into a remote form when using the web client.

561



Character Translation

The following functions allow you to translate a specified character in a string to its Unicode value and to allow the reverse.

• unicode(string,position[,returnhex])
returns the Unicode value of the character at the specified position in the string. The first position in string is 1. If Boolean
returnhex is true (default false) it returns a hex string representing the value, of the form ‘U+h’.

• unichr(num1[,num2]…)
returns a string formed by concatenating the supplied Unicode character codes. Each code is either a number or a string
of the form ‘U+h’,where h is 1-6 characters representing a hexadecimal value.

These functions are available in client-sidemethods aswell as the thick client, butwill generate an error if used in the non-Unicode
version of Omnis.

Unicode Clients

Locale Identifier

The locale()function returns the Locale Identifier (LCID) for the current client machine/operating system. As well as the language
of the machine, the Locale Identifier specifies the decimal, thousand and list separators, currency values, units of measurement,
date formats, and character sort order. The Locale is specified at the operating system level and is in the form language_country,
where language is the ISO639 language name, and country is the ISO3166 country name. For example, the Locale for the UK is
“en_GB”. On macOS, there may be other information, such as a script code, between the language and country (this is because
macOS uses ICU locales).

Unicode Data Handling

The uniconv() function allows you to translate Unicode character data from one type to another. The syntax is:

uniconv(srctype,src,dsttype,dst,bom,errtext)

The function converts src, and stores the result in dst. It returns zero for success, or a non-zero error code together with error text
in errtext. Src and dst are either binary or character variables, depending on the values of the srctype and dsttype.

srctype and dsttype are one of the kUniType… constants (see below).

Bom is Boolean: if true, dst has a Unicode Byte Order Marker (BOM) if relevant for the destination type.

The kUniType… constants are as follows:

• kUniTypeAuto
The source encoding is automatically detected from the conversion source; possible encodings are identified by the remain-
ing kUniType… constants (allowed only for the source type).

• kUniTypeUTF8
The data is stored in a binary variable and contains Unicode character data encoded using UTF-8

• kUniTypeUTF16
The data is stored in a binary variable and contains Unicode character data encoded using UTF-16LE if the machine is little-
endian, or UTF-16BE if the machine is big-endian. Useful when writing cross-platform code that interacts with the OS.

• kUniTypeUTF16BE or kUniTypeUTF16LE
The data is stored in a binary variable and contains Unicode character data encoded using UTF-16BE (big-endian) or UTF-
16LE (little-endian)

• kUniTypeUTF32
The data is stored in a binary variable and contains Unicode character data encoded using UTF-32LE if the machine is little-
endian, or UTF-32BE if the machine is big-endian. Useful when writing cross-platform code that interacts with the OS.

• kUniTypeUTF32BE or kUniTypeUTF32LE
The data is stored in a binary variable and contains Unicode character data encoded using UTF-32BE (big-endian) or UTF-
32LE (little-endian)

562



• kUniTypeNativeCharacters
The data is stored in a binary variable and contains a stream of bytes, where each byte is a character in the Latin 1 character
set for the machine (Ansi on Windows, MacRoman on macOS, ISO-8859-1 on Unix

• kUniTypeCharacter
The data is stored in a character variable. Note – this constant has been moved since the last Unicode build, so you need to
re-enter it in your code.

• kUniTypeAnsi…
The data is stored in a binary variable, and contains character data where each byte is encoded using the specified ANSI
codepage. A rangeof constants are provided to cater formostworld or regional languages, includingCyrillic, Greek, Hebrew,
Arabic, Thai, and so on

• kUniTypeISO8859…
The data is stored in a binary variable, and contains character data where each byte is encoded using the specified ISO 8859
code page.

There are two sys() functions to assist OEM conversion when using the uniconv() function.

• sys(218) modifies OEM conversion to map CR to CR and LF to LF.

• sys(219) reverts to the original mapping for the OEM code page.

Formfile

The $filereadencoding and $filewriteencoding properties have been changed. In previous versions of Omnis Studio, the Formfile
component defined kFFEncoding… constants. These constants should not now be used, and you are advised to use the kUni-
Type… constants to identify the file encoding. Formfile has been extended, so that you can use any of the kUniType… constants
except kUniTypeCharacter for the $filereadencoding property, and any of the kUniType… constants except kUniTypeAuto and
kUniTypeCharacter for the $filewriteencoding property.

In addition, there is also a kUniTypeBinary constant to identify files that are to be treated as raw binary data.

Code that uses the old kFFEncoding… constants should continue to work.

Fileops

The Fileops component has two methods, $readcharacter() and $writecharacter() which allow you to read and write Unicode
character data from and to a file.

• $readcharacter(encoding,variable)
reads all data from a file containing character data into variable; encoding is one of the kUniType… constants (listed above),
identifying the encoding of the file.

• $writecharacter(encoding,variable)
replaces the contents of the file with the character data stored in variable; encoding is one of the kUniType… constants,
identifying the encoding of the file.

For $readcharacter, specify the encoding as any kUniType… constant except kUniTypeBinary and kUniTypeCharacter.

For $writecharacter, specify the encoding as any kUniType… constant except kUniTypeAuto, kUniTypeBinary and kUniTypeChar-
acter.

Note the $readcharacter() and $writecharacter() methods use the kUniType… constants and not the kFFEncoding… constants
which should not now be used.

Mixing Char & Binary data

You cannot concatenate a Character variable to a Binary in the Unicode version of Omnis Studio. The correct method is to use
$readfile to read the file into a Binary variable, and then parse the binary variable. Assigning Character to Binary and vice-versa is
likely to cause problems, including data corruption, and should therefore be avoided.

563



Import/Export and Report File Encoding

There are a number of Omnis Prefences ($root.$prefs) that control the encoding of import text files, export files, and report data
written to text files and the port. These are:

• $importencoding
The encoding used for imported data when importing from port, or when the import file does not have a Unicode Byte
Order Marker (BOM). Any of the kUniType… constants, except kUniTypeAuto, kUniTypeCharacter, kUniTypeBinary and the
kUniTypeUTF32… values.

• $exportencoding
The encoding used for exporting data and printing to port or text file. Any of the kUniType… constants, except kUniTypeAuto,
kUniTypeCharacter and kUniTypeBinary.

• $exportbom
If true, and the $exportencoding preference identifies a Unicode encoding, a Unicode BOM is output at the start of the
output file.

The default value of the $importencoding and $exportencoding is kUniTypeUTF8, but you can set them using the Preferences
option in the Options menu in the bottom-left corner of the Studio Browser. You can can also set the corresponding “importen-
coding” and “exportencoding” items in the “prefs” group in the Omnis configuration file (config.json) using the Edit configuration
option in the samemenu.

In a multi-threaded server, there is a separate value of each of these properties for each thread.

Omnis Data File Conversion

Omnis datafiles are supported for backwards compatibility only in legacy Omnis applications, and therefore they should not be
used for new applications.

WARNING: YOU SHOULDMAKE A SECURE BACKUP OF YOUROMNIS DATA FILES BEFORE CONVERTING THEM IN THE UNICODE
VERSION OF OMNIS STUDIO (note all versions after Omnis Studio 5 are Unicode based and will convert Omnis datafiles to
Unicode automatically).

When you access an Omnis data file you are asked to confirm that you want to convert the data. After you select Yes, Omnis
displays a dialog which offers two types of conversion:

• Full
whereby a full conversion of the Character based data in you Omnis data file takes place. The existing indexes are dropped
and a new index of your data is built

• Quick
whereby the indexes are dropped and rebuilt, but the Character data in you Omnis data file is not converted. This is OK for
files containing only 7 bit data: Omnis does not check that the file contains only 7 bit data, so it’s your responsibility to know
whether or not it is safe to run this conversion process.

The full data file conversionmechanism converts the data in your Omnis data file and rebuilds the indexes. When data file conver-
sion takes place, all datamarked as Character is converted, including any characters >= 128. Note that in the case where character
data is stored in a binary or external file, for example, text stored in a document file, conversion of this data does not take place.

Testing Data File Conversion

Omnis Studio can perform a full conversion of Omnis data files to Unicode, as described above. If this is the first time you have
used the Unicode version of Omnis, we suggest that youmake a secure copy/backup of your Omnis data file and convert one of
the copies using the ‘Full’ conversion mechanism. We suggest that you check the results of the full conversion carefully, making
sure that the Character data has converted successfully and that the indexes have been rebuilt successfully.

You may want to perform some regression tests on your application and data – you should normally do this with a new version
of Studio, but when converting to Unicode Omnis, and converting your data files, you need to be especially sensitive to possible
data file and indexing issues.

564



Data File Commands

The Open data file and Prompt for data file commands have an existing option called “Convert without user prompts”. If this is
checked, and the new “Full Unicode conversion” option is checked, no dialogs are displayed and your data is converted to Unicode
using the Full conversion process.

Chapter 14—Localization

Note that the following section describes a localization method that can only be used for desktop applications, that is, apps
containing window classes, so the following information is not relevant for some editions of Omnis Studio, including the Com-
munity Edition. For all new libraries that use the JavaScript Client, we urge you to use the localization method described in the
Localization chapter in the Creating Web & Mobile Apps manual.*

If you are developing desktop applications for an international market, you may want to translate the text and labels in your
libraries into another language or support multiple languages. Omnis provides tools for localization of your desktop applications
using the String Table tab in the Catalog window and via the String Table editor in the Add-ins submenu of the Toolsmenu.

As well as translating your Omnis libraries, you can translate most of the text and strings that appear in the Omnis Runtime
environment (the Omnis.exe) and the Omnis Web Client. You can localize various language dependent strings in the Omnis
executable itself, such as the days of the week.

Right to Left Data Entry

In addition to the localization or translation functionality in Omnis Studio, you can force data entry fields to display their data from
right to left, for example, to support text entry on Arabic machines. The $righttoleft property allows data in single- and multi-line
edit fields to scroll from the right to the left. When this property is enabled for a multi-line field, the vertical scrollbar is displayed
on the left of the field.

Localizing Your Libraries

Omnis contains an external package called ‘StringTable’ that contains a special String label object and a set of functions that allow
you to dynamically change the language of text labels in your Omnis application.

You can use the String Table Editor in Omnis to create tables containing amatrix of strings or words for any number of languages.
String tables and the functions in the StringTable package allow you to load the text for fields, buttons, and text labels when the
window is opened, and then change the language of the text while the window is open.

The String Table Editor allows you to translate awhole list of strings (stored in the first column of your string table) into one ormore
languages automatically. For example, you could add English labels to a window or remote form, add the text for these labels to
a string table, and translate all the labels to French, German, and Italian, with a single mouse click. The String Table Editor uses
the translation tools provided by Google Translate™ to translate the text in your string tables automatically.

Using String Labels

First you need to create yourwindowor form in your application that youwish to display inmultiple languages. If you are enabling
an existingwindow for dynamic label and text translation, youwill need to replace existing text labelswith the special ‘String Label’
external component from the ‘StringTable’ package. You can use standard fields and buttons.

Locating the StringLabel component

• For window classes
the StringLabel object is located in the ‘Background Components’ group in the Component Store. The StringTable compo-
nent is pre-loaded for window classes so you don’t need to load it by right-clicking on the Component Store.

• For remote forms (using the Web Client plug-in only)
the StringLabel object is located in the ‘WEBBackgroundObjects’ group in the Component Store. If the object is not shown
in the Component Store, right-click the Component Store, select the ‘External Components…’ option, and load the String
Label object (FORMSTRG) from the ‘Form Background Components’ node in the list.

To create String labels

565

/developers/resources/onlinedocs/WebDev/06localization.html#chapter-6localization


• Open your remote form and open the Component Store (press F3)

• Click on the ‘Background Components’ or ‘WEB Background Objects’ group in the Component Store toolbar and drag the
String Label component onto your window or remote form

• Open the Property Manager (F6/Cmnd-6), click on the Custom tab, and enter a suitable label in the $rowid property; the
row ID can be a number or string

• Create the other labels for your window or form using the String Label component, and assign unique labels in the $rowid
property for each one

The string label object can display single or multiple lines of text.

It is also possible to translate the text for pushbuttons, check boxes and the contents of lists that may appear in your window or
form. To identify these objects in the string table and your Omnis code you should make sure the objects have a suitable text
string specified in the $name property. The text in the $name property of an object should be used as the row ID in the string
table and also used in your code to reference the text.

Editing String Tables

Having created the string labels and buttons in your window or remote form, you need to create a String Table that contains all
the alternative text for each object in the different languages you wish to support.

Note for existing users

In previous versions of Omnis Studio, the first column of a string table was labeled “ID” but in Studio 5 onwards it is called
“STRINGID”. This is because “ID” is the ISO 639 code for Indonesia, and theOmnis localization features use ISO 639 codes to identify
the language columns, so “ID” could no longer be used. Old string tables, where column one is called “ID” will usually still work,
unless of course you are using ID to represent Indonesia in one of the language columns.

To create a string table

• Open the String Table Editor from the Tools>>Add-Ons menu

• Click on New to clear the table and create a new file; you can click on Save to save the new string table; the file should have
the .stb file extension and can be located in the same folder as your library

Note: Your Omnis library cannot be called “STRINGTABLE”.

The first column in the new string table is called STRINGID: do not rename this column since this will contain the object rowIDs
used to identify the strings in the table.

• The second column is en_gb by default for British English. If you want a different main language, use the Rename Column
option from the Columns menu; name the column using a combination of the two-letter ISO 639 language code and the
ISO 3166 country code,which you can select from the code lists, e.g. select en_us for American English (note language codes
are lower case)

• Next you need to add a row for each string label or button you have used in your window(s) and/or remote form(s) in your ap-
plication, entering the row IDs (the exact string) and button names you have used to identify these objects in the STRINGID
column

You can find specific strings in Omnis using the Find strings… option (right-click on the string table name in the Catalog). You can
drag a string from the Find window into the STRINGID column to enter the exact string to replace, and avoiding any mis-typing.

You can tab to the end of the row to create a new row or click the Add Row button and enter the Row ID for the next table entry;
continue adding rows for each label or object you wish to translate.

• Add a column for each language you wish to support in your application, using the appropriate language and country
codes to name each column, e.g. the third column could be named fr_fr to support French, the fourth column could de_de
to support German, and so on (note lower case codes)

• Enter the translated string for each language

The following example shows a String Table for a remote form that has a number of string labels and pushbuttons. The English
strings are in the second column, while the French and German strings were added to subsequent columns.

566



Figure 168:

• Then you need to Save and close the string table

• Finally, click on the background of your remote form, open the PropertyManager (F6), and set the $stringtabledata property
to the name of your string table; you can click on the property dropdown and navigate to your string table

Under certain circumstances you can use the STRINGID column in your string table as your “default” language, for example, if
you have used the exact label names in the STRINGID column rather than some other rowID. In this case, you need to specify the
Locale of your STRINGID column in the Translate dialog, using the two-letter ISO 639 language code, to identify its language.

Accessing String Tables via the Catalog

String Tables can be accessed and edited via the String Table tab in the Catalog (F9) window. Your own string tables for windows
and remote forms will appear in the Catalog window when the window or form is the top design class.

String Table Functions

The StringTable package contains a number of functions that allow you to load string tables, load text items from a table, and
replace the text in the windows in your application. The following methods are available:

• $colcnt()
StringTable.$colcnt([cTableName]) returns the number of columns in string table cTableName, or an error codewhich is less
than zero

• $getcolumnname()
StringTable.$getcolumnname([cTableName]) returns the current columnname for the string table specifiedby cTableName,
or an error code which is less than zero

• $getcolumnnumber()
StringTable.$getcolumnnumber([cTableName]) returns the current column number for the string table specified by cTable-
Name, or an error code which is less than zero

• $gettablelist()
StringTable.$gettablelist(lList) populates a single column lList with the loaded string table names; define lList to have a
single character column before calling this method

• $gettext()
StringTable.$gettext(cRowID) returns the text from the cell specified by cRowID for the current column, or an error code
which is less than zero

567



• $loadcolumn()
StringTable.$loadcolumn(cColumnNumber|Name,cTableName,cPathname) loads column cColumnNumber|Name from
string table at cPathname into table cTableName. Returns kStringTableOK or an error code which is less than zero

• $loadexistingtablefromlist()
StringTable.$loadexistingtablefromlist(cTableName,lList) replaces an existing string table with the content of a list. Returns
kStringTableOK or an error code which is less than zero

• $loadlistfromtable()
StringTable.$loadstringtable(cTableName,cPathname) loads string table from file cPathname, and gives it the name cTable-
Name. Returns kStringTableOK or an error code which is less than zero

• $loadstringtable()
StringTable.$loadstringtable(cTableName,cPathname) loads string table from file cPathname, and gives it the name cTable-
Name. Returns kStringTableOK or an error code which is less than zero

• $loadtablefromlist()
StringTable.$loadtablefromlist(cTableName,cPathname,lList) creates a string table from a list. Returns kStringTableOK or
an error code which is less than zero

• $removestringtable()
StringTable.$removestringtable(cPathname) deletes the string table file specified by cPathname. Returns kStringTableOK
or an error code which is less than zero

• $rowcnt()
StringTable.$rowcnt([cTableName]) returns the number of rows in string table cTableName, or an error code which is less
than zero

• $savestringtable()
StringTable.$savestringtable(cTableName) saves the string table specified by cTableName. Returns kStringTableOK or an
error code which is less than zero

• $setcolumn()
StringTable.$setcolumn(cColumnNumberOrName) sets the current column. Returns kStringTableOK or an error code
which is less than zero

• $unloadall()
unloads all string tables frommemory.

• $unloadstringtable()
StringTable.$unloadstringtable(cTableName) unloads the string table cTableName frommemory. Returns kStringTableOK
or an error code which is less than zero

The following functions apply to string tables for remote forms and are available for execution in server and clientmethods: when
used on the server they will use the correct language for the task instance.

• stgettext()
stgettext(id) returns the string with the specified id from a string table, or empty if the lookup fails. id can be prefixed
with ‘TABLENAME.’, or must be an id for the string table of the current form. It is preferable to use stgettext() rather
Stringtable.$gettext() since the latter one does not rely on the task instance.

• stgetcol()
stgetcol(table) returns the name of the current column for string table table (for iOS Plug-in only)

• stsetcol()
stsetcol(table,col) sets the current column for lookups from string table table to the column with name col and returns
Boolean true for success (for iOS Plug-in only)

Programming String Tables

The followingmethod loads a string table with the name ‘Lang.stb’ and sets the column containing the English text as the current
column.

# custom method $loadStringTable
Calculate lvpath as sys(10)
Do FileOps.$splitpathname(lvpath,lvdrive,lvdirname,lvfilename,lvfileext)
Calculate lvpath as con(lvdrive,lvdirname,"Lang.stb")

568



Do StringTable.$loadStringTable(iTableName,lvpath) Returns ln
If ln
OK message Error (Icon) {The Language String Table "Lang.stb" could not be loaded.}
Quit method ln

End If

# Select the English Language
Do StringTable.$setColumn("English") Returns ln

Quit method ln

Having loaded the string table and specified the current column, the following method can be used to load the text or string
values into the appropriate field labels, buttons, and lists in a data entry window. Note that the IDs for each object are stored in
custom constants that are defined in the the Startup_task in the library.

# custom method $loadFields
# Define the button and group box descriptions using $getText
Do StringTable.$getText(kPrintButton) Returns lval
Do $cwind.$objs.PrintButton.$text.$assign(lval)
Do StringTable.$getText(kLanguageButton) Returns lval
Do $cwind.$objs.LanguageButton.$text.$assign(lval)
Do StringTable.$getText(kEmpTitle) Returns lval
Do $cwind.$objs.stEntry_1022.$text.$assign(lval)

The next section of themethod defines the dropdown lists for Sex (male/female) andMarital Status by loading the relevant entries
from the current string table.

Set current list iSex
Define list {iField}
Do StringTable.$getText(kMale) Returns iField
Add line to list
Do StringTable.$getText(kFemale) Returns iField
Add line to list
Calculate iSex.$line as 1
Set current list iStatus
Define list {iField}
Do StringTable.$getText(kMarried) Returns iField
Add line to list
Do StringTable.$getText(kSingle) Returns iField
Add line to list
Calculate iStatus.$line as 1

Within your application you need to provide someway for the user to select and change the language setting. This could be done
using a separatewindow containing a list of available languages and a button to set the selected language. The followingmethod
gets all language column names from the Lang String Table and puts them into an Omnis list.

# custom method $loadList
Set current list iLang
Define list {iLangField}

# Save the current column number
Do StringTable.$getColumnNumber() Returns ln

# Build a list of all column names in the String Table.
Do StringTable.$colCnt() Returns maxc

# Start from column 2 as column 1 is reserved for String Table IDs
For lcount from 2 to maxc step 1
Do StringTable.$setcolumn(lcount)
Do StringTable.$getcolumnname() Returns iLangField
Add line to list

End For
Do StringTable.$setColumn(ln)
Calculate iLang.$line as pLine

569



When the user selects a language from the list, they should click a buttonwith the followingmethodwhich changes the language
of the text on itself and the data entry window.

On evClick ## Event Parameters - pRow( Itemreference )
Set current list iLang
Calculate lval as ((iLang.$line)+1)
# need to offset by 1 since col1 in string table has the rowID
Do StringTable.$setColumn(lval)
Do StringTable.$getText(kLangTitle) Returns lval
Do $cwind.$objs.stLang_1016.$text.$assign(lval)
Do StringTable.$getText(kSetLanguage) Returns lval
Do $cwind.$objs.SetLang.$text.$assign(lval)
Do $root.$iwindows.stEntry.$loadFields
# this line runs the $loadFields method again (see above) to change the objects in the data entry window
Do method $loadList (iLang.$line)
# this line reloads the language list in the new language
Do method $translateList
Do method $redrawAll

The following method translates the language list depending on the Language selected. The code uses the String Table column
headings to look up corresponding IDs from within the table itself.

# custom method $translateList
Set current list iLang
Calculate ln as iLang.$line
Calculate lrowcnt as iLang.$linecount
For lcount from 1 to lrowcnt step 1
Do StringTable.$getText(iLang.[lcount].iLangField) Returns iLang.[lcount].iLangField
Calculate iLang.$line as lcount

End For
Calculate iLang.$line as ln

Finally you need a method to redraw all the fields and text labels on any open windows or forms.

# custom method $redrawAll
Do $iwindows.$first() Returns ref
While ref
Do StringTable.$redraw(ref.$hwnd)
Do $iwindows.$next(ref) Returns ref

End While

Localizing Remote Forms

The String Label object is available for remote forms, and together with string tables, allows you to localize your applications
running in the Omnis Web Client. See the previous section for details about how to create string labels and string tables; the
technique is the same for remote forms.

In Omnis Studio 5, remote form classes have a new property called $stringtabledata. The contents of this property is the data, in
list format, from a standard Omnis string table. To populate $stringtabledata in the IDE, you can click on the droplist button on
the property in the Property Manager, and select a string table file. When you press OK, Omnis takes a copy of the string table
data and stores it in the class. If you cancel the dialog, Omnis asks if youwish to clear the data from the class, which is a convenient
way to clear the contents of $stringtabledata.

When the web client creates an instance of the remote form class, on the client, it automatically loads the string table data as a
client-side string table, and sets the string table name to the remote form class name.

The column names in the string table must be:

• STRINGID for column 1 – this is the standard for string tables, and the name cannot be changed.

• A two character ISO 639 language code for the second and subsequent columns; for example, en for English, de for German,
fr for French.

570



When the client loads a new string table (because a remote form is being instantiated in some way), it uses the operating system
locale of the client to locate the string table column to use for lookups. You can override this behavior by setting the remote task
instance property $stringtablelocale to a two character ISO 639 language code to use instead of the client operating system locale,
but you can only do this in $construct of the remote task. If there is no column in the string table for the desired locale (specified
in $stringtablelocale), lookups default to using column 2.

The $rowid property of a remote form string label object can refer to one of the Web Client string tables. If $rowid is not prefixed
with a table name (remote form name), then the string must be in the string table for the remote form containing the object.

Any character string property of a remote form control can be specified as $st.id (note that $st is not notation; it is just a special
prefix recognized by the client). This tells the client to lookup id in the string tables for the client, and set the property value to the
result of the lookup. The $rowid rules regarding the presence of a table name prefix also apply in this case. Note that when you
get a property set in this way, the result is the result of the lookup, not $st.id.

There is a new remote form property called $stringtabledesignformwhich allows you to access the string table in the Catalog (F9)
windows while designing the remote form.

There are three new “Client String Table” functions, available for execution in client methods only:

• stgettext(id)
returns the stringwith the specified id fromastring table,or empty if the lookup fails. id canbeprefixedwith ‘TABLENAME.’,or
must be an id for the string table of the current form.

• stgetcol(table)
returns the name of the current column for string table table

• stsetcol(table,col)
sets the current column for lookups from string table table to the column with name col and returns Boolean true for
success.

Remote tasks: $construct()

There is also a new column, “ClientLocale”, in the row variable parameter passed to $construct() of the remote task. This contains
the locale for the client, as returned by the locale() function; the first two characters are the ISO 639 language code of the client.

Remote Menu Lines

You can set the text for a remote menu line to $st.id. The lookup occurs when the menu is built on the client, before any event
processing for the menu.

Tooltips

You can use the $st. lookup notation to lookup text from a string table to fill out the $tooltip property for a field.

Decimal point character

The decimal point character for display and entry on the JavaScript Client is the character for the current locale (either set by the
current locale of the browser, or overridden using $ctask.$stringtablelocale).

Multi-threaded Language Separators

Themain Omnis App Server thread and any other server thread(s) can now have their own values for decimal point, thousand sep-
arator, and import dp, which are stored in the $separators Omnis root preference. This allows you to support multiple languages
in a single app running on the Omnis App Server.

If you call $separators from an Omnis App Server thread, the new values for the function parameter and import separators are
ignored – you can only set these two separators when running in the main thread.

In addition, once you have started the server with the Start server command, subsequently changing the language only affects
the decimal point, thousands separator and import decimal place for the main thread.

571



Localizing Omnis

In order to provide a completely foreign version of your Omnis application, you may need to translate various resources that
appear in Omnis itself (rather than strings that appear in your libraries, as described in the previous section). This applies equally
to applications that run on the desktop using the Omnis executable (Runtime), and applications that run on the Internet using
the Omnis Web Client: you can translate string resources in the Omnis runtime and in the web client. This method may also be
useful if you wish to replace any references to “Omnis” in the Runtime with the name of your own product, e.g. the ‘Hide/Quit
Omnis’ option in the macOS version of Omnis.

Omnis Studio 5 introduces two new String Tables that allow you to translate:

• Various built-in string resources in the Omnis executable, and

• String resources in the Web Client.

The new String Tables can be accessed via the String Table tab in the Catalog (F9) window and are edited using the String Table
editor.

In addition, the Localization Library (omnisloc.lbs) is still available in the Local folder for you to translate further string resources in
the Omnis executable.

Localizing Built-in Client Resources

The built-in resources comprise the string resources, and the strings in dialogs, in the Omnis core, externals and external compo-
nents. Omnis has two new string tables used for the translation of built-in and web client resources. The new tables are located
in the Local folder of the main Omnis tree, and are:

• studio.stb
containing translations of text strings for the fat client, comprising dialogs, components, and so on

• client.stb
containing translations of text strings for the Omnis Web Client

These string tables can be edited using the String Table Editor. However, there are some special rules regarding their structure:
the STRINGID column is the exact value of the built-in resource text and cannot be changed; the other columns contain the
translations of the built-in resource text, and they are named using a 2 character ISO 639 language code, in lower case.

Usually, there is no column for “en” (English), because the built-in resources are English. If you are using a mixture of languages
in the built-in resources, then you can add a column for “en”. As a result, you will have cases where the STRINGID and language
column for the built-in resourcewould have the same value. To avoid duplicating the value in the language column, you can enter
“*” for that column, meaning the string does not need translating from its STRINGID.

When reading a string resource, Omnis looks up the string value in the string table, and if present, it replaces the string value with
the translation. If no translation is available, the string remains unchanged. The string value lookup is case-sensitive, allowing the
translation to contain the correct case for the translated text.

Omnis loads the studio.stb string table when it starts up, and when $root.$prefs.$language changes, and the appropriate lan-
guage version of the resources is loaded. The column used for translations is the ISO 639 language component of the locale
stored in the current language record. This is also stored in a small text file (locale.txt) in the Local folder of the Omnis tree, to cater
for the fact that the string table is loaded sooner in the life of Studio than the localization data.

When a web-based client connects, Omnis sends client.stb to the client; this is handled via the cache, so it will not always be sent.
The client loads client.stb, and uses the column corresponding to the client locale to obtain translations (the client locale can be
specifically set using $cinst.$stringtablelocale for the remote task instance, or it can be allowed to default to the locale of the client
machine).

Editing the Built-in Client Resources

You can open and edit the studio.stb and client.stb string tables via the Omnis Catalog (F9) window. You can click on the String
Table tab in the Catalog, and right-click on the string table you wish to edit.

Representing carriage return, linefeed, and tab

You can represent cr (carriage return), lf (linefeed), and tab in strings in the studio.stb file using the escape sequences: <cr>, <lf>
and <tab>. The Find Strings dialog automatically generates these escape sequences.

572



Local Language

The locale() function for the fat client now has an optional Boolean parameter, which when passed as kTrue, causes it to return
the locale field value for the current $root.$prefs.$language.

Changing the System Menu Options in macOS

You can change the Hide Omnis andQuit Omnis options in the Omnis Studio runtime onmacOS by adding strings to the Studio
String Table (studio.stb). In addition, you can localize items in the Preferences and Servicesmenus.

If you have renamed the Omnis app package on macOS, to match your product name, you may also like to change the Hide
Omnis and Quit Omnis options in the main application menu to reflect your product name. To do this:

• Open the Omnis Catalog (press F9) in Omnis Studio for macOS

• Select the String Tables tab, right-click on the ‘Built-in strings’ table (studio.stb) and select the Edit option

• Enter the Strings Hide Omnis and Quit Omnis in the STRINGID column and enter the alternative strings for each option in
the ‘en’ column.

Figure 169:

You can find specific strings in Omnis Studio using the Find strings… option (right-click on the string table name in the Catalog).
You can drag a string from the Find window into the STRINGID column to enter the exact string to replace, and avoiding any
mis-typing.

Existing users should note that the Translate button has been removed from the String Table editor since automatic translation
is no longer supported.

Localizing the Omnis Runtime

Developers and distributors in non-English speaking countries may need to localize the Omnis program (runtime) itself. You can
localize the following Omnis internal items:

• The names of the days of the week

• The names of the months of the year

• Separator characters

• The text for Yes/No, OK/Cancel, True/False, Am/Pm and On/Off

• The national sort ordering

• The date ordinal suffixes

573



Storage of Localization Data

All libraries share the same set of data, stored in an Omnis data file or localization database called OmnisLOC.DF1, located in the
Omnis local folder.

OmnisLOC contains a data slot for configuration data; each record in that slot contains a complete set of data corresponding to a
particular language. It also contains a data slot with a single record, which identifies the current language, that is, the current set
of configuration data.

Overriding the Language

You can override the current language set in the localisation data file by setting an item in the Omnis config.json file, which can
be used with the Linux headless server. The entry is called “language” and is located in the “defaults” section. It defaults to empty,
which means the setting in omnisloc.df1 will be used. To override the language setting in omnisloc.df1, you can add the name of
a language in omnisloc.df1 to the language item.

The Localization Data

The following items are stored for each language.

Days of Week

This comprises 2 strings for each of the 7 days of the week, allowing for a full name such asWednesday, and an abbreviated name
such as Wed.

If a day of the week item is empty, Omnis will read its value from the operating system.

Months of Year

This comprises 2 strings for each of the 12 months of the year, allowing for a full name such as August, and an abbreviated name
such as Aug.

If a month item is empty, Omnis will read its value from the operating system.

Separators

These comprise the following:

• The decimal point used for all numeric fields. If this item is the character ‘0’ (zero), Omnis will read the decimal point char-
acter from the operating system.

• The thousands separator used for numbers. If this item is the character ‘0’ (zero), Omnis will read the thousands separator
character from the operating system.

• The function parameter separator

• The decimal point used when importing data

• The field separator used when importing

• The sequence used for quoting names in the notation

Standard Text Strings

These comprise the strings for Yes and No, OK and Cancel, True and False, AM and PM, and On and Off. If the value of the AM or
PM text is the single character ‘0’ (zero), Omnis will read the text from the operating system.

Locale: National Sort Ordering

The ISO 639 language code in the Locale field is used to define the sort ordering for National fields. The “Use Locale For Defaulted
Items” check box below the Locale field determines the locale used for language items that have been left empty, so that they
get a default value from the system:

• If the Use Locale check box is checked, default values come from the locale stored in the language record.

• If it is not checked, default values come from the operating system default locale on the client machine.

574



Date Ordinal Suffixes

You can localize the date ordinal suffixes which are the strings that can be appended to a day number to result in language
specific days such as 1st, 2nd, 3rd, 4th, etc. You can edit the date ordinal suffixes field on the Text Strings tab of the localization
library language settings window.

For English, the value of the date ordinal suffixes field is:

th$1st$2nd$3rd$21st$22nd$23rd$31st$

If you leave the field empty, then no suffix is applied, otherwise, the string before the first $ is the default suffix, and the remaining
$-separated strings are a day number followed by its suffix. There must be a trailing $.

To see the suffix used for a particular date you can use the function call dat(date,’d’).

The natcmp() function

The natcmp() function lets you compare two values using the national sort ordering.

natcmp (value1, value2)

Omnis converts both values to strings before doing the comparison.

Omnis uses the same rules for comparing the strings as it does for normal strings, except that it performs the comparison using
the national sort ordering.

natcmp() returns 0 if the strings are equal, 1 if value1 > value2, and -1 if value 1 < value2.

User Interface

The Omnis preferences accessed from the IDE Tools>>Options menu line let you assign a new language from the dropdown list
in the $language property. The current language is shown in the $language property. The language must already be defined in
the localization data file.

The new language assigned in the $language property applies straight away; Omnis does not need to be restarted. However if
the localization database is shared by several users, then the new language setting only affects them when they have restarted.

An Omnis library, OmnisLOC.LBS is provided that lets you create and edit language information. To use it:

• Take a backup of the OmnisLOC.DF1; you may prefer to work on the backup copy rather than the live copy, in which case
you should make a working copy as well as a backup copy

• Open the OmnisLOC.LBS library, found in the Local folder in the main Omnis folder. You are prompted for the location of
the localization data file and a localization menu is installed on the IDE menu bar, to the right of the Tools menu

• Select Current Language to display the language in use

• Select Language Records to create a new set of language information, or to edit an existing one. This displays a dialog
containing a set of tabbed panes and the standard Omnis Insert, Edit, Find, Next and Previous buttons

You use theNext andPrevious buttons tomove through the records in the data file, the Find button to locate a particular language
record, and Edit to modify data already present in the data file.

Two Insert buttons are available. Insert lets you create a brand new record, while Insert CV lets you make a copy of an existing
language record and edit that. This is particularly useful for caseswhere there are onlyminimal differences between two language
records. To use Insert CV:

• Display the language record you want to copy

• Click on Insert CV

A new record is created. Remember to edit the language name as well as the specific internal data.

• When all the data is input, click on OK to store it and close the library

• If you were working on a copy of the data file, move it back to the local folder

• Close the OmnisLOC library

Any fields that are left blank will default to a single space. Some of the fields on the General tab are limited in terms of which
characters can be used; for example trying to define a letter as a decimal separator is not allowed, and will generate an error
message.

575



Setting the Locale

In the localization library (omnisloc.lbs), the sort order field is now labeled Locale. There is a new check box below the Locale field,
“Use Locale For Defaulted Items”. This determines the locale used for language items that have been left empty, so that they get
a default value from the system:

• If the Use Locale check box is checked, default values come from the locale stored in the language record.

• If it is not checked, default values come from the operating system default locale.

Notation

There is no requirement to manipulate localization data at runtime, so the localization notation is minimal.

• $root.$prefs.$language
returns the name of the language Omnis is currently using; you can assign the name of the new language (note this takes
immediate effect in your copy of Omnis, but any shared users will need to restart)

• $hascurrlangnationalsortorder
a property of a data file, for example
$root.$datas.DataFile.$hascurrlangnationalsortorder
if true the sort order matches that for the current language, and false otherwise

Every data file stores its national sort order. When you create a new data file, Omnis stores the national sort order for the current
language in the data file.

$hascurrlangnationalsortorder is assignable, but you cannot set it to kFalse only kTrue. When set to kTrue Omnis drops all of the
indexes from the data file, changes the sort order to that for the current language, and rebuilds all of the indexes.

Chapter 15—Version Control

The Omnis VCS is not available in some editions of Omnis Studio, including the Community Edition, so in this case it will not
appear in the Studio Browser.

This chapter describes how you can use the Omnis VCS (Version Control System) to control Omnis application development in a
team environment. In such an environment, with several people working on the same application at the same time, perhaps in
different locations, you need to ensure that only one person can change a particular component at a time and that any modifi-
cations are not lost or overwritten. The Omnis VCS is built into the Studio Browser and therefore provides tight integration with
the whole Omnis IDE: specifically, the Omnis VCS allows you to control the development of your Omnis applications (classes and
libraries), or any other project involving many different files such as web or Intranet applications, and it allows you to build your
Omnis application for deployment to your customers or organization.

TheOmnis VCS lets you revise Omnis library files and other application components systematically. Apart from theOmnis libraries
and classes within those libraries, you may have your own externals, text files, web components, Html files, and so on, that are all
necessary to the running of the application. The Omnis VCS can handle all these types of files and components. The repository
for the VCS would typically be a SQL database within your own domain, or on a remote, cloud-based server.

In this chapter, the term component is used to refer to all types of files and different components stored on disk. With regards to
the Omnis VCS, a non-Omnis component is any disk file or external component other than an Omnis class.

Converting pre-Studio 10 VCS repositories

Whenusing theVCS in Studio 10, youmust create a newVCS repository due to the changes in theOmnis language syntax resulting
from the new code editor. You are advised to open and convert your library, then check the conversion logs to look at any possible
issues in your code (any conversion issues are shown in the Find and Replace log, and written to a log file in the ‘conversion’ folder
in the logs folder). Then when you are satisfied your library and its code are OK, you can check the classes in your library into a
new VCS repository created in Studio 10.

576



Pre-Studio 5 VCS Repositories

There is no change in the structure of VCS repositories fromOmnis Studio version 5 to version 6, but if you are upgrading to Omnis
Studio 6/8 or above from a version prior to version 5, you cannot use your old VCS repositories. In Omnis Studio version 5 there
were a number of significant changes to the structure of the VCS which means repositories created in versions of Omnis Studio
prior to version 5 will not work with Omnis Studio 6/8 or above.

Existing VCS repositories created in versions of Omnis Studio prior to version 5 must therefore be re-created in Omnis Studio 6/8
or above to ensure that they are in the new format. To do this, youmust do a build of your existing project (or projects) using your
old version of Omnis Studio, create a newVCS repository in Omnis Studio 6 or above, and check in your project(s) and components
into the new Studio 6/8 repository. You will also need to setup all user accounts and preferences in the new repository.

Project Branching

Project branching was deprecated in Studio 8.1 and you are no longer recommended to use branching in VCS projects. For back-
wards compatibility in branched projects only, support for branching is available by setting the enableBranching item in the ‘vcs’
section of the config.json file to True.

In addition, sys(236) returns true if VCS branching is enabled. If sys(236) returns false on a branched project, the VCS will display
the default branch data.

Overview

To place Omnis libraries under version control you check them into the Omnis VCS from the Libraries tree in the Studio Browser,
or for non-Omnis components from the File Browser in the VCS itself. All the components you check into the VCS are kept in a
project. The VCS stores each project in its own repository database, which can be a server database within your own domain or a
remote location To use the VCS you must first create a database session to store your project: see below.

The Omnis VCS provides all the functionality to set up, manage, and use version control, including:

• Creating a database session and VCS repository

• Checking in Omnis libraries and other non-Omnis components

• Creating a project

• Managing and supervising users

• Building projects and libraries for distribution

• Managing projects and granting user privileges

• Setting VCS options

The Omnis VCS is permanently available in the Studio Browser (unless you’re using the Community edition). The IDE Options
option in the Hub in the Studio Browser lets you hide or show the VCS; if for some reason the VCS is not visible in the Studio
Browser you can enable it in the Hub.

To use the VCS, click on the VCS option in the Studio Browser. The Session Manager and the Open Session options are shown in
the Studio Browser which allow you to setup your VCS repository.

The VCS tree displays all your open projects andworks in a very similar way to the Libraries and SQL Browser tree. The VCS context
menu lets you open and close sessions, and perform user administration functions. When you select a project in the VCS, the
Browser shows the contents of that project.

You can create a VCS repository in an Omnis data file, but this is only provided for backwards compatibility with legacy applica-
tions, therefore this option should not be used for new applications or projects.

Setting up a Project

This section is for the lead developer ormanager in the development team and describes how you can setup a VCS repository and
create a new project containing all your application components.

To use the VCS, you need to connect to a database via a session, set up the Supervisor user, and create a VCS repository. You can
open a VCS session using the SQL Browser, but you should use the VCS session browser for convenience.

577



You can create a VCS repository on a server database such as PostgreSQL, available in all versions of Omnis Studio, or using one
of the many other leading databases such as Oracle, Sybase, MySQL, and so on. You can access a repository using a native DAM
for the chosen database, or you can use ODBC.

Once you have connected to your database, the VCS operates in the same way, regardless of the database and the location the
repository is stored in. To setup a new project, you need to:

• Define a new database session, and create a new repository

• Sign in as Supervisor (default password is password), then create and define users

• Check in your libraries, classes and other components (the check in process creates a new project for you) and assign access
privileges to components for individual users

• You also need to tell the members of your development team their usernames and passwords, and provide them access to
the VCS repository

Sybase Repositories

If you are using Sybase for your VCS repository, you must make sure the transaction log has enough capacity to handle your
transactions. See the Sybase documentation for details on the transaction log. You can use the command

dbcc checktable (syslogs)

while you are running the VCS against your repository to check the status of the transaction log. You must also set the option
“select into/bulkcopy” to false with the following remote procedure call

sp_dboption <db>, “select into/bulkcopy”, false

where <db> is your Sybase database name. The VCS issues an error message and aborts logon if the target database has the
“select into/bulkcopy” option set.

Creating a session

To create a new VCS session, you can either use the default session, called ‘VCS_Session’, or create a new one.

To create a VCS session

• Select VCS in the Studio Browser and click on the Session Manager option

• Click on the New Session option

The Modify Session dialog opens which allows you to enter the details of the new session.

To duplicate a VCS session

If you have a session that is a suitable template for a new one

• Select the existing session and select Duplicate from the Sessions menu

In either case, a new session appears in the VCS Session Browser. You can now click on your session and modify it.

To modify a VCS session

• Select the session in the Browser and click theModify Session option

or

• Double-click on a session to modify it

578



The Modify Session dialog lets you modify the details of the selected session; it is identical to the session definition dialog in the
SQL Browser.

Note that to make a session usable with the VCS, you must select VCS from the Session type dropdown list.

The information you need to supply depends on the database you want to use, but would normally include hostname, username
and password, plus you need to select the correct DAM for your chosen database, which will depend on your version of Omnis
Studio.

• When you have modified the session, click on OK to close the Modify Session dialog

To open an existing VCS session

• Select the VCS option in the Studio Browser, click on the Open Session option and select the session from the list of VCS
sessions

• Enter the Username and Password to open the session

Logon at Startup

You can specify that a VCS session logs on automatically when Omnis starts. On the Modify session dialog there is a ‘VCS’ tab that
allows you to enter the VCS username and password which will be used to log onto the VCS automatically when you start Omnis.
If this is an existing session, there is a button which allows you to verify the username/password are correct for the session. Then
on the Session Definition tab you need to enable the ‘Logon at Startup’ option.

Time Settings

TheVCS stores times inUTC (Co-OrdinatedUniversal Time) but displays timesusing your local time zone, which is set automatically.

Signing in to the VCS for the first time

When you create and/or open a VCS session, you must log on to your database and sign into the VCS as the Supervisor user. The
VCS logs on to your database and checks for a repository. When you open a VCS session for the first time, a VCS repository will
not be found, and the VCS prompts you to add certain VCS resources or tables. If you click on the No button, the log on process
is aborted. If you agree, certain VCS tables are installed so the repository is available for use, and a user called Supervisor, with
password “password”, is set up automatically.

Once logged on to the repository, the Supervisor has access to an option from the VCS context menu titled “Remove Repository”,
this option will remove all the tables created by the VCS.

To sign into the VCS for the first time

When you log on to your VCS repository, the Sign in window appears. When you logon for the first time you need to sign in as
Supervisor.

• Enter the user name “Supervisor” and the password “password”

Both the username and password are case sensitive, so make sure both words are in the correct case, otherwise you will not be
able to logon.

• Click on OK

To ensure a secure system, you should change the Supervisor name and password. You can do this later, but to do it now

• Select the VCS option in the Studio Browser and click on the User Admin option

The User Administration window lets you add and remove users, and initially displays only one defined user, Supervisor. The
columns in the list showdetails about eachuser, in this case the Supervisor, including the user’s name, password, phone extension,
department, and status.

• Change the “Supervisor” username to your name and enter a new password

• Enter any more information you wish to store, and click on the Finished button

As a Supervisor, you can allow other users to have Supervisor status so they can create and delete users as well. You will also need
to set up the regular users who will check components in and out, and set up preferences.

579



Adding and Removing Users

User administration involves managing the users of a project and assigning them privileges for the components in the project.
Before developers can start using the project, you need to add each one as a project user and grant the right privileges for the
components they need to change.

Once you sign into the project as Supervisor, you can add, alter and remove users of the project. The User Administration window
displays a list of existing users. The Supervisor can add any number of additional users and assign the following privileges which
determine the extent to which a user can access components:

• Observer can see components only, therefore user cannot check components out or in

• Participant user can check components out and in, but cannot perform user admin

• Supervisor can do everything, including adding or deleting users and changing user details, and checking components
out and in

Only a Supervisor can see a user’s password. Only the first Supervisor user can grant Supervisor status to other users.

To add a new user

• Click on the User Admin option and click on the Add User button, or you can right-click on the list of users and select Add
User

• Add the new user information, including the username and password; you can add the phone extension number and de-
partment name for the user as well

• Change the type of user as appropriate; a new user is set to Participant by default

• Click on the Finished button and you are prompted to Save the Changes

To change an existing user’s definition

• Select the user in the list and change the user details,

• Click on the Finished button and you are prompted to Save the Changes

Do not change the status of the Supervisor user, particularly if you have only one user with Supervisor status. If you change the
status of the Supervisor user you will no longer be able to manage the project and its users.

To delete a user

• Select the user in the list and click on the Delete button

• Click on the Finished button and you are prompted to Save the Changes

Checking in Components

The final step in setting up your project is to check the components in your application into the VCS. You can check in complete
Omnis libraries to include all the classes in those libraries, you can check in individual classes fromany number of different libraries,
and you can check in a whole folder hierarchy containing all the necessary files for your application. Once you have checked all
the components in, other users can build a local working version of your library or project using the Build Project option.

Creating a New Project

When you check in your library classes and other components for the first time a new project is created for you automatically.
Using this check-in method creates a new project with the same name as your library. Alternatively, you can create a new project
using the ‘New Project’ option in the VCS window, although this is not necessary if you start by checking components into the
VCS.

580



Checking in Omnis Libraries and Classes

All developers working on a project should have access to all the Omnis classes in your library. Therefore, you should check in
all the necessary classes in your library, including any system tables, superclasses, and task classes. The system tables contain
information about the fonts, display formats, and so on, used in your library. In particular, if the objects in your library use field
styles you should remember to check in the #STYLES system table. You can use the Class Filter option (press F7/Cmnd-7) in the
Studio Browser to make sure all the classes in your library are displayed. In future, if you change the system tables in your local
library you must remember to check them back into the VCS along with any other classes you may have changed. You should
not check in the #DEBUG system table class that may appear in Omnis; this exists temporarily for internal use only.

To check an Omnis library or individual classes into the VCS

• Open the Studio Browser and your library containing the Omnis classes you want to check in to the VCS

If you want to check in individual Omnis classes

• Display the classes in your library, and drag anddrop your library or selected classes onto the VCS node in the Studio Browser
tree (or if you have created a project manually, you can drop the components on the project name)

or you can

• Select your library or individual classes in the Studio Browser, right-click on the object(s) and select the Check-in option
from the context menu

Whichever method you choose, the Check in components dialog appears. This dialog lets you set the check in options for the
selected components. If you check in a library all the classes in the library are checked in automatically.

• Select the Add new component radio button, and type “Initial check in” or something similar in the Check In Notes field

When you check in classes or libraries for the first time they are set to read-only, so they are protected before the first build has
been performed. You can control this behavior on the Check in tab in the VCS Options (right-click on the VCS node in the Studio
Browser).

Version Numbers

The version string for each component is currently set to “1”. You can enter a special version in the Version field if you want to
use a different numbering scheme, although this is not recommended. All the components in the VCS have both a version and a
revision number, each ofwhich is an integer value. The version indicates themajor revision or release of a component and typically
applies to all the classes in the library, so it’s effectively the version of the library. The revision number indicates a relatively minor
change to the component. When you first check in a component, you can assign it a version; the VCS automatically sets this to
1 and the revision number to 0. Each time you check in a component, the VCS assigns a new revision, but the version doesn’t
change unless you change it explicitly in the check in dialog.

• Click on the Continue button to start checking in

A progress bar shows the number of components added. When all the components are checked in, the project appears in the
VCS tree, with the same name as your library.

Prompt for Options and Notes

The VCSwill prompt you if you have not activated theOptions andNotes tabwhen checking in/out. You canmanage this behavior
on the VCS Options, Check Out & Check In tabs using the new “Prompt for Options and Notes” option.

Checking in file system folders

The VCS checks in external components without the file system folders being created within the repository. The old behavior
(pre-Studio 10) can be restored by unchecking the Check-In preference “Ignore file system folders for external components”.

Checking in non-Omnis Components

You can use the Omnis VCS to control most other types of non-Omnis components such as external components (DLLs or plug-
ins), documents, Web pages, PDF files, Omnis data files, and so on. You can use the Omnis VCS to manage any type of project
containing any number of files, including ones that don’t contain Omnis libraries or classes.

581



File Browser

To check in non-Omnis components, you use the File Browser available within the VCS itself.

Important Note: You can check Omnis library files into the VCS using the File Browser, but this is only appropriate if you want to
manage the library as a discreet disk file. However, if you want to access all the classes in the Omnis library, you should check the
library into the VCS as separate classes, as described in the previous section, and not using the File Browser.

To check non-Omnis components into the VCS

• Select your project under the VCS node in the Studio Browser (not in the right-hand pane)

• Click on the File Browser option

• Locate the files or folder you want to check into the VCS using the Select Files/Folder button

From thereon, the check in process for non-Omnis components is exactly the same as for Omnis classes, that is, the Check in
components dialog appears which lets you set the check in options for the selected components.

If you check in a folder, all the files and all subfolders and fileswithin that folder are checked into the VCS. In this case, you could,
for example, check in a complete folder & file structure containing your own Help system.

Viewing the Contents of a Project

To see the contents of a project

• Select the project name in the VCS tree, or double-click on the project icon in the VCS Browser

You may find the Details view most useful when viewing the components in a project, since that view shows information such
as the version, the status, which user has checked each component in or out, and so on. You can change the view using the
Viewmenu on the main Studio Browser menubar. In addition, you can sort the contents of your project by clicking on one of the
column headers in the VCS Browser.

Project Folders

You can create folder classes in an Omnis library to allow you to store and organize the classes within the library. When you check
a library into the Omnis VCS these folder classes are copied into the VCS project. It is also possible to create a folder class directly
within a VCS project via the hyperlink option ‘New Folder’ available at the VCS project level. This will allow you to organize the
classes in your VCS project, but will also allow you to organize non-Omnis objects such as external components.

Depending on how a project folder is created and what it contains, it can have one of three possible states:

• a “*normal“* folder is one that is generated within an Omnis library and contains only Omnis classes

• an “*external“* folder is one that is generated from within the VCS

• a “*hybrid“* folder is one that contains both Omnis classes and non-Omnis Objects

Building a Project

When you build a project, normal folders will be built in the destination library. External folders will be built into the file system
using the folder name as a directory appended to the build pathwith any non-Omnis Objects built there. A hybrid folder will build
a folder class in the Omnis library along with any Omnis classes inside it as well as building to the file system.

Moving classes & components between folders

If youmove a non-Omnis object to a folder class that was previously generated from anOmnis library (a normal folder), that folder
will become a hybrid folder. The same thing will happen when you move an Omnis class to an external folder.

Note: Once a folder has become a hybrid, it will remain one: Therefore empty folder classes may be generated when building a
project even if you have deleted all classes from the folder.

Hiding and Showing Project Folders

It is now possible to hide the folders within a VCS project thereby giving you a flat view of all the components in your project. This
may be useful when you want to quickly locate a class rather than navigating the entire folder structure in your project.

To hide or show the folders in your project, click on the Hide / Show folders hyperlink option in the VCS Browser.

582



Assigning Component Privileges

When you have checked in all the necessary components into your project, you need to assign access privileges to each compo-
nent for each user.

To grant component privileges

• Select the set of components for which you want to grant the privileges

• Click on the Privileges option or right-click on the component(s) and select the Privileges option from the context menu

The Assign Component Privileges window lets you assign privileges for specific components to particular users.

• Select one or more users and one or more components

• Select one of the levels of privilege, either Read/Write, ReadOnly or Info Only, and click the Set button to grant the privileges

Alternatively, you can check the ‘Assign privileges when checking in for the first time’ option under the Check In tab on the VCS
Options dialog to ensure that all users are granted access to all components in your project automatically when you first check in
the components.

For more details about assigning privileges to components see theManaging Components section.

Using the VCS

This section is for developers who wish to check out components from the VCS and start working on their application. Lead
developers or managers (Supervisors) wishing to setup a VCS repository and create a new project should read the beginning of
this chapter.

Once the Supervisor has created a project, set up the users, checked in classes and granted access to components, users or
developers can start using the VCS. Assuming you have ‘Participant’ user status, you can:

• Sign in to the VCS

• Check out one or more components that you need to work on

• Check those components back into the VCS once you have finished with them

Signing in to the VCS

To sign in to the VCS as a user

• Click on the VCS option in the Studio Browser

• Click on the Open Session option and select the appropriate project in the list

• Enter your user name and password

If you don’t have a valid user name and password, you can sign in as a temporary user by checking the Observer check box. An
observer can view information about the components stored in a project, but cannot check components in or out, or perform any
other VCS tasks. Alternatively, you can check the Create User check box to create a new user and password, which signs you in
with Participant status. The Supervisor can change your user status at a later stage if required.

• Click on OK to sign in to the VCS

583



Checking Out or Copying Out Components

When you check out a component into a local library, it becomes locked in the VCS, preventing other users from checking it out. A
locked component is shown in the VCS with a lock icon. Alternatively, if you copy out a component it is not locked in the VCS and
other users can check it out if they wish. When copying out a component you can change it in your local library, but you cannot
check it back in to the VCS. In practice, copying out is a convenient way of viewing components locally without locking them in
the VCS.

You can check out or copy out multiple components at the same time, but they must all be Omnis classes or all non-Omnis
components during a single check out process. Components may have the same or different target libraries or folders.

To Check out or Copy out components

• Display the components in your project by double-clicking on the project in the VCS Browser, or selecting the project name
in the VCS tree

• Select the components in the VCS Browser that you want to check out or copy out

• Select the Check Out option, or right-click on the component(s) and select the Check out option in the context menu

or for Omnis classes only

• Drag the classes from your VCS project and drop them on the appropriate library in the Libraries node in the Studio Browser

• In the Check out dialog, select either Check Out or Copy Out and whether the component should overwrite an existing one
or prompt for a new name (you can change the default for both these options in the VCS Options)

• You can add a description for the checking or copying out process

You can add a separate note for each component by clicking the Expand Notes button.

• Click on Continue

If the VCS cannot locate the original library for an Omnis class, it will prompt you to select a target library. You should select a
library, or skip this component. The VCS may prompt you to locate a library for further classes. For non-Omnis components the
VCS prompts you for a destination folder.

If you check out anOmnis class that has a superclass or belongs to a design task, read-only copies of the superclass(es) and design
task are copied out, assuming the ‘Automatically copy out related components’ preference is enabled in the VCS options.

In the Libraries tree, Omnis classes are shown as checked out with a lock icon.

Check Out from Find & Replace Log

You can check out a class from the VCS directly from the Find & Replace log window, assuming the class is not already checked
out. You can select a line or multiple lines in the Find log, right-click on the selection, and select the Check Out option. You will
be prompted to log onto the VCS if required and the Check-out dialog will be displayed containing the selected classes ready to
be checked out.

Checked Out Classes

The “CheckedOut Classes” option in themain VCS browser opens a list showing all the classes that are checked out by the current
user, or for the Supervisor user, the window shows a list of checked out classes for all users.

Updating Properties

When checking out a class, you can update the destination library properties with the properties that are held in the VCS for that
project. This is especially useful for situations in which there aremultiple developers working on the same project. You can enable
this feature by checking ‘Update the destination library with preferences from the VCS’ option on the Check Out tab of the VCS
Options.

Superclass and Design Task Names

You can maintain the superclass or design task library name for checked out classes by enabling ‘Maintain superclass / design
task library name’ option on the Check Out tab of the VCS Options. In this case, the superclass (or design task) library name is not
removed from checked out classes. This is necessary when the superclass exists in a separate library and there is a class with the
same name as the superclass in the current library.

584



Showing Checked Out Classes in the Studio Browser

There is a hyperlink option in the Libraries view of the Studio Browser “Show Checked Out” to display only checked out classes in
the current local library. Once enabled you can click the option again to show all classes.

Checking in or Unlocking Components

When you have finishedmaking changes to a class or component in your local library, you need to check it back into the VCS. This
unlocks the component in the current VCS repository and allows other users to check it out andmake changes or propagate your
changes into their local libraries.

Checking in a component releases its lock and makes it available to other users for checking out. The VCS stores the changes
in its repository and updates the revision number. You can see the current version and revision by clicking on a component and
clicking the Information option when the component is selected.

You can also unlock a component without checking in a new version to make it available for other users. You could do this if you
decide you don’t want to make any changes to a component after all, or if someone else needs to make immediate changes to a
component that you have checked out and is currently locked. In the latter case, you can unlock the component, and check it out
again when the other user has made their changes. You can unlock selected components by clicking the Unlock option when
the component is selected.

To check in Omnis classes

• Select the component(s) in your local library in the Studio Browser

• Drag the selected component(s) on to the appropriate project in the VCS Browser

or

• Right-click on the component(s) and select the Check In option from the context menu

To check in non-Omnis components

• Assuming your project is selected in the VCS, click on the File Browser option

• Locate the folder containing the files your want to check into the VCS

For all types of component, the Check in window appears which lets you set the check in choices for the selected components,
as already described in the Setting up a Project section.

You can select one of the following check in modes

• Add new revision
adds the component by incrementing the revision number by one, unlocks the component, and updates the check in date,
time and other status information

• Add new component
adds the component as a new one, setting the version to 1 and revision to zero, by default

The After Check in option lets you decide whether to

• Keep checked out
adds the component to the VCS and locks it; in effect, this allows you to backup your components but keeps the compo-
nent(s) checked out and available for you to make further changes

• Delete local copy
adds the component to the VCS and deletes the local copy

You can enter a new version in the Version field or accept the default, and regardless of the check inmode, the VCS sets the version
to that number.

585



Showing Checked Out Classes

You can view only the checked-out classes in a VCS project. To show the Checked Out classes in your project, click on the Show
Checked Out hyperlink option in the VCS Browser. To show all classes click on the Show All Classes option.

This option may be useful when you want to quickly identify all the classes that are checked out from a project, and you can
combine this option with the ability to hide/show project folders, as above, to view all checked out classes within folders.

When only the Checked Out classes are showing you can select one or more classes, right-click on them and select the Check-in
option. You can also run the Class Comparison tool from the same context menu. If there are classes that belong to more than
one library, or if a library is not open, these options are disabled.

Building Projects

The Omnis VCS lets you build a project on your local workstation, or any other destination, from the components stored in the
VCS repository. You can do this at any time using the Build options in the VCS. You can also build projects at a specific time and
date using the ‘Scheduled Build’ option, which is described in the next section in this chapter.

Building any type of project from the VCS guarantees that all the components in your local copy are up-to-date. In the context
of Omnis application design, building a project means creating a library containing up-to-date classes for you to work on or test.
If your Omnis application contains multiple libraries, doing a build from the VCS guarantees that your whole application is up-
to-date. You can also build a project containing non-Omnis components and reproduce the original folder hierarchy required
in your application. Using the revision labeling features, you can build previous versions of a library or project for comparison,
troubleshooting, or debugging.

When you build a project that contains classes frommore than one library, the VCS copies all the components to a single library
by default. However by setting the Build options you can build classes to separate libraries, thus maintaining your original library
structure.

You can update a local copy of a library in the Studio Browser using the ‘Update from VCS’ option. This is appropriate for updating
single libraries, but is not appropriate for building a complete project. The Update from VCS option is described later in this
chapter.

To build a project with multiple libraries

• Select the VCS in the Studio Browser and click the Options option

• Click on the Build tab and check the ‘Maintain Project Structure’ option; this will ensure your project builds to multiple
libraries where applicable

To build a project

Whether or not you are building to one or more libraries:

• Select your project in the VCS Browser

• Click on the Build Project option, or right-click on the project and select the Build Project option from the context menu

The Build Manager lets you configure the project build in detail. It contains one line only if you have chosen to build a project
containing Omnis classes into one library, with the project name as the library name. If you have set the preference to maintain
your library structure, the BuildManager lists each separate library in the project. If your project contains non-Omnis components
you can enter the name and path of the target folder.

• Select the library or project and specify the Build options as follows

You can name the output library using the Label and Build As options:

• Label
lets you select the version of the library that you want to build; see the Labels section below

• Build As
lets you select the name of the output library

You can set the following options for the output library:

• Use Locked and Unlocked folders
if set, you can use locked folders, otherwise if the option is unchecked, all folders and libraries are unlocked

586



• Locked and Unlocked
if set, creates a locked and unlocked version of your library

• Locked
if set, the build process creates a locked version of your library preventing other users from seeing or changing the contents
of the library; checking the Locked check box option locks the whole contents of a library but you can lock individual classes
using the Lock Classes window.To lock individual classes, uncheck the Locked option, right-click the project in the Build
window, select the Lock Classes option, and select the classes you want to lock in the popup window. Note you can also
lock folders, which will lock the whole contents of the folder

• Disable Class Data Notation
if set, you will no longer be able to read or write $classdata in the built library from any Omnis class using Omnis code. In
addition, JSON export of the library is disabled as the class data is disabled. IMPORTANT: future access to this library in the
Omnis VCS will no longer be possible. Setting this property is an irreversible operation.

• Disable Method Text Notation
if set, youwill no longer be able to read or write $methodtext or $methodlines in the built library fromOmnis code or via the
Property Manager. In addition, method text will not be exported during a JSON export of the library. Setting this property
is an irreversible operation.

• Multiple Build Paths
when checked, you can select separate build paths for each project using the context menu on the project list

• Strip Comments
removes comments from your Omnis code, as well as variable & file descriptions; also enables the class selection context
menu; see the Remove Comments section below

• Overwrite
if true, overwrites all the components in the target library or folder, that is, the VCS removes all the classes in the target
library and completely rebuilds the library. Otherwise if the option is unchecked, the VCS updates only the components
that are different from the current library or project. This is useful for quickly bringing an existing library up-to-date with
the current checked-in classes in the VCS

• Lower case
ensures the library name is in lower case

• Type the path for your library or project in the ‘Build into’ field or use the Browse button to select a folder or create a new
one

• When you have set the options for your project, click on the Build button

The VCS opens the Build Results dialog showing the progress and status of the build. The VCS creates a log file for the build and
displays it at the bottom of the build window.

Excluding Classes

You can exclude specific classes from a build. The context menu on the project class list includes the option “Exclude Classes”
which allows you to select classes you do not wish to include in a build.

Removing Comments

When you create a build from the VCS, you can remove the comments from the code in your libraries by checking the ‘Strip
Comments’ check box. If the option is set, all comments within methods are removed, as well as all variable definitions, and
descriptions for file, query, and schema classes. This will make library files smaller, which may be better for deployment.

You can select classes that youwant to retain their commentswhen you build a project. To do this, right-click on the list of projects
in the Build Window, select the ‘Do Not Strip Comments’ option, and select the classes in which you want the keep comments.

Under the Build tab in the VCSOptionswindow, there are four checkboxes that, if checked, will ensure that comments in variables,
file classes, query classes and schema classes are retained.

587



Checked out Classes

When you create a build from your Omnis VCS repository, the project may contain classes or objects that are checked out of the
current repository. If you proceed with the build, your project may not contain the most up-to-date classes. In this case, you may
want to look in your project before building the project to ensure that all the classes in the project youwant to build are all checked
in.

If the ‘Warn if there are classes checked out’ option is set (in the VCSOptions), the VCSwill warn you that the build contains classes
that are checked out. In this case, a window will open listing all the checked out classes with an option to proceed with the build
or cancel it. To build a completely up-to-date copy of a library, you should ensure that all classes are checked into the VCS before
proceeding with a build.

System Tables

When you build a library, the VCS includes the system tables by default, assuming you have copied them to your project. The
system tables contain library-specific settings such as fonts, input masks, field styles, and in the case of #ICONS the icons in your
library, so they are important in maintaining the correct look-and-feel and behavior in your application. Remember that when
you check in a version of the library, the VCS does not automatically put the system tables into the library; you must specifically
show and select them in the Studio Browser just as you do the other classes in your library.

Scheduled Builds

The Omnis VCS allows you to build projects at a specific time and date, which for large development teams may be useful if you
need to build a library out of office hours. You can set up a Scheduled Build from the ‘Scheduled Build’ option in the main Omnis
VCS Browser. When you select this link, the Build Manager will open containing a new button called ‘Schedule…’, which opens
the ‘Schedule Build Process’ window.

The Schedule Build window allows you to control the frequency of the builds and set the time that you want the build to run. The
following options are available:

• Never
no scheduled builds occur, but you can still build a project manually

• Daily
the build will occur every day at a specified time

• Weekly
you can specify which day(s) of the week the build should occur during the week; you can also set the time

• Monthly
the build will occur once a month, on the specified day of the month; you can also set the time

The best time to schedule the build is when there is no one else logged on to the VCS. You must ensure that Omnis Studio is
running at the time of the build and that you are logged on to the correct VCS repository. If you do not have Studio open at the
time of the build schedule, when you next log on during that day, the VCS will prompt you that you have missed the scheduled
build and ask if you want to run it then. For example, if you have the build set to run at 7am on a Monday, but do not start Omnis
until 8am, Omnis will remind you about the build that you missed.

You should use the ‘Build Manager’ window to define the projects you want to build and how you want them to be built using
the normal options that are available. When you click the Finish button these preferences will be saved and the timer started
according to the schedule defined.

Labels

You can choose to label the build either at the time you schedule the build or when the build runs. Note that if you select ‘Label at
Build’ and there is already a label with that name, the VCS will redefine the label with the current state of the classes. This may or
may not bewhat you require, so caution should be exercised, particularly if you are setting the build to run every day and therefore
you may lose the ability to rebuild to a specific point in the project development at a later point in time. If you select ‘Label Now’,
the VCS will prompt you if there is already a label defined and give you the chance to confirm that you want the label redefined.

Locked or unlocked

You can specify whether the VCS builds a locked or unlocked version of your library (or both) using the Library Status dropdown
list in the Build window.

588



Build notes

If you have selected a path to save them into, the build notes will be saved to a file prefixed ‘AutomaticBuildNotes_’ within that
path. By default the path is the BuildFolder within the main Studio folder.

Labels

In long-term projects, the components in your project may undergo many revisions. The VCS tracks these revisions using labels.
You can reproduce a particular version of a library using the appropriate label. A label is a string of up to fifty characters that you
can assign to a project and each of its components. When a project is complete and youwant to release it, you can assign a release
name by labeling the project. You can see the label for a project or individual component in its Information window.

To label a project

• Select the project in the VCS Browser

• Click on the Label Project option, or right-click on the project and select the Label Project option from the context menu

• Type in the label and click OK

Once a project has been labeled, the last label assigned is shown in the VCS Project Browser if the browser is in Details view.

When you build a project, you can use labels to select either the latest version of all the components, or an older version. You can
also check out a specific revision of a component using its label. See the description of the Check Out process in the section on
Managing Components below.

If you delete a component that has a label, it remains in the VCS. If you build a project using that label, the VCS finds and includes
the component in the build even though you have deleted it from later revisions of the project. The VCS does not include the
component in any builds or labels that occur after you delete the component. For example, if you label a project and its compo-
nents on Monday, delete a component from it on Tuesday, and do a build on Wednesday using Monday’s label your library will
include the component. However if you do a build onWednesday using themost recent project label, your librarywill not include
the component you deleted on Tuesday.

Server Connections

When the VCS loses its network connection, the list of classes and all hyperlink options are hidden and replacedwith aRefresh op-
tion (previous versionsmay have issued numerousmessages when a connectionwas lost). Pressing Refreshwill poll the database
to see if the connection has been restored, but if the connection is still down an errormessagewill be shown. Polling the database
may still result in a wait of several seconds before the connection is restored or any error message is shown.

Finding Classes

The ‘Find Class’ option in the VCS Browser lets you search for a class within the current VCS repository. You can search for a class
within one or more projects. A list of matching classes is displayed, and you can double-click a class to display that class in the
appropriate project.

Updating local libraries from the VCS

The ‘Update from VCS’ option, available in the main Studio Browser, allows you to bring a local library up to date with the latest
version of the library in the current VCS repository. If you have large libraries and multiple developers, you may find this a quick
way of ensuring that a local copy of a library has all the changes made by other developers.

To use this feature, select a library in the Studio Browser and click the ‘Update from VCS’ option. Providing that you have a VCS
session open and that there is a project in the VCS repository that matches the name of the current local library, this option will
bring up the checkout window (in Copy Out mode only) listing all the classes that have a newer class modified date in the VCS
than your copy of the library. It will also list all classes that have been added to the repository that do not exist in your local library.
If there are classes which you do not want to update, you can uncheck them in the checkout window.

589



Read-only classes

When you try to modify a class in a library built from the VCS, it is only possible to edit the class when the class is checked out. If
it is not possible to edit the class, the class is considered to be ”read-only“.

• If a library has a non-empty VCS build date, then all class editors behave in a read-only fashion, when $showascheckedout
is kFalse for the class being edited.

• You can disable this behavior using the $alloweditifnotcheckedout Omnis preference ($root.$prefs) which is set to kFalse
by default. Set it to kTrue, to disable this behavior.

• When this behavior is enabled, new classes in a library with a non-empty VCS build date (created in any way), are automati-
cally marked as checked out.

• Replace will not work against a read-only class, an error is written to the find and replace log.

Note that this does not affect the notation (although the notation inspector will not allow changes to a read-only class).

Managing Components

The VCS has an extensive array of component management functions, including

• Granting user privileges for components

• Associating a component with more than one project

• Managing revisions of components

• Deleting and renaming components

Granting User Privileges for Components

If you are the first user to put a component under version control, you are the owner of that component. To allow other developers
access to a component, youmust grant them privileges to it. Without the right privileges, other developers can only view and get
information about a component as Observers. Supervisors have all privileges at all times.

To grant component privileges

• Display the components in your project by double-clicking on the project in the VCS Browser

• Select the set of components for which you want to grant the privileges

• Click on the Privileges option or right-click on the component(s) and select the Privileges option from the context menu

The Assign Component Privileges window lets you assign privileges for specific components to particular users. You can choose
one of the following levels of privilege

Privilege level Description

Read/Write the user may check in, check out, copy out, get information on and build libraries with
components

Read Only the user may get information on, build libraries with, and copy out a component into a local
library, but cannot check out the component nor check it back in with changes

Info Only the user may get information only about a component

• Select one or more users and one or more components

• Select one of the levels of privilege and click the Set button to grant the privileges

Assigning the Info Only privilege also revokes existing privileges from a user. Info Only is the default privilege that any user has for
a component. The owner of the component must grant the user, including Supervisors, the Read Only or Read/Write privileges
necessary for building libraries or changing the component.

By default, the owner of a component starts with Read/Write privileges for that component, and you must have Read/Write
privileges to grant privileges for it to other users.

If you select components for which you don’t have Read/Write privileges, the VCS disables the radio buttons and Set button. If you
select components for some of which you have Read/Write privileges, you can use the radio buttons. The VCS does not however,
grant the privileges to the user(s) on those components for which you do not have Read/Write privilege.

590



Sharing Components between Projects

Youmay decide to use a single component inmany projects, such as a custom logonwindow, or a generic search component. The
VCS can associate or link a component with libraries in different projects, storing the component only once, but building it into
different libraries when required. You need only revise the component in one place, rebuild the projects, and the VCS propagates
the changes to all the libraries that contain the component.

You must have Supervisor access or be the owner of a component to associate or link it with another project or library.

To associate a component with a project

• Open the project containing the component, and select the component

• Click on the Link option, or right-click on the component and select the Link option from the context menu

The Link option displays awindow showing all your openprojects (the linkwindowwill not open if there are no other openprojects,
or if the component is already linked to all other open projects).

• Select the project with which you want to link the component, or you can open a project in the list and select a particular
library

• Click OK to link the component

If the Maintain Project Structure build option is not checked, the component is associated with the single library together with all
the other components. Otherwise if the build option is enabled, the component is associated with a library of the same name as
the one containing it. If such a library does not exist, it is created automatically.

To delete a linked component in a specific project

• Open the project containing the linked component

• Select the component, and click on the Delete option, or right-click on the component and select the Delete option from
the context menu

If the component has a label, it becomes disassociated and a small trash can icon is shown. If you build a project using a label,
the component is still available for the build, even though the library or project in question may no longer associate with the
component.

Managing Revisions

When you first check in a component, the VCS creates the component in its repository and sets the version to 1 and the revision
to zero. Each time you check in a new revision of the component, the VCS stores the new component and increments its revision
number. The sequence of changes to a component is stored in its revision history.

To see the revision history for a component

• Select the component in the VCS

• Click on the RevisionHistory option, or right-click on the component and select the RevisionHistory option from the context
menu

The Revision History window tells you

• the version string and revision number

• the user who modified the component

• the component name

• and change notes, if any

The revisions for a component are listed in chronological order with the most recent revision at the top. You can delete old or
newer revisions of a component.

If you have Read/Write or ReadOnly privileges for the component, you can copy out the latest revision of the component from the
Revision History window by clicking on the Copy Out Revision button. A list of currently open libraries appears, so you can choose
which one to copy the component into. Select a library and click on Select.

If a component already exists in the library with the same name as the copy, the VCS prompts for a new name. Keeping the old
name overwrites the existing component; entering a new one renames the copy.

591



Viewing all Project Revisions

The “Project Revisions” allows you to see all the revisions to a project, rather thanhaving to drill down to a class and see the revisions
which are only available for that class.

The Project Revisions option is available at the project level as a context menu option in the tree list or via the hyperlinks when
clicking in the list of projects. You can filter the revisions from the droplists according to the user who created the revision or a
date period. You can also filter by typing in the edit box.

You can drilldown to see which labels have been applied to the revision by right-clicking on it. This window also allows you to
compare or copy out in the same way as the class level revision window. You can also select multiple classes to copy out multiple
revisions. It is also possible to double-click rather than using the context menu to view the revision data.

VCS Revisions

All class types now have the $vcsrevision property, which allows the Omnis VCS to determine whether or not classes in a local
library are up to date with the latest revision in the VCS repository. The $vcsrevision property is the revision number of the class,
and is used for classes stored in the Omnis VCS. It is set to zero if the library was not built by the VCS (i.e. it was created in the IDE),
or if the library was built prior to Omnis Studio 10.2.

The property is read-only in the Property Manager, as it is intended for use by the Omnis VCS library, or any custom class editing
tools you may have created. It can only be assigned by executing code.

Method Inspector

TheMethod Inspector lets you examine themethods in a class without having to CheckOut or CopyOut a class or build the library.
This may be useful if you want to quickly check what methods are contained in a class or what code is contained in a particular
method within a class.

To open the Method Inspector, you can select the class and choose the ‘Method Inspector’ hyperlink option in the VCS Browser,
or Right-click on the class and select the option from the context menu.

On the first tab of the Method Inspector window, there is a list of all themethods within the class. If the class has a superclass, the
superclass methods are also shown. They are displayed in blue to differentiate them as inherited methods.

If the selected class is a window, report, remote form, menu or toolbar, there is another checkbox displayed at the bottom of the
list to allow you view field methods. By default this option is not selected except for menu and toolbar classes.

Further properties of the method are shown in this tab: description, execute on client and web service method. There is also a
context menu option to allow you to view the path to the method within the class – this is of most use if you are looking at field
methods as you can see the exact path to the method.

If you double-click a method, the code for the method is displayed on the second tab. Should the method be inherited, there is a
context menu option to allow you to view the superclass code.

Orphan Components

It is possible for a component that has a parent folder to lose its parent folder; in this case, the component is regarded as an
‘orphan’ component. A component can lose its parent folder either because the parent folder itself no longer exists, or the id of
the parent folder has changed and the component is not aware of the change. The id of the parent folder for a component is
stored in its $parentfolder property.

The ‘Find Orphans’ option in the VCSwill look for components where their $parentfolder id does not exist and place these compo-
nents in the ‘Orphans’ folder. You can move the component(s) back to their respective folders or recreate the appropriate folder.
In most cases, the option will return no orphan components.

Component Services

The Component context menu gives you information about a component, and lets you rename, delete, or unlock a component.
To open the context menu you must right-click on the component.

To get Info about a component, or rename, delete, or unlock one

• Right-click on the component in the VCS and select the appropriate menu option

or assuming the component is selected, you can

• Click on the Info, Delete, or Unlock option in the list of options in the VCS Browser

592



Get Information

This window displays the information about the component, including the labels, the revision state, the check out history, and
links.

Deleting Components

To delete a component, you must own the component and it must be checked in. The Delete option checks whether the com-
ponent belongs to more than one library and whether any labels apply to it. If not, the VCS prompts for confirmation that you
want to delete the component. If it does belong to more than one library, the VCS displays a list of associated libraries, letting you
choose the ones from which to remove the component.

Unlocking Components

You can unlock a locked component by clicking on it and selecting the Component>>Unlock menu option. A warning message
advises you that having done this, you will not be able to check in a previously checked out version of the component.

Renaming Components

To rename a component, you must own the component and it must be checked in. You can rename any component in the VCS,
but renaming Omnis classes requires some additional care because of the potential dependencies of some classes on the class
you want to rename. That is, before you rename a class in the VCS you must change all references to it in any other classes that
refer to the class. You do this by checking out all the relevant classes to the IDE Browser and using the Omnis Find and Replace
tool.

To rename a class

• Check out the class and any other classes that contain methods which refer to the component

• Change the name of the component in the Studio Browser, and answer Yes when you are prompted for whether or not you
want to use Find and Replace; this renames the component and changes all references to it in any other components

• Check in all the components except for the renamed one

• Select the component in the VCS, and click on the Unlock menu option to release its lock

• Click on the component again when the VCS has refreshed

• Click on the component to rename it

Comparing Classes

The Compare Classes option in the VCS lets you compare all the classes in two different VCS projects, or it lets you compare
individual classes in different projects. It also lets you compare different revisions of the same class. (The Compare Classes tool is
also available in the Studio Browser and allows you to compare classes in libraries not checked into the VCS.) The Compare Classes
tool compares the properties and methods of the specified classes and highlights any differences. Specifically, the comparison
tool will compare each line in amethod of one class with the corresponding lines in amethod of the other class and will highlight
even the smallest change or difference between the two classes or revisions.

To use the Compare Classes tool

• Select a project or component and click on the Compare Classes option in the VCS Browser

The Compare Classes tool is also available in the Revision History window to allow you to compare revisions of the same class.

The Compare Classes window lets you load two different versions of the same VCS project or library: you should load the older
project or library into the Library/Project A list (on the left) and the newer version into the Library/Project B list (on the right). The
context menu on the Compare Classes window (Right-click to open it) lets you switch libraries from List A to List B.

You can compare all the classes in a VCS project or library that have a modified $classdata, which avoids comparing classes that
have not changed. The Compare tool shows which classes have a modified $classdata and by default will compare only these
classes. You can uncheck the ‘Only include classes where $classdata differs’ checkbox to compare all the classes in a project or
library.

By default, the Compare Classes tool only compares any classes that are selected in the VCS. To compare all classes, regardless
of any selections in the VCS, you can uncheck the ‘Only include classes pre-selected in the class browser or VCS’ option in the
Compare window.

593



VCS Options

You can set your individual preferences for the VCS using the Options option in the list of options in the VCS Browser. You can set
Display, Check out, Check in, Build, and Method Inspector options in the VCS Options window.

To set your VCS options

• Select the VCS in the Studio Browser, or select a project, and click on the Options option

Display Options

The Display options let you specify the format of dates and times for the VCS windows and dialogs. The default format is: D m Y
H:N:S, such as 12 May 09 14:30:35.

• Show linked icon
(disabled by default) enables the Linked icon for classes and components that are linked across different projects using the
Link option.

Check Out Options

The Check Out options control how components are checked out of the VCS.

• Default mode is “Check Out Modifiable” copies
determines whether or not a component is checked out or copied out; the default is for components to be checked out in
modifiable mode.

• Default replacements to overwrite existing items
determines whether or not an existing component in your target library is overwritten when a component is checked out.
The default is that components are checked out and overwritten without warning, otherwise when the option is disabled,
you are prompted to overwrite or rename the component.

• Automatically copy out related components
relates to Omnis classes that have superclasses and design tasks. If you have a class that is a subclass of another class, and
you check out the subclass, this option ensures the superclass is checked out. When this option is disabled the superclass
will not be copied out; in this case, youwill not see any fields andmethods that are contained in the superclass. If this option
is set, read-only copies of the superclass(es) are copied out, as well as the design task for the original classes being checked
out.

• Default to copy out component if already checked out
when this option is set, it forces components to be checked out even if they are already checked out. If this option is disabled,
the VCS will warn you that the component is already checked out and prompt you to Copy out or cancel the operation.

• Maintain superclass / design task library name
ensures that classes retain the library name as part of the superclass or design task name. The preference is disabled
by default to ensure backward compatibility. With the preference disabled, the library name is stripped out at checkout
or build time. This means that if, for example, you have ‘LibraryA’ with a class called ‘classA’ which has a superclass ‘Li-
braryB.ClassSuper’ and there is also a ‘ClassSuper’ in ‘LibraryA’, Omnis would switch the superclass to ‘LibraryA.ClassSuper’
whenever the class is checked out or built. You can check this option to retain the superclass name to avoid this problem.

• Update the destination library with preferences from the VCS
ensures that when enabled the preferences of the destination library are updated from those stored in the VCS.

• Ignore Checked Out Classes
when enabled the VCS will not copy out a component if it is already checked out.

• Prompt for Options and Notes
when enabled the VCS will prompt you for Options and Notes when checking in/out

• Show all options without tabs
when enabled allows you to show all Check in/out options in one screen by hiding the tabs

594



Check In Options

The Check In options control how components are checked in to the VCS.

• If Target Component Does Not Exist
controls what happens when you check in a new component. By default, the ‘Automatically add it to the Project’ option is
selected and components are added to a project automatically; otherwise if the ‘Prompt for further instructions’ option is
selected the VCS asks if you want to add the component to the current VCS project.

• When Component Version Number Changes
controls revision numbers for new versions of a component. By default, the ‘Reset revision numbers to zero’ option is se-
lected and revision numbers are set to zero for new versions; otherwise if the ‘Continue to increment revision numbers’
option is selected the VCS continues to increment revision numbers regardless of the component version. (Version and
revision numbers are described earlier in this chapter.)

• Assign privileges when checking in for the first time
is useful when, as supervisor, you first set up your project. When enabled and you check in components into the VCS for
the first time, the component privileges window is opened allowing you to set the access privileges for each component.

• Disable automatic library preference changes
If enabled, this option prevents the automatic updating of library preferences from the library containing the classes to be
checked in.

• Enable version number validation
allows you to disable version number checking when checking objects into the VCS.

• Prompt for Options and Notes
when enabled the VCS will prompt you for Options and Notes when checking in/out

• Ignore file system folders for external components
when enabled the VCS checks in external componentswithout the file system folders being created within the repository

• Show all options without tabs
when enabled allows you to show all Check in/out options in one screen by hiding the tabs

• Make library read-only when checking in for the first time
when enabled the library will become read-only after being checked in for the first time

Build Options

The Build options control builds in the VCS.

• Maintain Project Structure
controls whether or not a build retains the library structure of the components within a project. If this option is enabled,
components arebuilt into separate librariesmirroring theoriginal library structure, otherwise all the components in aproject
are built into a single library.

• Only create locked and unlocked folders when required
Selecting this option prevents the VCS from generating locked and unlocked folders in the build path unless the Build
process needs them.

• Warn if there are classes currently checked out
tells you if there are any classes checked out when you attempt to build a project; if you build a project containing checked
out classes your library may not contain the most up-to-date version of classes

• Do not build empty folder classes
when enabled the VCS will not build empty folders

• When Stripping Comments
During a build all comments in your Omnis code are stripped out. When enabled, the ‘Stripping Comments’ options ensure
that comments are retained in all Variable definitions (in the Variable pane of the Method Editor), as well as all File, Query,
and Schema classes.

595



Method Inspector Options

The Method Inspector options are as follows:

• Ignore File Classes
When enabled the ‘Ignore File Classes’ option ensures that #??? references to file classes are not included in the Method
Inspector window; the Method Inspector is available in the Studio class browser and allows you to inspect the methods of
any classes in the current VCS project.

Branches Options

The Branches options only affect projects that contain branches, so for all new VCS repositories the Branch options will not appear.
The Checking in/out options on the Branches tab allow you to set the check in/out preferences for VCS projects that contain
branches.

• Use Default Branches
If the ‘Use Default Branches’ option is enabled (the default) and the current project has branches, the default branch is used
to check out classeswhen using the contextmenu in the Studio browser. If the option is disabled, a list of available branches
is displayed to allow you to choose the branch from which to check out the class.

• Ignore Branches
If the ‘Ignore Branches’ option is enabled (the default), the VCS automatically uses the branch the component has been
checked out from. If the component is present in more than one branch, a window is displayed to allow you to choose the
branch from which to check out the class or component.

Reports

The VCS has a number of reports available to those with Supervisor status. You can access them by clicking the Reports option in
the VCS Browser. Users without supervisor status do not have access to VCS reports and will find this menu option is grayed out.

To use the VCS reports

• Select the VCS in the Studio Browser tree and click on the Reports option

The VCS Management Reports dialog lets you select a report. The Parameters pane and Description field will change depending
on the report you click on.

• Select a report and set up its parameters

• Click on the Print button to generate the report

• Select the required destination, and click on OK

Branches

Where appropriate, the reports in the VCS will reflect the existence of branches in your projects.

VCS API

From Studio 11, some of the functions of the Omnis VCS have been exposed to allow you to interact with the VCS or the contents
of a project programmatically. You can make API calls to the Omnis VCS by calling:

$root.$modes.$dotoolmethod(kEnvToolVcs,‘vcs_method_name’[,parameters,..]),

The first parameter is always kEnvToolVcs to specify a VCS method, followed by the VCS method name and the appropriate pa-
rameters.

Tokens

Each API call requires the use of a token, which is a unique string generated by the VCS when a successful logon occurs. This
token is an essential parameter to all the calls (apart from $x_logonVCS) as it is the mechanism that the VCS uses to verify the
validity of the API call. By default, a token will last for 60 minutes, but you can extend the token lifespan to up to 8 hours. When
the token time has expired, you will be logged off automatically and will need to logon again.

596



Logon

The $x_logonVCS method allows you to logon to the Omnis VCS using an existing SQL session, returning a token which must be
passed by the other methods.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_logonVCS',cHOSTNAME,cUSERNAME,cPASSWORD,nTokenTime,cToken,cErrors) Returns bStatus

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_logonVCS',cHOSTNAME,cUSERNAME,cPASSWORD,nTokenTime,cToken,cErrors,rSessionOrSessionPoolRef) Returns bStatus

cHOSTNAME, cUSERNAME, cPASSWORD are character strings used to identify the session to log onto. The session must have
been previously set up via the SQL Browser Session Manager. cHOSTNAME is the name of the VCS session previously set up and
cUSERNAME and cPASSWORD are the credentials that are setup inside the VCS (not the database credentials).

nTokenTime is a value to determine (in minutes) how long the token will remain valid for. If 0 is passed, a default value of 60
minutes is applied; the token time can be up to a maximum value of 480 (8 hours).

rSessionOrSessionPoolRef is an optional reference to a SQL session (e.g. $sessions.MY_VCS_SESSION) or a session pool (e.g. $ses-
sionpools.MY_VCS_SESSIONPOOL). This allows you to logon to a session via code rather than using any defined VCS sessions in the
SQL Browser SessionManager. If supplied, the API will attempt to logon using this regardless of cHOSTNAME. If no valid reference
is passed, the logon will attempt to use cHOSTNAME.

If the logon is successful, bStatus will return kTrue and cToken will contain a token generated by the VCS which must be used to
authenticate subsequent API requests.

As with all the methods (except Logoff), cErrorswill contain any errors.

Logoff

The $x_logoffVCS method logs out of the current VCS session.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_logoffVCS',cToken)

You need to pass cToken to logoff.

Get Token Info

The $x_getTokenInfo method returns information about the token and session.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_getTokenInfo',cToken,rRow,cErrors) Returns bStatus

If successful, rRow lists the Token, Token Expiry Time, the session name you are logged on to, VCS username you are logged on
with, the token timeout in minutes and the Logon time.

List Projects

The $x_listProjects method returns a list of projects.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_listProjects',lLibList,cToken,cErrors) Returns bStatus

If successful, lLibList will contain the list of projects that are available in the VCS repository.

List Classes

The $x_listProjectClasses method returns a list of classes in the specified project, and has the following syntax:

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_listProjectClasses',cLIBNAME,lClassList,cToken,cErrors) Returns bStatus

cLibName is the name of the project in the VCS from which you want to return the class list.

If the call is successful, lClassList will return a list containing the following information: className, classType, classVersion, class-
Revision, status (0 - checked in, 1 - checked out), checkedOutDate, checkedOutBy, checkOutNotes, checkedInDate, checkedInBy,
checkedInNotes.

597



List Class Revisions

The $x_listClassRevisions returns a list of revisions for a class, and has the following syntax:

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_listClassRevisions',rClassRef,lClassRevList,cToken,cErrors) Returns bStatus

refClassRef is a reference to a class in your local library. If the call is successful, a list of revisions will be returned in lClassRevList.
The first column of this list will contain the revision number.

If you wish to copy out a revision, use a revision number from lClassRevList in the parameter revID in $x_checkOut to check out
the revision. For example:

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_checkOut',refClassRef,refLibRef,cToken,bCheckOrCopy,revID,cErrors) Returns bStatus

Class Status

The $x_classStatus method returns the status of a class, its checked out status, who checked it out, and so on.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_classStatus',refClassRef,rRow,cToken,cErrors) Returns bStatus

refClassRef is a reference to a class in your local library. If the call is successful, the row variable rRow will be populated with the
name of the class, its checked out status, who checked it out and when, the date of the last revision and who checked it in, as well
as the current revision number.

Checked Out Classes

The $x_checkedOutClasses method returns a list of checked out classes.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_checkedOutClasses',cUserName,[cLibName],lList,cToken,cErrors) Returns bStatus

cUserName is a character string for the VCS user name. The optional parameter cLibName filters the list of checked out classes
to the supplied library name. If the call is successful, lList will be a list of classes containing project name, user name, class type,
class name, checked out date, check out notes and the original library name.

Is Class Current

The $x_isClassCurrent method tells you if a local class is up to date or not.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_isClassCurrent',refClassRef,cClassStatus,cToken,cErrors) Returns bStatus

refClassRef is a reference to a class in your local library. If the call is successful, cClassStatuswill contain either 0 or 1: if 0, the class
is up to date with the VCS, or if 1, the VCS version is newer than the local copy.

Check Out

The $x_checkOut method allows you to check out or copy out a class.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_checkOut',refClassRef,refLibRef,cToken,bCheckOrCopy,revID,cErrors) Returns bStatus

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_checkOut',refClassRef,refLibRef,cToken,bCheckOrCopy,revID,cErrors,cCheckOutNotes) Returns bStatus

refClassRef is a reference to a class in your local library and refLibRef is a reference to the library you are checking the class out to.
bCheckOrCopy is a boolean allowing you to either check out (kTrue) or copy out the class (kFalse). If youwish to copy out a specific
revision of a class, you can use a revision number from lClassRevList returned by $x_listClassRevisions in the revID parameter to
check out the revision.

refClassRef is a reference to a class in your local library and refLibRef is a reference to the library you are checking the class out to.
bCheckOrCopy is a boolean allowing you to either check out (kTrue) or copy out the class (kFalse). If youwish to copy out a specific
revision of a class, you can use a revision number from lClassRevList returned by $x_listClassRevisions in the revID parameter to
check out the revision, else pass 0. cCheckOutNotes is a string containing notes to be associated with the checkout.

598



Check In

The $x_checkIn method allows you to check in a class.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_checkIn',refClassRef,refLibRef,cToken,cErrors) Returns bStatus

refClassRef is a reference to a class in your local library and refLibRef is a reference to the library you are checking in from. The
project must already exist in the VCS as it is not currently possible to create a new project using the API.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_checkIn',refClassRef,refLibRef,cToken,cErrors,cCheckInNotes) Returns bStatus

refClassRef is a reference to a class in your local library and refLibRef is a reference to the library you are checking in from. The
projectmust already exist in the VCS as it is not currently possible to create a new project using the API. cCheckInNotes is a string
containing notes to be associated with the checkin.

Label Project

The $x_labelProject method allows you to label a project.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_labelProject',cProject,cLabel,cToken,bOverwrite,cErrors) Returns bStatus

cProject is the name of the project, cLabel is the label and bOverwrite indicates whether to overwrite an existing label of the
same name.

Build Project

The $x_buildProject method allows you to build a project to a specified folder.

Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_buildProject',cProject,cBuildPath,cLabel,bLocked,bOverwrite,bLowercase,cToken,cErrors) Returns bStatus

cProject is thenameof theproject, cBuildPath is thedirectory tobuild into, cLabel is the label to use,bLocked indicateswhether to
build a locked library, bOverwrite identifies whether to overwrite an existing library, bLowercase builds the file name in lowercase.

Chapter 16—Omnis Data File Migration

The Data File Migration tool is not available in some editions of Omnis Studio including the Community Edition. Omnis datafiles
should not be used for new applications.

The Omnis Data File Migration tool lets you migrate the data in your Omnis data files to PostgreSQL or SQLite, ensuring the
future stability and longevity of your OmnisSQL applications, and addressing several long-term issues with the old-style data
file architecture. For example, SQL statements are no longer limited to 64KB; compound Indexes may now contain columns of
different types; and various SQL parsing issues including issues with GROUP BY and ORDER BY should also be resolved.

Following a one-time conversion of yourOmnis data file(s) to a PostgreSQL or SQLite database using themigration tool, theOmnis
DML commands* in your old library will execute against the selected database with nomodifications to the original library code**.

Themigration tool allows you to switch from anOmnis data file to a SQL database reasonably quickly and easily, without having to
rewrite a lot of data handling code, which will make data storagemore robust while giving you a route to convert your application
to all SQL code.

*The commands that operate against Omnis data files and file classes have in the past been collectively referred to as the Omnis
Data Manipulation Language or Omnis DML.

**In Studio 10.2 or above, emulation is enabled via twoproperties; $root.$prefs.$mapdmltodamand$libs.your-lib.$prefs.$dmlemulation.
Omnis will retain these settings.

We would like to thank Nick Renders and Thad Bogert for their help in developing the DML emulation technology.

599



Converting Omnis Data Files

IMPORTANT: Backup Your Data Files

IN ALL CASES, YOU SHOULDMAKE A SECUREBACKUPOF ALL OMNIS DATA FILES BEFOREOPENING/CONVERTING THEMWITH
THE DATA FILE CONVERSION TOOL.

The conversion option, called Convert Data File to RDBMS, is available under the Tools>>Add-Ons option on the main Omnis
menubar or Toolbar, allows you to convert an existing single- or multi-segment Omnis data file into a PostgreSQL database or a
SQLite data file.

Figure 170:

To convert a data file, browse for or enter the path of the Omnis .DF1 file, select the database type (either PostgreSQL or SQLite),
then press Go.

Figure 171:

The conversion process copies all tables and indexes, and populates the tables with data copied from the Omnis data file.

Once converted, you may remove the Omnis data file (and retain it as a backup).

SQL Identifiers

When converted into SQL tables, all SQL identifiers (table and column names) are converted to lower-case. Any non ISO-SQL
characters, including spaces and symbols are converted to underscores. The emulator uses SQL aliases when loading values back
into the corresponding File class columns.

Connected Files

During conversion any File connections are preserved using foreign key fields added to the table definition. For example, where
File class A has connections to File classes B and C, table A will contain two additional integer columns named “fk_b” and “fk_c”.

600



During conversion, these columns will be populated with the Sequence column values for Files B and C.

For any Files that do not expose a Sequence column, the converter adds one. Using the above example, table B would be given
a column named “b_seq”, and table C would be given a column named “c_seq”. File A’s foreign key fields will then link to these.

Enabling DML Emulation

The Conversion library (omsqlconv.lbs) serves two functions. As well as converting old-style Omnis data files to SQLite or to Post-
greSQL, the conversion library also works in the background providing various methods and dialogs to assist the DML emulator.
Most DML emulation now occurs in the Omnis core and in the PostgreSQL & SQLite DAMs. Enabling DML emulation in Studio
10.2 is a two-step process.

Step 1 – Set $mapdmltodam

To enable DML command emulation, it is necessary to set the $mapdmltodam Omnis preference*, for example, for SQLite:

Do $root.$prefs.$mapdmltodam.$assign('SQLITEDAM')

or for PostgreSQL:

Do $root.$prefs.$mapdmltodam.$assign('PGSQLDAM')

or you can set it in the Property Manager under Omnis >> Prefs.
This setting then applies to any libraries subsequently enabled for DML emulation.

Step 2 – Set $dmlemulation

You also need to enable your library for emulation by setting its $dmlemulation preference to kTrue, e.g.

Do $clib.$prefs.$dmlemulation.$assign(kTrue)

or you can set it in the Property Manager under Library >> Prefs.

*Note: this behavior has changed since Studio 10.1 and now allowsmultiple libraries towork using the sameDML emulator. Where
your application uses multiple libraries, only those libraries with $dmlemulation set to kTrue will execute against the nominated
database.

Note that changing the emulationmode ($mapdmltodam) while the emulator is in use will shut down the emulator, causing any
open data file connections to be lost.
Likewise, $dmlemulation should not be changed whilst connections are in use. Traditional DML and emulated connections are
not inter-operable.

Both of these properties are saved together with any other Omnis / Library preferences.

Emulated Commands

Once enabled, the following DML commands will be executed using the emulator, and against the specified SQL database:

• Data files:
Close data file, Close lookup file, Create data file, Floating default data file, Open data file, Open lookup file, Prompt for data
file, Set current data file, Set default data file, lookup().

• Data management:
Build indexes, Delete data, Drop indexes, Open runtime data file browser, Rename data.

• Changing data:
Cancel prepare for update, Delete, Delete with confirmation, Do not flush data, Do not wait for semaphores, Flush data,
Flush data now, Prepare for edit, Prepare for insert, Prepare for insert with current values, Test for only one user, Update files,
Update files if flag set, Wait for semaphores.

• Files:
Clear all files, Clear main & connected, Clear main file, Clear range of fields, Clear selected files, Set main file.

601



• Finding data:
Clear find table, Disable relational finds, Enable relational finds, Find, Find first, Find last, Load connected records, Next,
Previous, Prompted find, Single file find, Test for a current record, Test for a unique index value.

• Searches:
Clear search class, Reinitialize search class, Set search as calculation, Set search name, Test data with search class.

• Sort fields:
Clear sort fields, Set sort field.

• Lists:
Build list from file, Load from list, Replace line in list.

• Others:
Begin reversible block, End reversible block, Quit all methods, Enter data, Queue OK, Queue cancel, $root.$getodbfilelist(),
$cdata().$name, plus various sys() calls including sys(11), sys(82), sys(83) and sys(89).

Changes to Library Code

Aside from setting the $mapdmltodam root preference and the $dmlemulation library preference, it should not be necessary to
make any changes to your library code since emulated DML commands will execute against the selected database automatically.

When enabled, theOpen data file and Prompt for data file commands will automatically look for a corresponding SQLite ‘.db’ file
or a logon config file (‘.dfq’ or ‘.dfp’ for SQLite or PostgreSQL respectively) in place of the exisitng data file name (‘df1’).

The Create data file command will create a new SQLite data file.

Multiple Users and Concurrency

Semaphores

When executing against a PostgreSQL database, the emulator also emulates Omnis semaphores used when locking tables prior
to an insert, update or delete. A separate semaphore thread connects to the database and polls a special _semaphore table
intermittently. The _semaphore table stores the lock state and update time for any replicated File classes. The _semaphore table
is created automatically if it does not exist so it not detrimental to delete/update this table (for instance in the event of a deadlock).

The _semaphore table is defined with the following columns:

_tablename (varchar 255) _timestamp (bigint) _locked (bool)

For a given table, the _timestamp(epoch) value is only updated when an Update files command is executed. The semaphore
threaduses this value to detect changes to the database table thatmayhave occurred since the last Find commandwas executed.
The _locked column is set to true when a Prepare for… command is executed. If one or more read/write Files are already locked
by another client then the Prepare for… command either waits or fails depending on whetherWait for semaphores/Do not wait
for semaphores is in effect. _locked is cleared either when an Update files or Cancel prepare for update is executed.
The Test for only one user command will also remove any stray table locks if a single database user is detected.

Note that SQLite data files can only be accessed by a single (Omnis) process. For this reason, multiple access to the data file is
only possible using the SQLite Data Bridge (analogous to the Omnis Data Bridge).

When accessed directly fromOmnis Studio, SQLite data files are considered to be single-user access only, i.e. semaphores are not
applicable.

Using the SQL Browser

Database connections openedby emulator are displayed in theOmnis SQLBrowser andnormally use the internal name specified
with the corresponding Open data file / Prompt for data file / Create data file command. You can use these sessions to execute
your ownSQL statements e.g. via the Interactive SQLutility. Avoid blocking these sessions however since thismay cause emulated
DML commands to hang.

602



Logon Config Files

Logging on to SQLite using a Config File

You can specify a logon configuration filewhen connecting to a SQLite database file. The logon configuration file for SQLite should
have the .dfq file extension and may contain one or more session property assignments, e.g.

hostname=c:\Users\\myUser\mydata.db

If ‘hostname’ is not present the library uses the pathname of the .dfq file and substitutes .db.

Logging on to PostgreSQL

Youneed to specify a logonconfigurationfilewhenconnecting toPostgreSQL. The logonconfiguration text file (“.dfp”)may contain
any relevant PGSQLDAM session property, for example:

hostname=192.168.0.10
port=5432
username=postgres
password=postgres
database=postgres

As mentioned, the emulator automatically substitutes the ‘,dfp’ file extension when it encounters the Open data file command,
but you can change your library code if preferred, e.g.

Open data file { C:\Users\MyUser\Desktop\pgconfig.dfp,internalName }

The Prompt for data file command allows you to browse for a logon configuration file. The Create data file command reads the
logon configuration file and attempts to create the specified database.

The emulator will open a prompt if either hostname, username, or password is missing from the logon config file.

Adding Comments

Should you wish to add comments to the logon config file, the emulator ignores any line that is either empty of commences with
a hash(#) character, for example:

hostname=c:\Users\myUser\mydata.db
## This is a comment ##

DML Command Logging

For basic logging and performance monitoring, you can add the following line to the logon config file:

logging=1

For additional logging of begin/end method calls and reversible blocks; add 2. For additional timing information and SQL state-
ment logging; add 4. Setting:

logging=5

will suffice formost purposes. When enabled, logging information sent to the Omnis Trace Log so you can see output in real-time.

For low level DAM debugging, you can add the following lines to your logon config file:

debugfile=c:\path-to-text-file.txt (no quotes)
debuglevel=4
debugsize=0

You can also access the emulator’s session object via $sessions and enable/disable DAM debugging dynamically if required. In
the event of technical support issues, the resulting text file can be used to diagnose faults.

603



Caveats

Single file find

In traditional DML, Single file find commands effectively move the cursor to a different point in the find table. A subsequent Next
command would carry on from the new cursor position. Conversely, the emulator’s find tables are usually filtered using a SQL
WHERE clause, so there are likely to be gaps in the data. For this reason, the emulator restores the cached File contents & cursor
after each Single file find command. This means that subsequent Next commands operate on the find table as it was before the
Single file find command was executed, and Single file find commands now operate in isolation.

Load from list

Please note that the DML emulator is only able to load variables that are currently in scope. This behavior departs from traditional
DMLwhich is able to access CRB references from othermethods including super and sub-classmethods. This does not affect File
class fields which are always in scope.

Limitations with Search Calculations

Please note that certain kinds of legacy notation may cause problems for the DML emulator. For example: Set search as calcula-
tion F_Address.Insert_Date<dat(lDate)+1
In the above example; dat(lDate)+1 is an implicit (if unintuitive) instruction to add 1 day to the result of the dat() function! In this
case, it is necessary to rewrite the search calculation as: Set search as calculation F_Address.Insert_Date<dadd(kDay,1,dat(lDate))
If you spot unexpected SQL errors (i.e. when Logging to the Trace Log is enabled), these may also be a result of other search cal-
culations that the emulator cannot handle.

Check Data and Repair

Commands that check and alter the data file structure are largely redundant once a data file is ported to PostgreSQL or SQLite.
Some commands allow existing tables to be altered for instance if you modify a File class after converting the data file.

• Delete data – this command invokes a DROP TABLE statement against he named table.

• Rename data – this command invokes an ALTER TABLE… RENAME TO… statement.

• Drop indexes & Build indexes – these commands potentially invokemultiple SQL statements to DROP or CREATE INDEXes
based the underlying File class’ indexed columns.

• Update data dictionary, Reorganize data & Quick check – these commands do nothing.

• Check data – this command compares the structure of each specified File class against its corresponding SQL table and
can build a list of ALTER TABLE statements that are executed (if Perform repairs is specified). Changes detected include
columnname, data type, sub-typeor provision for larger sub-length, changedcolumn index state, not-null state andcolumn
description.

• Open check data log & Close check data log these commands open/close a window displaying the list of SQL operations
generated by a previous call to Check data. Press Execute to run the SQL commands.

• Clear check data log – this command clears the list of SQL statements generated by a previous call to Check data.

• Print check data log – this command writes the above list of SQL statements to the Omnis trace log.

New OmnisSQL DAM

The OmnisSQL DAM has been enhanced and now contains an internal SQLite object, giving it the ability to connect to old-style
Omnis data files and to SQLite data files. The new DAM is designed to behave identically to the old-style DAM, i.e. it supports the
same properties and methods. The SQL syntax and functionality supported by the new DAM is also exactly the same, i.e. there
is no support for encryption, procedures, triggers or extended ISO SQL supported by SQLite. This is done to ensure backward
compatibility with Omnis SQL.

Should you wish to adopt enhanced SQLite features, you will need to modify the library further so that it uses the SQLite DAM in
place of the OmnisSQL DAM.

For details of the OmnisSQL Language Definition, please refer to the OmnisSQL chapter. Please note that the new OmnisSQL
DAM supports legacy data files and SQLite only. To support PostgreSQL, your application will need to be modified to use the
PostgreSQL DAM in place of the OmnisSQL DAM.

604

/developers/resources/onlinedocs/Programming/09serv.html#omnis-sql-language-definition


Logging on to SQLite

Once converted to SQLite, you can modify your library code to connect to the SQLite data file (.db file) in place of the old-style
Omnis datafile (.df1 file), e.g.

Do omsqlSess.$logon('/Users/myUser/mydatafile.db','','') Returns #F

Note that no other code changes are necessary. When the DAM encounters the ‘.db’ file-extension, it automatically connects to
the SQLite data file (and you may remove the old Omnis data file).

Chapter 17—Deployment

This chapter describes the deployment of desktop apps on Windows and macOS using the Deployment Tool. For information
about deploying your web and mobile applications, created using Remote forms and the JavaScript Client, see Deploying your
Web & Mobile Apps.

The Deployment Tool allows you to build and customize the Omnis product tree (Runtime installer) suitable for deploying your
applications onWindowsandmacOSdesktopcomputers. OnmacOS, the tool lets youcreate abundle containing your application
files, while onWindows it allows you to create a full or split trees.

In addition, for Windows only, there is an external component, called RCEdit, that allows you to edit various Omnis program
resources, to fully customize or ‘brand’ your product installation onWindows: see Windows Resource Editor.

Deployment Tool

You can open theDeployment Tool using the Tools >> Add-ons >> Deployment tool option on themainOmnismenu bar. The tool
is system dependent, so there are minor differences between the capabilities and interface across Windows and macOS which
are described below.

Windows

OnWindows, on the Basic Information screen you can enter your Application Name, the Manufacturer, Version, Copyright notice,
Executable name and the path to an .ico file to replace the Omnis icon.

Figure 172:

TheAdditions screen lets you specify the bundle’s startup folder, the xcomp folder (containing any external components), iconsets
and icons folder (any icons for the library), plus the location of any files you want to add to the firstruninstall folder (see Build
options).

The Install serial number option allows you to add an Omnis Runtime (client license) serial number to pre-serialize the bundle. If
this option is used, a file called serial.txt will be added and deployed to the end user’s read-write folder (e.g. the AppData folder)
containing the Omnis serial number: the file has a single line in the format SN=xxxxxx where xxxxxx is the Omnis Runtime serial

605

/developers/resources/onlinedocs/WebDev/07deployment.html#chapter-7deploying-your-web-mobile-apps
/developers/resources/onlinedocs/WebDev/07deployment.html#chapter-7deploying-your-web-mobile-apps


(client license) number. (Note if you are installing the Omnis Server version and wish to pre-serialize it, you can use a serial.txt file
in the Omnis root folder. If you wish to set the port number you can set it in the config.json in the server section.)

The Custom data dictionary option allows you to add a custom read/write directory. The Custom config.json option allows you
to specify an Omnis configuration file containing your own settings. A customtool folder is created within the installed writable
directory of Omnis containing a copy of the config.json file from the current instance of Omnis. From there you can edit the
configuration file for your application to build. Alternatively, you can select an existing config.json to use for your application.

Figure 173:

On the Build options screen you need to specify the location of the Omnis Read-only files (these are usually your Omnis Studio
xx.x RT folder in your ProgramFiles), the Read-write files (usually the files in AppData). The path specified in the Build folder field
is the path for the output.

You can also select the option to clear the build folder if there is any error in the build process, plus the option for 32 or 64 bit.

Figure 174:

OnWindows, you can also select the option to build a folder or separate folders providing a Flat tree, Split tree or a Split tree with
firstruninstall, as follows:

• The Flat tree option will output a folder containing both read and read/write files.

• The Split tree option will output a folder containing read-only files, to go in the Program Files folder, and a read-write folder
containing files for the AppData folder.

• The Split Tree with firstruninstall option will output a folder containing read-only files and inside that an additional
“firstruninstall” folder, containing the read-write files that Omnis will copy the first time the application will be run.

606



Thefirstruninstall option allows you install and setup your applicationwithout the need to build an installer, whichmay be quicker
or more convenient for your deploy process or product cycle. For example, you could use 7Zip’s SFX archive feature to create an
executable which simply unarchives itself in such a way to make installers and the complexities they come with unnecessary.

The Size Optimization tab will give some information regarding the estimated size before the build and the estimated size saved.
You can remove files or folders during a build by specifying them on this tab. When adding files or folders to be removed, you only
need to specify the relative path to the file or folder inside the readonly/readwrite directory.

macOS

For macOS, you can change the Application Name, Version, Identifier, Manufacturer, Copyright notice and Icon in the first screen:

Figure 175:

The second screen allows you to specify the bundle’s startup folder, iconsets (for the library), xcomp and icons folders, as well as
the option to pre-serialise the bundle or add a custom read/write directory.

Figure 176:

On the Build options screen you need to select theOmnis Bundle (runtime), a Build folder (the path to the folder where youwant
your output to go), and the version of your Bundle. The Go tomenu allows you to see the build folder in the system file explorer.

You can also select the option to clear the build folder if there is any error in the build process.

The Size Optimization tab will give some information regarding the estimated size before the build and the estimated size saved.
You can remove files or folders during a build by specifying them on this tab. When adding files or folders to be removed, you only
need to specify the relative path to the file or folder inside the bundle.

Code Signing and Notarizing (macOS)

OnmacOS, you can Code sign and Notarize your application using the Deployment tool, which will make deployment easier and
faster. See the next section in this chapter for more information about Code Signing Omnis manually.

607



Figure 177:

To Code sign andNotarize you need an app-specific password, and this can be obtained by logging into your Apple ID account, via
https://appleid.apple.com/account/manage and selecting “Generate password…” under APP-SPECIFIC PASSWORDS. Once gen-
erated, copy your app-specific password.

Next, create a new Keychain Access password with the name AC_PASSWORD and paste the password you just copied as the
password and your Apple developer email address for the account, as follows:

You will also need a developer certificate in Keychain Access that can be used to code sign and notarize. You can obtain one from
your Apple developer account and you can add it to the Keychain Access by double-clicking on the certificate.

Now using the Deployment tool, you need to enable the Code sign option on the Basic Information tab to display the Notarize
options.

This will open options which allow you to enter the Code signing identity. Code signing is required before notarizing and the code
signing identity should be the name of your certificate as it comes from Keychain Access, such as:

Developer ID Application: Omnis Software Ltd (XYZ123XYZ123)

Once you enable Code sign, you can also enable the Notarize option which displays a new entry field for your email and a new
tab that handles entitlements.

Your email is used when submitting your application to Apple for notarization and you will receive an update from Apple on the
status of notarization on the same email.

The “Notarization options” tab can be used to toggle application entitlements, which tell Applemore about what your application
will need access to. You need to supply some defaults which reflect what you distribute, and if you needmore access, you can just
cheque the appropriate option.

Once you are ready to build, just can use the Buildmenu or the shortcut Cmd+B on macOS or Ctrl+B onWindows.

If you Code sign and Notarize as part of the build, Omnis may be unresponsive for quite a time, since a number of things need to
happen: existing code signatures are removed, new code signatures are applied, a DMG is built and submitted to Apple, and so
on. During this process, you need to leave Omnis open, and once the process is finished you will be prompted if it was successful
or not.

Once you have successfully notarized your application, you need to stapler either the DMG or the application bundle before dis-
tributing. You can use the “Staple an existing Bundle or DMG” from the Code signing and notarization menu.

You can also check if a DMG or application bundle is successfully stapled via the terminal by executing “stapler validate [path to
dmg or app]”.

Deployment Tool API

In Studio 11, a number ofmethods have been exposed in the Deployment Tool API to allow you tomanage builds in your own code,
rather than via the Deployment Tool UI. Using the method $root.$modes.$getapiobject(“customtool”) Returns iObRef a number
of API calls for the Deployment Tool have been exposed.

$setcallbackinst($cinst) takes a reference to an instance that implements $completed and $error. If the callback instance is set
via this method, the deployment tool API will call either $completed or $error instead of returning the outcome to the caller. Note
$error also receives a character variable as a parameter containing the error message and $completed can receive a 36-character
long string on macOS if the built bundle is submitted for notarization.

608

https://appleid.apple.com/account/manage


Figure 178:

Figure 179:

609



$run(cConfigFilePath,cError[,cUUID]) requires the path to the deployment configuration file, a character variable to return errors
to, or if on macOS, the UUID when the build is submitted for notarization. If successful, the method returns kTrue, otherwise
kFalse is returned. The configuration file can be built using the GUI version of the Deployment tool.

Managing Builds via the API

The Deployment Tool API supports builds with in-memory data structures rather than file-based only. You can get the data
structures, load and save to a config.json file programmatically.

$getBuildDataStructure() returns a row containing the main data structure for a cross-platform build.

$getEntitlementsDataStructure returns a row containing two row: the standard and extended entitlements data structures (in
that order).

$loadConfig(cPathToConfig.json, rBuildDataStructure, rEntitlements, cErrorText) takes in thepath to a config.json containingdata
structures, a row that receives the build data structures, a row that receives and entitlements rows and a character variable that
receives and error text. Returns true if successful, otherwise false.

$setBuildData(rBuildData) sets the build data structure in-memory to rBuildData row, or you can use $runwithout passing in the
path to a build config.json in order to use the in-memory data values.

$setEntitlementsData(rEntitlements) sets the entitlements data structure in-memory to rEntitlements row (note the rEntitle-
ments rowmust contain two rows where the first is standard entitlements and the second is extended entitlements. Works only
on macOS.

$saveConfig(cPathToFile, bOverwrite, cErrorText) saves the build data and entitlements data currently stored in the API object to
a .json file in cPathToFile. If cPathToFile already exists, bOverwrite (defaults to false) will be used to determine if the file should be
overwritten. cErrorText receives any errors if unsuccessful; function returns true if successful, otherwise false.

The $run function can be run without passing the path to a build config.json file, e.g. Do api.$run(“”,cError, cUUID) Returns bOut-
come as long as the build data has been set via $setBuildData, the build can start. You can use $run by passing the path a build
config.json and the build/entitlements stored in the file will be used.

Code Signing Omnis

The Omnis Studio application package on macOS is code signed, which provides increased security for you and your end users.
A signed application can be trusted to originate from the developer who signed it, and to not have been altered in any way by
any third-party, therefore guaranteeing the authenticity of an application. Signed applications within macOS can automatically
be granted permissions to perform actions, such as accessing services from the network and running built-in software such as
AppleScript commands.

An application can only be signed if its code portion remains unchanged. For the Omnis application, the code portion is located
in the Omnis package, e.g.:

Omnis\ Studio\ 11\ x64.app/Contents/MacOS/

Firstruninstall and Application Support folders

Any files that are updated by Omnis must be stored as user application data located in the user’s home directory, that is, in the
Application Support folder:

~/Library/Application Support/Omnis/

To do this, when Omnis starts up it will check for the existence of a folder called ‘firstruninstall’ in the macOS folder in the Omnis
package. Any itemswhich are contained in this folder are copied by default to a folder in Application Support with the same name
as the Omnis package, e.g.:

~/Library/Application Support/Omnis/Omnis Studio 11 x64

The copy will not occur if the destination folder already exists, therefore avoiding any files being overwritten.

This provides a mechanism to place all data folders and their contents into the ‘firstruninstall’ folder, e.g. icons, studio, startup.
Once copied into Application Support they are only updated in that location and leave the original macOS folder unchanged and
its signature valid.

610



Updating Components

With the signed version of Omnis Studio, an external or JavaScript component can be added or updated in the user data folder.
This allows the signed code part of Omnis to remain unaltered, so it maintains a valid code signature. For example, a standard
component can be placed in the following folder:

~/Library/Application Support/Omnis/\Omnis\ Studio\ 11\ x64/xcomp

and a JavaScript component here:

~/Library/Application Support/ Omnis/\Omnis\ Studio\ 11\ x64/jscomp/

If the required folder does not exist it can be created by the user.

The user data folder is always searched first, so if a component with the same name exists in the code section of the Omnis tree
the user version will be loaded in preference.

Deployment

When deploying your own application, you can update the distributed files in the Omnis package to include your own libraries
and components and to edit the name of the application. Those files placed in the firstruninstall folder will be treated as user data
and will be copied to the Application Support folder.

By default, user data for each installation of Omnis goes into a subfolder of Application Support called “Omnis” and the name of
the Omnis package is used to provide the folder for the individual installation.

So for example an installation here:

/Applications/Omnis Studio 11 x64.app

Will have a default user data location of:

~/Library/Application Support/Omnis/Omnis Studio 11 x64

To customize the subfolder, edit resource 25599, and to customise the installation folder, edit resource 25600. These resources are
located in the Localizable.strings file for the language used, e.g.

/Omnis Studio 11 x64.app/Contents/Resources/English.lproj/Localizable.strings

Both entries are empty for default behavior.

"CORE_RES_25599" = "";
"CORE_RES_25600" = "";

After you update the Omnis package files, the package will need to be re-signed with your own signing identity. You cannot sign
a file that has extended Finder information attributes, so these need to be removed before signing. This can be done recursively
over the entire package by using the following command:

xattr -r -d com.apple.FinderInfo <package_path>

For example:

xattr -r -d com.apple.FinderInfo /Applications/My\ Application.app

Signing you own application requires a code signing identity which can be generated by adding a development or production
certificate via the Certificate section of the Apple developer member center. The machine where signing is to occur must have
the certificate and private key installed. To list all valid code signing identities available on amachine, use the following command
from the terminal:

security find-identity -p codesigning -v

Which will, for example, produce the following output with key and identity listed:

611



1) 44FFBA8B7DFFB1AFFF36FD0613D6E5FC61FF8DFF "Certificate" (CSSMERR_TP_NOT_TRUSTED)
2) B3EF62FF18E0FFB83D3A8FF3672CF80EFF367FFF "Mac Developer: John Doe (24FFEXFF39)"
2 valid identities found

To sign the package use:

codesign -f --deep --verbose -s <identity> <package_path>

For example:

codesign -f --deep --verbose -s "Mac Developer: John Doe (24FFEXFF39)" /Applications/My\ Application.app

If the command completes with no errors, a similar line to the following should appear in the output:

:signed app bundle with Mach-O thin (x86_64) [com.myCompany.MyApplication]

The application is now signed and ready for deployment.

Do not subsequently alter the contents of the package as this will invalidate the signature.

You can verify the signature using the following:

codesign --display --verbose=4 <package_path>

Which will list items such as the signing authority, signing time, etc.

Patching a signed tree

If you wish to distribute an updated Omnis application (the program file), and replace the application in an existing signed Omnis
tree, then this can be achieved by doing the following:

• Replace the binary in the original signed tree with the new version.

• Re-sign the Omnis tree with the same signing identity which you used to sign the original tree.

• Take the patched binary out of the tree for distribution.

Components can be patched without re-signing into the xcomp and jscomp folders of the user data location, e.g.:

~/Library/Application Support/Omnis Studio 11 x64

Always ensure the tree has a valid signature by running:

codesign --display --verbose=4

Omnis data folder

Resources 25599 and 25600 can now be used to specify the Omnis data folder on the Windows platform. You can edit the om-
nisdat.dll string table with a resource editor and modify 25599 and 25600 to be used to specify the sub-folders of the appdata
directory. The Omnis data folder becomes:

<appdata folder>\<resource 25599>\<resource 25600>\

If resource 25599 is not empty, resource 25600 must also not be empty.

612



Update Manifest Files

Omnis employs an updatemechanism to update files in the user data contents of an Omnis installation, that is inside Application
Support on macOS and AppData onWindows.

When Omnis starts, it reads the contents of the ‘version’ file in the root of its installation files, that is ‘/Application/Omnis Studio
11.app/Contents/MacOS/version’ onmacOS and ‘C:\Program Files\Omnis Software\Omnis Studio 11\version’ onWindows. If that file
is not present, the Omnis internal build version is used, as returned by sys(123). The version file in the read-only location is referred
to as ‘deployment version’.

Similarly, Omnis retrieves the revision of another hidden .version file in the root of the user-data location, e.g. [path to application
support]/Omnis/Omnis Studio 11/.version onmacOS or [path to appdata]\Omnis Software\Omnis Studio 11\ .version onWindows. If
that file is not present, 0 is assumed to be the version of the user data. The .version file in the read-write location is referred to as
‘data version’ or ‘user data version’.

If the data version is lower than the deployment version, Omnis will check for updates that need to be applied in a special folder
named “manifest” in the root of the read-only location: this manifest folder will contain files named after the new deployment
version, e.g. 23071 or 23072. Inside these manifest files, there are paths of files or folders to remove from the user data location.

Omnis will remove those from the user data and then the firstruninstall mechanism will copy whatever is missing into the user
data location, and the .version file in the user data will be updated accordingly.

Update on macOS

On macOS if an Omnis deployment is replacing an existing installation using a simple drag and drop approach, that is, from a
disk image to the Applications folder, files which already exist in the current user’s Application Support folder will not be updated
from the files in the firstruninstall folder of the new disk image.

If there are files which need to be patched, Omnis provides the use of Update Manifest Files to allow a deployment to specify the
files in an existing set of user data which need to be removed so they can be replaced by newer files from the firstruninstall folder.

WhenOmnis starts itwill read an integer deployment versionnumber fromafile called “version” in theOmnis application’smacOS
folder:

/Applications/Omnis\ Studio\ 11.0.1.app/Contents/MacOS/version

If this file does not exist then the deployment version number will be set to the Omnis internal build number (as returned by
sys(123)).

Omnis will read the version of the user data from a hidden file (.version) in the root of the user’s application data folder for the
Omnis application.

/Users/<username>/Library/Application Support/Omnis/Omnis Studio 11.0.1/.version

If this file does not exist, the user data version is set to zero. If the user data version is lower than the deployment version, Omnis
will check for updates that need to be applied.

The updates are specified in a set of files which should be placed in a folder called “manifest” within the Omnis application’s
macOS folder. Each file should be named for the version which specifies the changes. For example, if the new deployment is
version 23071 there should be a file named 23071.

/Applications/Omnis\ Studio\ 11.0.1.app/Contents/MacOS/manifest/23071

The manifest file should contain the paths of each file or folder which needs to be updated for that version. Each path should be
separated by a new line.

Therefore, if file 23071 contains:

studio/v40.lbs
startup/vcs.lbs

This will indicate that the Studio Browser and VCS are to be updated (removed from the user data) for version 23071.

There can be a manifest file for interim versions if updating an older version of Omnis. Therefore, if the user version is 23069, the
deployment version is 23071 and the manifest folder contains 23070 and 23071 then both files will be used for updating.

If updates are applied, the hidden user data version is updated to the deployment version.

613



Note that the Omnis application deployment tree (code-side) still needs to be re-signed (and notarised) for each version of a
deployment.

It is not recommended that individual files are updated in an existing signed tree (as this will invalidate the signature).

Windows Resource Editor

TheWindows Resource Editor, or RCEdit, allows you to edit various Windows resources, including the product version, version
string, and the icon for the Omnis executable. The external component implements a number of functions (methods) which you
can call from your Omnis code using Do rcedit.$<function-name>(parameters).

Setting the application manifest

$setapplicationmanifest(cFile, cManifest) sets the manifest in cManifest to file path cFile. For example:

Do rcedit.$setapplicationmanifest("C:\omnis.exe", "C:\folder\newManifest.xml") Returns #F

Setting a resource string

$setresourcestring(cFile, cResource, cValue) sets resource in cResource to value in cValue for file path cFile. For example:

Do rcedit.$setresourcestring("C:\omnis.exe", "1", "This is the new value") Returns #F

Setting the product version

$setproductversion(cFile, cProductVersion) sets theWindowsexecutable resource “Product Version” to version in cProductVersion
for file path cFile. For example:

Do rcedit.$setproductversion("C:\omnis.exe", "11.1")

Setting the Omnis icon

$seticon(cFile, cIcon) sets the Windows executable icon in file path cFile to .ico file path in cIcon. For example:

Do rcedit.$seticon("C:\omnis.exe", "C:\newIcon.ico") Returns #F

Setting the program version string

$setversionstring(cFile, cVersion, cValue) sets the version string in cVersion to value in cValue for file path in cFile. For example:

Do rcedit.$setversionstring("C:\omnis.exe", "Comments", "Comment version string") Returns #F

Setting the program file version

$setfileversion(cFile, cFileVersion) - sets the Windows executable resource “File Version” to value in cFileVersion. For example:

Do rcedit.$setfileversion("C:\omnis.exe", "11.1.0.0") Returns #F

614


	Omnis Programming
	About This Manual

	Chapter 1—The Omnis Environment
	Studio Browser
	Color Themes and Appearance
	Omnis Preferences
	Omnis Configuration
	Studio Toolbars and Menus
	Context Menus
	Find and Replace
	Spell Checking
	Component Store
	Property Manager
	Method Editor
	Interface Manager
	Notation Inspector
	Catalog
	SQL Browser
	SQL Query Builder
	Version Control System
	Auto Updates
	External Class Editor
	Omnis Help
	System Notifications
	Power Management Notifications

	Chapter 2—Libraries and Classes
	Omnis Libraries
	Default Classes
	Class Types
	Creating New Classes
	Data Classes and Wizards
	Omnis Data Types
	Schema Classes
	Query Classes
	Table Classes
	Exporting Libraries to JSON

	Chapter 3—Omnis Programming
	Variables
	Methods
	Events
	User Constants
	Using Tasks
	External Component Notation

	Chapter 4—Debugging Methods
	Method Editor
	Inserting and Editing Methods
	Code Editor
	Code Assistant
	Debugging Methods
	Inspecting Variable Values
	Watching Variable Values
	Breakpoints
	The Method Stack
	Debugger Options
	Debugger Commands
	Checking Methods
	Method Performance
	Sequence Logging
	Remote Debugger

	Chapter 5—Object Oriented Programming
	Inheritance
	Object Classes
	Object References
	External Objects

	Chapter 6—List Programming
	Declaring List or Row Variables
	Defining List or Row Variables
	Building List Variables
	List and Row functions
	Accessing List Columns and Rows
	List Variable Notation
	Manipulating Lists
	Smart Lists

	Chapter 7—SQL Programming
	Overview
	Setting up a Database Connection
	Connecting to your Database
	Interacting with your Server
	Listing Database Objects
	Remote Procedures
	Transactions
	Cursor Results Sets
	Non-Unicode Compatibility
	Stripping Spaces
	Treatment of Date Values
	Large Objects
	Session Pools
	Diagnosing Problems
	Session and Statement Properties and Methods
	SQL Multi-tasking and SQL Workers
	SQL Worker Lists

	Chapter 8—SQL Classes and Notation
	Schema Classes
	Query Classes
	Table Classes
	Table Instances
	SQL Classes and Sessions

	Chapter 9—Server-Specific Programming
	PostgreSQL
	SQLite
	Oracle
	Sybase
	DB2
	MySQL
	ODBC
	Amazon SimpleDB
	OmnisSQL DAM
	JDBC

	Chapter 10—Report Programming
	Report Fields and Sections
	Report Wizard
	Report Tools
	Report Sections
	Section Positioning
	Sorting and Subtotaling
	PDF Accessibility
	Custom URLs
	Printing Reports
	Report and Field Methods
	Print Devices and the Current Device
	Global Printing Preferences
	Report Instances
	Report Field and Section Methods
	Report Object Positioning
	Report Fonts
	Port Profiles
	Labels
	HTML Report Device

	Chapter 11—Window Components
	Example Apps and Code
	Window Class Components
	Object Properties
	Object Names
	Object datanames
	Component Icons
	Vertically Centered Text
	Font Scaling for Fields
	Event & Control Methods
	Alpha Colors & Transparency
	Container Fields
	Object Animation
	Rounded Borders
	Object Transparency
	Tooltips
	HTML Components for Desktop Applications
	Menu Classes
	Toolbar Classes
	Accordion Control
	Breadcrumb Control
	Button Area
	Calendar Control
	Check Box
	Check List
	Clock Control
	Color Palette
	Combo Box
	Complex Grid
	Data Grid
	Droplist
	FishEye Control
	Graph2 Control
	Group Box and Scroll box
	Headed List Box
	HelpMethods
	Hyperlink Control
	Icon Array
	JPEG Control
	Labeled Fields
	List Box
	Marquee Control
	Masked Entry Field
	Modify Report Field
	Multibutton Control
	Multi Line Entry Field
	Navigation Menu
	OBrowser
	OmnisIcn Control
	Paged Pane
	Picture Control
	Popup List
	Popup Menu
	Progress Bar
	Pushbuttons and Button Areas
	Radio Groups and Buttons
	Round Button
	Screen Report Field
	Scroll Box
	Shape Field
	Sidebar Control
	Single Line Entry Field
	Slider Control
	Split Button
	String and Data Grids
	Subwindows
	Switch Control
	Tab Pane
	Tab Strip
	Token Entry Field
	Trans Button Control
	Transform Control
	Tree List
	Video Player
	WAV Player
	Background Objects
	Label and Text Objects
	Deprecated Components

	Chapter 12—Window Programming
	Window Design Task
	Window Methods
	Field Styles
	Format Strings and Input Masks
	Drag and Drop
	Toast Messages
	Window Messages
	HWND Notation
	Enter Data Mode
	Floating Edges for Windows and Fields
	Window Fonts
	Background Themes
	Theme Fonts
	Window Style
	Window Transparency
	Disabling the Focus on Fields
	Lookup Windows
	Timer Methods and Splash Screens
	Window Status Bars
	True Color Shared Pictures

	Chapter 13—Unicode
	What is Unicode?
	DAMs
	Character Normalization
	Character Translation
	Unicode Clients
	Unicode Data Handling
	Import/Export and Report File Encoding
	Omnis Data File Conversion

	Chapter 14—Localization
	Localizing Your Libraries
	Localizing Omnis
	Localizing the Omnis Runtime

	Chapter 15—Version Control
	Overview
	Setting up a Project
	Checking in Components
	Using the VCS
	Managing Components
	VCS Options
	Reports
	VCS API

	Chapter 16—Omnis Data File Migration
	Converting Omnis Data Files
	Enabling DML Emulation
	Emulated Commands
	Changes to Library Code
	Multiple Users and Concurrency
	Logon Config Files
	Caveats
	New OmnisSQL DAM

	Chapter 17—Deployment
	Deployment Tool
	Code Signing Omnis
	Update Manifest Files
	Windows Resource Editor


